

AdaCore Technologies for Airborne Software

Supporting certification and tool qualification for DO-178C:ED-12C

Release 2.1

Oct 17, 2025

Copyright © 2017 – 2025, AdaCore

This book is published under a CC BY-SA license, which means that you
can copy, redistribute, remix, transform, and build upon the content
for any purpose, even commercially, as long as you give appropriate
credit, provide a link to the license, and indicate if changes were
made. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
You can find license details
on this page[#1]

[image: _images/ccheart_black.png]

About the Authors

Frédéric Pothon

During his professional career dating back to the 1980s, Frédéric
Pothon has been a recognized expert in the area of software aspects of
certification (most notably DO ‑ 178/ED ‑ 12, Levels A, B, and C). He was a
member of the EUROCAE/RTCA group that produced DO ‑ 248B/ED ‑ 94B, which
provides supporting information for the DO ‑ 178B/ED ‑ 12B standard. Mr. Pothon
has led projects at Turboméca (now Safran Helicopter Engines) and
Airbus, where he was responsible for software methodologies and
quality engineering processes. He founded the company ACG-Solutions in
2007 and worked as an independent consulting engineer, providing
training, audits, and support, and he was involved in several research
projects. Mr. Pothon is an expert in the qualification and utilization
of automatic code generation tools for model-based development, and he
served as co-chair of the Tool Qualification subgroup during the
DO ‑ 178C/ED ‑ 12C project.

Quentin Ochem

Quentin Ochem is the Chief Product and Revenue Officer at AdaCore,
where he oversees marketing, sales, and product management while
steering the company's strategic initiatives. He joined AdaCore in
2005 to work on the company's Integrated Development Environments and
cross-language bindings. With an extensive background in software
engineering in high-integrity domains such as avionics and defense, he
has served leading roles in technical sales, customer training, and
product development. Notably, he has conducted training on the Ada
language, AdaCore tools, and the DO ‑ 178B/ED ‑ 12B and DO ‑ 178C/ED ‑ 12C software
certification standards. In 2021 he stepped into his current role,
directing the company's strategic initiatives.

Foreword

The guidance in the DO ‑ 178C/ED ‑ 12C standard and its associated
technology-specific supplements helps achieve confidence that airborne
software meets its requirements. Certifying that a system complies
with this guidance is a challenging task, especially for the
verification activities, but appropriate usage of qualified tools and
specialized run-time libraries can significantly simplify the
effort. This document explains how a number of technologies offered by
AdaCore — tools, libraries, and supplemental services —
can help. It covers not only the "core" DO ‑ 178C/ED ‑ 12C standard but also
the technology supplements: Object-Oriented Technology and Related
Techniques DO ‑ 332/ED ‑ 217, and Formal Methods (DO ‑ 333/ED ‑ 216). The content is
based on the authors' many years of practical experience with the
certification of airborne software, with the Ada and SPARK programming
languages, and with the technologies addressed by the DO ‑ 178C/ED ‑ 12C
supplements.

We gratefully acknowledge the assistance of Ben Brosgol (AdaCore) for
his review of and contributions to the material presented in this
document.

Frédéric Pothon, ACG Solutions

Montpellier, France

March 2017

Quentin Ochem, AdaCore

New York, NY

March 2017

Foreword to V2.1

This revised booklet reflects the evolution of and enhancements to
AdaCore's products since the earlier edition. Among other updates,
the static analysis tools supplementing the GNAT Pro development
environment have been integrated into a cohesive toolset (the GNAT
Static Analysis Suite). The dynamic analysis tools have likewise
been consolidated, and the resulting GNAT Dynamic Analysis Suite has
introduced a fuzzing tool — GNATfuzz — which exercises
the software with invalid input and checks for failsafe behavior.

I would like to express my appreciation to Olivier Appere (AdaCore)
for his detailed and helpful review of the content for the revised
booklet.

Ben Brosgol, AdaCore

Bedford, Massachusetts

July 2025

	1. Introduction

	2. The DO-178C/ED-12C Standards Suite
	2.1. Overview

	2.2. Software Tool Qualification Considerations: DO-330/ED-215

	2.3. Model-Based Development and Verification Supplement: DO-331/ED-218

	2.4. Object-Oriented Technology and Related Techniques Supplement: DO-332/ED-217

	2.5. Formal Methods Supplement: DO-333/ED-216

	3. AdaCore Tools and Technologies Overview
	3.1. Ada
	3.1.1. Background

	3.1.2. Language Overview

	3.2. SPARK
	3.2.1. Flexibility

	3.2.2. Powerful Static Verification

	3.2.3. Ease of Adoption

	3.2.4. Reduced Cost and Improved Efficiency of Executable Object Code (EOC) verification

	3.3. GNAT Pro Assurance
	3.3.1. Sustained Branches

	3.3.2. Configurable Run-Time Libraries

	3.3.3. Full Implementation of Ada Standards

	3.3.4. Source to Object Traceability

	3.3.5. Safety-Critical Support and Expertise

	3.3.6. Libadalang

	3.3.7. GNATstack

	3.4. GNAT Static Analysis Suite (GNAT SAS)
	3.4.1. Defects and vulnerability analysis

	3.4.2. GNATmetric

	3.4.3. GNATcheck

	3.5. GNAT Dynamic Analysis Suite (GNAT DAS)
	3.5.1. GNATtest

	3.5.2. GNATemulator

	3.5.3. GNATcoverage

	3.5.4. GNATfuzz

	3.5.5. TGen

	3.6. GNAT Pro for Rust

	3.7. Integrated Development Environments (IDEs)
	3.7.1. GNAT Studio
	3.7.1.1. Tools

	3.7.1.2. Robust, Flexible and Extensible

	3.7.1.3. Easy to learn, easy to use

	3.7.1.4. Remote Programming

	3.7.2. VS Code Extensions for Ada and SPARK

	3.7.3. Eclipse support - GNATbench

	3.7.4. GNATdashboard

	4. Compliance with DO-178C / ED-12C Guidance: Analysis
	4.1. Overview

	4.2. Use case #1a: Coding with Ada 2012
	4.2.1. Benefits of the Ada language
	4.2.1.1. Modularization

	4.2.1.2. Strong typing

	4.2.1.3. Dimensionality checking

	4.2.1.4. Pointers

	4.2.1.5. Arrays

	4.2.1.6. Other Ada features

	4.2.2. Using Ada during the design process
	4.2.2.1. Component identification

	4.2.2.2. Low-Level Requirements

	4.2.2.3. Implementation of Hardware / Software Interfaces

	4.2.3. Integration of C components with Ada

	4.2.4. Robustness / defensive programming

	4.2.5. Defining and Verifying a Code Standard with GNATcheck

	4.2.6. Checking source code accuracy and consistency with GNAT SAS

	4.2.7. Checking worst case stack consumption with GNATstack

	4.2.8. Compiling with the GNAT Pro compiler

	4.2.9. Using GNATtest for low-level testing
	4.2.9.1. Approach 1: Test cases are not specified in Ada specifications

	4.2.9.2. Approach 2: Test cases are developed during the design process

	4.2.9.3. Approach 3: Test cases are developed separately from the design process

	4.2.10. Using GNATemulator for low-level and software / software integration tests

	4.2.11. Structural code coverage with GNATcoverage

	4.2.12. Data and control coupling coverage with GNATcoverage

	4.2.13. Demonstrating traceability of source to object code

	4.3. Use case #1b: Coding with Ada using OOT features
	4.3.1. Object orientation for the architecture

	4.3.2. Coverage in the case of generics

	4.3.3. Dealing with dynamic dispatching and substitutability
	4.3.3.1. Understanding Substitutability

	4.3.3.2. Verifying substitutability by pessimistic testing

	4.3.3.3. Verifying substitutability through requirement-based testing

	4.3.3.4. Verifying substitutability through formal proof

	4.3.3.5. Differences between local and global substitutability

	4.3.4. Dispatching as a new module coupling mechanism

	4.3.5. Memory management issues

	4.3.6. Exception handling

	4.3.7. Overloading and type conversion vulnerabilities

	4.3.8. Accounting for dispatching in performing resource analysis

	4.4. Use case #2: Using SPARK and Formal Methods
	4.4.1. Using SPARK for design data development

	4.4.2. Robustness and SPARK

	4.4.3. Contributions to Low-Level Requirement reviews

	4.4.4. Contributions to architecture reviews

	4.4.5. Contributions to source code reviews

	4.4.6. Formal analysis as an alternative to low-level testing

	4.4.7. Low-level verification by mixing test and proof ("Hybrid verification")

	4.4.8. Alternatives to code coverage when using proofs

	4.4.9. Property preservation between source code and object code

	4.4.10. SPARK Development Cycle Example

	4.5. Parameter Data Items

	5. Summary of contributions to DO-178C/ED-12C objectives
	5.1. Overall summary: which objectives are met
	5.1.1. Mapping of AdaCore's Technologies to DO-178C/ED-12C Objectives

	5.2. Detailed summary: which activities are supported
	5.2.1. Table A-1: Software Planning Process

	5.2.2. Table A-2: Software Development Processes

	5.2.3. Table A-4: Verification of Outputs of Software Design Process

	5.2.4. Table A-5 Verification of Outputs of Software Requirement Process

	5.2.5. Table A-6 Testing of Outputs of Integration Process

	5.2.6. Table A-7 Verification of Verification Process Results

	5.3. AdaCore Tool Qualification and Library Certification

	6. Bibliography

Footnotes

[#1]
http://creativecommons.org/licenses/by-sa/4.0

1. Introduction

This document explains how to use AdaCore's technologies — the
company's tools, run-time libraries, and associated services —
in conjunction with the safety-related standards for airborne
software: DO ‑ 178C/ED ‑ 12C and and its technology supplements and tool
qualification considerations. It describes how AdaCore's technologies
fit into a project's software life cycle processes, and how they can
satisfy various objectives of the standards. Many of the advantages
of AdaCore's products stem from the software engineering support found
in the Ada programming language, including features (such as
contract-based programming) introduced in Ada 2012
[ISOIEC12]. Other advantages draw directly from the
formally analyzable SPARK subset of Ada [AA20],
[Dro22], [CDMM24]. As a result, this
document identifies how Ada and SPARK contribute toward the
development of reliable software. AdaCore personnel have played key
roles in the design and implementation of both of these languages.

Although DO ‑ 178C/ED ‑ 12C doesn't prescribe any specific software life cycle,
the development and verification processes that it encompasses can be
represented as a variation of the traditional
"V-model"[#1]. As shown in
Fig. 1, AdaCore's products and the Ada and SPARK
languages contribute principally to the bottom portions of the V
— coding and integration and their verification. The Table
annotations in Fig. 1 refer to the tables in
DO ‑ 178C/ED ‑ 12C and, when applicable, specific objectives in those tables.

[image: ../_images/introduction-fig1.png]

Fig. 1 AdaCore Technologies and DO ‑ 178C/ED ‑ 12C Life Cycle Processes

Complementing AdaCore's support for Ada and SPARK, the company offers
tools and technologies for C, C++ and Rust. Although C lacks the
built-in checks as well as other functionality that Ada provides,
AdaCore's Ada and C toolchains have similar capabilities. And
mixed-language applications can take advantage of Ada's interface
checking that is performed during inter-module communication.

AdaCore's Ada and C compilers can help developers produce reliable
software, targeting embedded platforms with RTOSes as well as bare metal
configurations. These are available with long term support,
certifiable run-time libraries, and source-to-object traceability
analyses as required for DO ‑ 178C/ED ‑ 12C Level A. Supplementing the
compilers are a comprehensive set of static and dynamic analysis
tools, including a code standard enforcer, a vulnerability and logic
error detector, test and coverage analyzers, and a fuzzing tool.

A number of these tools are qualifiable with respect to the DO ‑ 330/ED ‑ 215
standard (Tool Qualification Considerations). The use of qualified
tools can save considerable effort during development and/or
verification since the output of the tools does not need to be
manually checked. Qualification material, at the applicable Tool
Qualification Level (TQL), is available for specific AdaCore tools.

Supplementing the core DO ‑ 178C/ED ‑ 12C standard are three supplements that
address specific technologies:

	DO-331/ED-218: Model-Based Development and Verification

AdaCore's tools and technologies can be used in conjunction with
model-based methods but do not relate directly to the issues
addressed in DO ‑ 331/ED ‑ 218.

	DO-332/ED-217: Object-Oriented Technology and Related Techniques

The Ada and SPARK languages provide specific features that help meet
the objectives of DO ‑ 332/ED ‑ 217, thus allowing developers to exploit
Object Orientation (e.g., class hierarchies and inheritance for
specifying data relationships) in a certified application.

	DO-333/ED-216: Formal Methods

The SPARK language and toolset directly support DO ‑ 333/ED ‑ 216, allowing
the use of formal proofs to replace some low-level testing.

The technologies and associated options presented in this document are
known to be acceptable, and certification authorities have already
accepted most of them on actual projects. However, acceptance is
project dependent. An activity using a technique or method may be
considered as appropriate to satisfy one or several DO ‑ 178C/ED ‑ 12C
objectives for one project (determined by the development standards,
the input complexity, the target computer and system environment) but
not necessarily on another project. The effort and amount of
justification to gain approval may also differ from one auditor to
another, depending of their background. Whenever a new tool, method,
or technique is introduced, it's important to open a discussion with
AdaCore and the designated authority to confirm its acceptability. The
level of detail in the process description provided in the project
plans and standard is a key factor in gaining acceptance.

Footnotes

[#1]
https://en.wikipedia.org/wiki/V-model_(software_development)

2. The DO-178C/ED-12C Standards Suite

2.1. Overview

"Every State has complete and exclusive sovereignty over the airspace
above its territory." This general principle was codified in Article 1
of the Convention on International Civil Aviation (the "Chicago
Convention") in 1944 [ICA44]. To control the airspace,
harmonized regulations have been formulated to ensure that the
aircraft are airworthy.

A type certificate is issued by a certification authority to signify
the airworthiness of an aircraft manufacturing design. The certificate
reflects a determination made by the regulating body that the aircraft
is manufactured according to an approved design, and that the design
complies with airworthiness requirements. To meet those requirements
the aircraft and each subassembly must also be approved. Typically,
requirements established by a regulating body refer to "Minimum
Operating Performance Standards" (MOPS) and a set of recognized
"Acceptable Means of Compliance" such as DO ‑ 178/ED ‑ 12 for software,
DO ‑ 160/ED ‑ 14 for environmental conditions and test procedures, and
DO ‑ 254/ED ‑ 80 for Complex Electronic Hardware.

DO-178C/ED-12C - Software Considerations in Airborne Systems and
Equipment Certification [RCT11] — was issued in
December 2011, developed jointly by RTCA, Inc., and EUROCAE. It is the
primary document by which certification authorities such as the FAA,
EASA, and Transport Canada approve all commercial software-based
aerospace systems.

The DO ‑ 178C/ED ‑ 12C document suite comprises:

	The core document, which is a revision of the previous release
(DO ‑ 178B/ED ‑ 12B). The changes are mostly clarifications, and also
address the use of "Parameter Data Items" (e.g., Configuration
tables)

	DO ‑ 278A/ED ‑ 109A, which is similar to DO ‑ 178C/ED ‑ 12C and addresses ground-based
software used in the domain of CNS/ATM (Communication Navigation
Surveillance/Air Traffic Management)

	DO ‑ 248C/ED ‑ 94C (Supporting Information for DO ‑ 178C/ED ‑ 12C and DO ‑ 278A/ED ‑ 109A),
which explains the rationale behind the guidance provided in the
core documents

	Three technology-specific supplements

	DO ‑ 331/ED ‑ 218: Model-Based Development and Verification

	DO ‑ 332/ED ‑ 217: Object Oriented Technology and Related Techniques

	DO ‑ 333/ED ‑ 216: Formal Methods

Each supplement adapts the core document guidance as appropriate for
its respective technology. These supplements are not standalone
documents but must be used in conjunction with DO ‑ 178C/ED ‑ 12C or
DO ‑ 278A/ED ‑ 109A.

	DO ‑ 330/ED ‑ 215 (Software Tool Qualification Considerations), providing
guidance for qualifying software tools. This standard is not
specific to DO ‑ 178C/ED ‑ 12C and may be applied to software certification
in other application domains.

Details on how to use these standards in practice may be found in
[Rie13].

One of the main principles of the DO ‑ 178C/ED ‑ 12C document suite is to be
"objective oriented". The guidance in each document consists of a set
of objectives that relate to the various software life-cycle processes
(planning, development, verification, configuration management,
quality assurance, certification liaison). The objectives that must be
met for a particular software component depend on the software level
(also known as a Design Assurance Level or DAL) of the
component. The level in turn is based on the potential effect of an
anomaly in that software component on the continued safe operation of
the aircraft. Software levels range from E (the lowest) where there
is no effect, to A (the highest) where an anomaly can cause the loss
of the aircraft. A software component's level is established as part
of the system life-cycle processes.

To gain software approval for a system, the applicant has to
demonstrate that the objectives relevant to the software level for
each component have been met. To achieve this goal, the development
team specifies the various software life-cycle activities (based on
those recommended by DO ‑ 178C/ED ‑ 12C and/or others), and its associated
methods, environment, and organization/management. In case the chosen
methods are addressed by one of the technology supplements, additional
or alternative objectives must also be satisfied. The technology
supplements may replace or add objectives and/or activities.

2.2. Software Tool Qualification Considerations: DO-330/ED-215

A software tool needs to be qualified when a process is automated,
eliminated, or reduced, but its outputs are not verified. The
systematic verification of the tool outputs is replaced by activities
performed on the tool itself: the tool qualification. The
qualification effort depends on the assurance level of the airborne
software and the possible effect that an error in the tool may have on
this software. The resulting combination, the Tool Qualification
Level, is a 5 level scale, from TQL-5 (the lowest level, applicable to
software tools that cannot insert an error in the resulting software,
but might fail to detect an error) to TQL-1 (the highest, applicable
to software tools that can insert an error in software at level A).

A tool is only qualified in the context of a specific project, for a
specific certification credit, expressed in term of objectives and
activities. Achieving qualification for a tool on a specific project
does of course greatly increase the likelihood of being able to
qualify the tool on another project. However, a different project may
have different processes or requirements, or develop software with
different environment constraints. As a result, the qualifiability of
a tool needs to be systematically assessed on a case-by-case basis.

Although many references are made in the literature about qualified
tools, strictly speaking this term should only be used in the context
of a specific project. Tools provided by tool vendors, independently
of any project, should be identified as qualifiable only. The tool
qualification document guidance DO ‑ 330/ED ‑ 215 includes specific objectives
that can only be satisfied in the context of a given project
environment.

Throughout this document, the applicable tool qualification level is
identified together with the relevant objective or activity for which
credit may be sought. The qualification activities have been performed
with respect to DO ‑ 330/ED ‑ 215 at the applicable Tool Qualification
Level. Tool qualification material is available to customers as a
supplement to AdaCore's GNAT Pro Assurance product.

2.3. Model-Based Development and Verification Supplement: DO-331/ED-218

Model-based development covers a wide range of techniques for
representing the software requirements and/or architecture, most often
through a graphical notation. The source code itself is not
considered as a model. Well known examples include UML for software
architecture, SysSML for system representation, and Simulink©
for control algorithms and related requirements. DO ‑ 331/ED ‑ 218 presents the
objectives and activities associated with the use of such techniques.

The main added value of the supplement is its guidance on how to use
model simulation and obtain certification credit. AdaCore's tools and
technologies can be used in conjunction with model-based methods but
do not relate directly to the issues addressed in this supplement.

2.4. Object-Oriented Technology and Related Techniques Supplement: DO-332/ED-217

Although DO ‑ 332/ED ‑ 217 is often referred as the "object oriented
supplement", the "related techniques" mentioned in the title are
equally relevant and are addressed in detail. They may be used in
conjunction with Object-Oriented Technology (OOT) but are not
necessarily related to OO features. Such related techniques include
virtualization, genericity (also known as templates), exceptions,
overloading, and dynamic memory management.

Considering the breadth of features covered by DO ‑ 332/ED ‑ 217, at least some
of its guidance should be followed regardless of whether the actual
application is using object orientation. For example, type conversion
is probably present in most code bases regardless of which language is
being used.

The DO ‑ 332/ED ‑ 217 supplement is much more code-centric than the others, and
only two objectives are added: one related to local type consistency
(dynamic dispatching) and another one related to dynamic memory. All
other guidance takes the form of additional activities for existing
DO ‑ 178C/ED ‑ 12C objectives.

Of particular relevance is the supplement's Vulnerability Analysis
annex. Although not binding, it explains in detail what is behind
these additional activities. The following features in particular may
need to be addressed when Ada is used:

	Inheritance / local type consistency

	Parametric polymorphism (genericity)

	Overloading

	Type conversion

	Exception management

	Dynamic memory

	Component-based development

The Ada language, the precautions taken during the design and coding
processes, and the use of AdaCore tools combine to help address or
mitigate the vulnerabilities associated with these features.

2.5. Formal Methods Supplement: DO-333/ED-216

DO ‑ 333/ED ‑ 216 provides guidance on the use of formal methods. A formal
method is defined as "a formal model combined with a formal
analysis". A formal model should be precise, unambiguous and have a
mathematically defined syntax and semantics. The formal analysis
should be sound; i.e., if it is supposed to determine whether the
formal model (for example the software source code in a language such
as SPARK) satisfies a given property, then the analysis should never
assert that the property holds when in fact it does not.

A formal method may be used to satisfy DO ‑ 178C/ED ‑ 12C verification
objectives; formal analysis may therefore replace some reviews,
analyses and tests. Almost all verification objectives are potential
candidates for formal methods.

In DO ‑ 178C/ED ‑ 12C, the purpose of testing is to verify the Executable
Object Code (EOC) based on the requirements. The main innovation of
DO-333 / ED-216 is to allow the use of formal methods to replace some
categories of tests. In fact, with the exception of software /
hardware integration tests showing that the EOC is compatible with the
target computer, the other objectives of EOC verification may be
satisfied by formal analysis. This is a significant added
value. However, employing formal analysis to replace tests is a new
concept in the avionics domain, with somewhat limited experience in
practice thus far (see [MLD+13] for further
information). As noted in [Moy17], a significant issue is
how to demonstrate that the compiler generates code that properly
preserves the properties that have been formally demonstrated for the
source code. Running the integration tests both with and without the
contracts being executed, and showing that the results are the same in
both cases, is one way to gain the necessary confidence that
properties have been preserved in the EOC.

Details from tool providers on the underlying models or mathematical
theories implemented in the tool are necessary to assess the maturity
of the method. Then substantiation and justification need to be
documented, typically in the Plan for Software Aspects of
Certification (PSAC), and provided to certification authorities at an
early stage for review.

AdaCore provides the SPARK technology as a formal method that can
eliminate or reduce the testing based on low-level requirements.
Using SPARK will also get full or partial credit for other objectives,
such as requirements and code accuracy and consistency, verifiability,
etc. Its usage is consistent with the example provided in Appendix B
of DO ‑ 333/ED ‑ 216, "FM.B.1.5.1 Unit Proof", and a SPARK version of this
example is shown in SPARK Development Cycle Example.
Certification credit for using formal proofs is summarized in
Fig. 2:

[image: ../_images/standards-fig2.png]

Fig. 2 SPARK contributions to verification objectives

Footnotes

3. AdaCore Tools and Technologies Overview

3.1. Ada

3.1.1. Background

Ada is a modern programming language designed for large, long-lived
applications — and embedded systems in particular — where
reliability, maintainability, and efficiency are essential. It was
originally developed in the early 1980s (this version is generally
known as Ada 83) by a team led by Jean Ichbiah at CII-Honeywell-Bull
in France. The language was revised and enhanced in an upward
compatible fashion in the early 1990s, under the leadership of Tucker
Taft from Intermetrics in the U.S. The resulting language, Ada 95, was
the first internationally standardized (ISO) object-oriented
language. Under the auspices of ISO, a further (minor) revision was
completed as an amendment to the standard; this version of the
language is known as Ada 2005. Additional features (including support
for contract-based programming in the form of subprogram pre- and
postconditions and type invariants) were added in the Ada 2012 version
of the language standard, and a number of features to increase the
language's expressiveness were introduced in Ada 2022 (see
[ISOIEC12], [BB15],
[Bar14], [ISOIEC22] for information about
Ada).

The name Ada is not an acronym; it was chosen in honor of Augusta
Ada Lovelace (1815-1852), a mathematician who is regarded as the
world's first programmer because of her work with Charles Babbage. She
was also the daughter of the poet Lord Byron.

Ada is seeing significant usage worldwide in high-integrity /
safety-critical / high-security domains including commercial and
military aircraft avionics, air traffic control, railroad systems, and
medical devices. With its embodiment of modern software engineering
principles, Ada is an excellent teaching language for both
introductory and advanced computer science courses, and it has been
the subject of significant university research especially in the area
of real-time technologies. The so-called Ravenscar profile
— a subset of the language's concurrency features with deterministic
semantics — broke new ground in supporting the use of concurrent
programming in high assurance software.

AdaCore has a long history and close connection with the Ada
programming language. Company members worked on the original Ada 83
design and review and played key roles in the Ada 95 project as well
as the subsequent revisions. AdaCore's initial GNAT compiler was
essential to the growth of Ada 95; it was delivered at the time of the
language's standardization, thus guaranteeing that users would have a
quality implementation for transitioning to Ada 95 from Ada 83 or
other languages.

3.1.2. Language Overview

Ada is multi-faceted. From one perspective it is a classical
stack-based general-purpose language, not tied to any specific
development methodology. It has a simple syntax, structured control
statements, flexible data composition facilities, strong type
checking, traditional features for code modularization
(subprograms), and a mechanism for detecting and responding to
exceptional run-time conditions (exception handling). But it also
includes much more:

Scalar ranges

Unlike languages based on C syntax (such as C++, Java, and C#), Ada
allows the programmer to simply and explicitly specify the range of
values that are permitted for variables of scalar types (integer,
floating-point, fixed-point, and enumeration types). The attempted
assignment of an out-of-range value causes a run-time error. The
ability to specify range constraints makes programmer intent explicit
and makes it easier to detect a major source of coding and user input
errors. It also provides useful information to static analysis tools
and facilitates automated proofs of program properties.

Here's an example of an integer scalar range:

declare
 Score : Integer range 1..100;
 N : Integer;
begin
 ... -- Code that assigns a value to N
 Score := N;
 -- A run-time check verifies that N is within the range 1..100
 -- If this check fails, the Constraint_Error exception is raised
end;

Contract-based programming

A feature introduced in Ada 2012 allows extending a subprogram
specification or a type/subtype declaration with a contract (a Boolean
assertion). Subprogram contracts take the form of preconditions and
postconditions, type contracts are used for invariants, and subtype
contracts provide generalized constraints (predicates). Through
contracts the developer can formalize the intended behavior of the
application, and can verify this behavior by testing, static analysis
or formal proof.

Here's a skeletal example that illustrates contact-based programming;
a Table object is a fixed-length container for distinct
Float values.

package Table_Pkg is
 type Table is private; -- Encapsulated type

 procedure Insert (T : in out Table; Item: in Float)
 with Pre => not Is_Full(T) and not Contains(T, Item),
 Post => Contains(T, Item);

 procedure Remove (T : in out Table; Item: out Float);
 with Pre => Contains(T, Item),
 Post => not Contains(T, Item);

 function Is_Full (T : in Table) return Boolean;
 function Contains (T : in Table; Item: in Float)
 return Boolean;
 ...
private
 ...
end Table_Pkg;

A compiler option controls whether the pre- and postconditions are
checked at run time. If checks are enabled, any pre- or postcondition
failure — i.e., the contract's Boolean expression evaluating to
False — raises the Assertion_Error exception.

Programming in the large

The original Ada 83 design introduced the package construct, a feature
that supports encapsulation (information hiding) and modularization,
and which allows the developer to control the namespace that is
accessible within a given compilation unit. Ada 95 introduced the
concept of child units, adding considerable flexibility and easing
the design of very large systems. Ada 2005 extended the language's
modularization facilities by allowing mutual references between
package specifications, thus making it easier to interface with
languages such as Java.

Generic templates

A key to reusable components is a mechanism for parameterizing modules
with respect to data types and other program entities, for example a
stack package for an arbitrary element type. Ada meets this
requirement through a facility known as generics; since the
parameterization is done at compile time, run-time performance is not
penalized.

Object-Oriented Programming (OOP)

Ada 83 was object-based, allowing the partitioning of a system into
modules corresponding to abstract data types or abstract objects.
Full OOP support was not provided since, first, it seemed not to be
required in the real-time domain that was Ada's primary target, and,
second, the apparent need for automatic garbage collection in an OO
language would have interfered with predictable and efficient
performance.

However, large real-time systems often have components such as GUIs
that do not have real-time constraints and that could be most
effectively developed using OOP features. In part for this reason, Ada
95 supplies comprehensive support for OOP, through its tagged type
facility: classes, polymorphism, inheritance, and dynamic binding. Ada
95 does not require automatic garbage collection but rather supplies
definitional features allowing the developer to supply type-specific
storage reclamation operations (finalization). Ada 2005 brought
additional OOP features including Java-like interfaces and traditional
obj.op(...) operation invocation notation.

Ada is methodologically neutral and does not impose a distributed
overhead for OOP. If an application does not need OOP, then the OOP
features do not have to be used, and there is no run-time penalty.
See [Bar14] or [Ada16] for more details.

Concurrent programming

Ada supplies a structured, high-level facility for concurrency. The
unit of concurrency is a program entity known as a task. Tasks can
communicate implicitly via shared data or explicitly via a synchronous
control mechanism known as the rendezvous. A shared data item can be
defined abstractly as a protected object (a feature introduced in
Ada 95), with operations executed under mutual exclusion when invoked
from multiple tasks. Asynchronous task interactions are also supported
for timeouts, software event notifications, and task termination. Such
asynchronous behavior is deferred during certain operations, to
prevent the possibility of leaving shared data in an inconsistent
state. Mechanisms designed to help take advantage of multi-core
architectures were introduced in Ada 2012.

Systems programming

Both in the core language and the Systems Programming Annex, Ada
supplies the necessary features for hardware-specific processing. For
example, the programmer can specify the bit layout for fields in a
record, define alignment and size properties, place data at specific
machine addresses, and express specialized code sequences in assembly
language. Interrupt handlers can be written in Ada, using the
protected type facility.

Real-time programming

Ada's tasking facility and the Real-Time Systems Annex support common
idioms such as periodic or event-driven tasks, with features that can
help avoid unbounded priority inversions. A protected object locking
policy is defined that uses priority ceilings; this has an especially
efficient implementation in Ada (mutexes are not required) since
protected operations are not allowed to block. Ada 95 defined a task
dispatching policy that basically requires tasks to run until blocked
or preempted. Subsequent versions of the language standard introduced
several other policies, such as Earliest Deadline First.

High-integrity systems

With its emphasis on sound software engineering principles, Ada
supports the development of high-integrity applications, including
those that need to be certified against safety standards such
DO ‑ 178C/ED ‑ 12C for avionics, CENELEC EN 50716:2023 for rail systems, and
security standards such as the Common Criteria [Cri22].
Key to Ada's support for high-assurance software is the language's
memory safety; this is illustrated by a number of features, including:

	Strong typing

Data intended for one purpose will not be accessed via inappropriate
operations; errors such as treating pointers as integers (or vice
versa) are prevented.

	Array bounds checking

A run-time check guarantees that an array index is within the bounds
of the array. This prevents buffer overflow vulnerabilities that
are common in C and C++. In many cases a a compiler optimization
can detect statically that the index is within bounds and thus
eliminate any run-time code for the check.

	Prevention of null pointer dereferences

As with array bounds, pointer dereferences are checked to make sure
that the pointer is not null. Again, such checks can often be
optimized out.

	Prevention of dangling references

A scope accessibility checks ensures that a pointer cannot reference
an object on the stack after exit/return from the scope (block or
subprogram) in which the object is declared. Such checks are
generally static, with no run-time overhead.

However, the full language may be inappropriate in a safety-critical
application, since the generality and flexibility could interfere with
traceability / certification requirements. Ada addresses this issue by
supplying a compiler directive, pragma Restrictions, that allows
constraining the language features to a well-defined subset (for
example, excluding dynamic OOP facilities).

The evolution of Ada has seen the continued increase in support for
safety-critical and high-security applications. Ada 2005 standardized
the Ravenscar profile, a collection of concurrency features
that are powerful enough for real-time programming but simple enough
to make certification and formal analysis practical. Ada 2012
introduced contract-based programming facilities, allowing the
programmer to specify preconditions and/or postconditions for
subprograms, and invariants for encapsulated (private) types. These
can serve both for run-time checking and as input to static analysis
tools. The most recent version of the standard, Ada 2022, has added
several contract-based programming constructs inspired by SPARK
(Contract_Cases, Global, and Depends aspects)
and, more generally, has enhanced the language's expressiveness. For
example, Ada 2022 has introduced some new syntax in its concurrency
support and has defined the Jorvik tasking profile, which is less restrictive than Ravenscar.

In brief, Ada is an internationally standardized language combining
object-oriented programming features, well-engineered concurrency
facilities, real-time support, and built-in reliability through both
compile-time and run-time checks. As such it is an appropriate
language for addressing the real issues facing software developers
today. Ada has a long and successful history and is used throughout a
number of major industries to design software that protects businesses
and lives.

3.2. SPARK

SPARK is a software development technology (programming language and
verification toolset) specifically designed for engineering ultra-low
defect level applications, for example where safety and/or security
are key requirements. SPARK Pro is AdaCore's commercial-grade offering
of the SPARK technology. The main component in the toolset is
GNATprove, which performs formal verification on SPARK code.

SPARK has an extensive industrial track record. Since its inception in
the late 1980s it has been used worldwide in a range of industrial
applications such as civil and military avionics, air traffic
management / control, railway signaling, cryptographic software, and
cross-domain solutions.

The SPARK language has been stable over the years, with periodic
enhancements. The 2014 version of SPARK represented a major revision
(see [MC15]), incorporating contract-based
programming syntax from Ada 2012, and subsequent upgrades included
support for pointers (access types) based on the Rust ownership model.

3.2.1. Flexibility

SPARK offers the flexibility of configuring the language on a
per-project basis. Restrictions can be fine-tuned based on the
relevant coding standards or run-time environments. SPARK code can
easily be combined with full Ada code or with C, so that new systems
can be built on and reuse legacy codebases.

3.2.2. Powerful Static Verification

The SPARK language supports a wide range of static verification
techniques. At one end of the spectrum is basic data and control flow
analysis, i.e., exhaustive detection of errors such as attempted reads
of uninitialized variables, and ineffective assignments (where a
variable is assigned a value that is never read). For more critical
applications, dependency contracts can constrain the information flow
allowed in an application. Violations of these contracts —
potentially representing violations of safety or security policies
— can then be detected even before the code is compiled.

In addition, the language supports mathematical proof and can thus
provide high confidence that the software meets a range of assurance
requirements: from the absence of run-time exceptions, to the
enforcement of safety or security properties, to compliance with a
formal specification of the program's required behavior.

3.2.3. Ease of Adoption

User experience has shown that the language and the SPARK Pro toolset
do not require a steep learning curve. Training material such as
AdaCore's online AdaLearn course for SPARK [Ada] can
quickly bring developers up to speed; users are assumed to be experts
in their own application domain such as avionics software and do not
need to be familiar with formal methods or the proof technology
implemented by the toolset. In effect, SPARK Pro is an advanced static
analysis tool that will detect many logic errors very early in the
software life cycle. It can be smoothly integrated into an
organization's existing development and verification methodology and
infrastructure.

SPARK uses the standard Ada 2012 contract syntax, which both
simplifies the learning process and also allows new paradigms of
software verification. Programmers familiar with writing executable
contracts for run-time assertion checking can use the same approach
but with additional flexibility: the contracts can be verified either
dynamically through classical run-time testing methods or statically
(i.e., pre-compilation and pre-test) using automated tools.

SPARK supports hybrid verification that can mix testing with formal
proofs. For example, an existing project in Ada and C can adopt SPARK
to implement new functionality for critical components. The SPARK
units can be analyzed statically to achieve the desired level of
verification, with testing performed at the interfaces between the
SPARK units and the modules in the other languages.

3.2.4. Reduced Cost and Improved Efficiency of Executable Object Code (EOC) verification

Software verification typically involves extensive testing, including
unit tests and integration tests. Traditional testing methodologies
are a major contributor to the high delivery costs for safety-critical
software. Furthermore, they may fail to detect errors. SPARK addresses
this issue by allowing automated proof to be used to demonstrate
functional correctness at the subprogram level, either in combination
with or as a replacement for unit testing (see
Property preservation between source code and object code).
In the high proportion of cases where proofs can be discharged
automatically, the cost of writing unit tests is completely
avoided. Moreover, verification by proofs covers all execution
conditions and not just a sample.

3.3. GNAT Pro Assurance

GNAT Pro Assurance is an Ada and C development environment for
projects requiring specialized support, such as bug fixes and known problems
analyses, on a specific version of the toolchain. This
product line is especially suitable for applications with long
maintenance cycles or certification requirements, since critical
updates to the compiler or other product components may become
necessary years after the initial release. Such customized maintenance
of a specific version of the product is known as a sustained branch.

Based on the GNU GCC technology, GNAT Pro Assurance supports all
versions of the Ada language standard and also handles multiple
versions of C (C89, C99, and C11). It includes an Integrated
Development Environment (GNAT Programming Studio and/or GNATbench), a
comprehensive toolsuite including a visual debugger, and an extensive
set of libraries and bindings.

3.3.1. Sustained Branches

Unique to GNAT Pro Assurance is a service known as a sustained branch:
customized support and maintenance for a specific version of
the product. A project on a sustained branch can monitor relevant
known problems, analyze their impact and, if needed, update to a newer
version of the product on the same development branch (i.e., not
incorporating changes introduced in later versions of the product).

Sustained branches are a practical solution to the problem of ensuring
toolchain stability while allowing flexibility in case an upgrade is
needed to correct a critical problem.

3.3.2. Configurable Run-Time Libraries

Two specific GNAT-defined run-time libraries have been designed with
certification in mind and are known as the Certifiable Profiles:

	Light Profile

	Light-Tasking Profile

The Light Profile provides a flexible Ada subset that is supported by
a certifiable Ada run-time library. Depending on application
requirements, this profile can be further restricted through the
Restrictions pragma, with the application only including
run-time code that is used by the application.

These run-time libraries can also be customized directly to suit
certification requirements: unneeded packages can be removed to allow
for self-certification of the runtime, while the -nostdlib
linker switch can be used to prevent the use of the runtime. Even when
the run-time library is suppressed, some run-time sources are still
required to provide compile-time definitions. While this code produces
no object code, the certification protocol may still require tests to
ensure correct access to these definitions.

The Light-Tasking Profile expands the Light Profile to include
Ravenscar tasking support, allowing developers to use concurrency in
their certification applications.

Although limited in terms of dynamic Ada semantics, all Certifiable
Profiles fully support static Ada constructs such as private types,
generic templates, and child units. Some dynamic semantics are also
supported. For example, these profiles allow the use of tagged types
(at library level) and other Object-Oriented Programming features,
including dynamic dispatching. The general use of dynamic dispatching
at the application level can be prevented through pragma
Restrictions.

A traditional problem with predefined profiles is their inflexibility:
if a feature outside a given profile is needed, then it is the
developer's responsibility to address the certification issues
deriving from its use. GNAT Pro Assurance accommodates this need by
allowing the developer to define a profile for the specific set of
features that are used. Typically this will be for features with
run-time libraries that require associated certification
materials. Thus the program will have a tailored run-time library
supporting only those features that have been specified.

More generally, the configurable run-time capability allows specifying
support for Ada's dynamic features in an à la carte fashion ranging
from none at all to full Ada. The units included in the executable may
be either a subset of the standard libraries provided with GNAT Pro,
or specially tailored to the application. This latter capability is
useful, for example, if one of the predefined profiles implements
almost all the dynamic functionality needed in an existing system that
has to meet new safety-critical requirements, and where the costs of
adapting the application without the additional run-time support are
considered prohibitive.

Certification material up to Software Level A can be developed for the
Light and Light-Tasking run-time libraries.

3.3.3. Full Implementation of Ada Standards

GNAT Pro provides a complete implementation of the Ada language from
Ada 83 to Ada 2012, and support for selected features from Ada 2022.
Developers of safety-critical and high-security systems can thus take
advantage of features such as contract-based programming, which
effectively embed requirements in the source program text and simplify
verification.

3.3.4. Source to Object Traceability

A compiler option can limit the use of language constructs that
generate object code that is not directly traceable to the source
code. As an add-on service, AdaCore can perform an analysis that
demonstrates this traceability and justifies any remaining cases of
non-traceable code.

3.3.5. Safety-Critical Support and Expertise

At the heart of every AdaCore subscription are the support services
that AdaCore provides to its customers. AdaCore staff are recognized
experts on the Ada language, software certification standards in
several domains, compilation technologies, and static and dynamic
verification. They have extensive experience in supporting customers
in avionics, railway, space, energy, air traffic management/control,
automotive, and military projects. Every AdaCore product comes with
front-line support provided directly by these experts, who are also
the developers of the technology. This ensures that customers'
questions (requests for guidance on feature usage, suggestions for
technology enhancements, or defect reports) are handled efficiently
and effectively.

Beyond this bundled support, AdaCore also provides Ada language and
tool training as well as on-site consulting on topics such as how to
best deploy the technology, and assistance on start-up
issues. On-demand tool development and ports to new platforms are also
available.

3.3.6. Libadalang

Libadalang is a library, included with GNAT Pro, that gives
applications access to the complete syntactic and semantic structure
of an Ada compilation unit. This library is typically used by tools
that need to perform some sort of static analysis on an Ada program.

AdaCore can assist customers in developing libadalang-based tools to
meet their specific needs, as well as develop such tools upon request.

Typical libadalang applications include:

	Static analysis (property verification)

	Code instrumentation

	Design and document generation tools

	Metric testing or timing tools

	Dependency tree analysis tools

	Type dictionary generators

	Coding standard enforcement tools

	Language translators (e.g., to CORBA IDL)

	Quality assessment tools

	Source browsers and formatters

	Syntax directed editors

3.3.7. GNATstack

Included with GNAT Pro is GNATstack, a static analysis tool that
enables an Ada/C software developer to accurately predict the maximum
size of the memory stack required for program execution.

GNATstack statically predicts the maximum stack space required by each
task in an application. The computed bounds can be used to ensure that
sufficient space is reserved, thus guaranteeing safe execution with
respect to stack usage. The tool uses a conservative analysis to deal
with complexities such as subprogram recursion, while avoiding
unnecessarily pessimistic estimates.

This static stack analysis tool exploits data generated by the
compiler to compute worst-case stack requirements. It performs
per-subprogram stack usage computation combined with control flow
analysis.

GNATstack can analyze object-oriented applications, automatically
determining maximum stack usage on code that uses dynamic dispatching
in Ada. A dispatching call challenges static analysis because the
identity of the subprogram being invoked is not known until run
time. GNATstack solves this problem by statically determining the
subset of potential targets (primitive operations) for every
dispatching call. This significantly reduces the analysis effort and
yields precise stack usage bounds on complex Ada code.

GNATstack's analysis is based on information known at compile
time. When the tool indicates that the result is accurate, the
computed bound can never be exceeded.

On the other hand, there may be cases in which the results will not be
accurate (the tool will report such situations) because of some
missing information (such as the maximum depth of subprogram
recursion, indirect calls, etc.). The user can assist the tool by
specifying missing call graph and stack usage information.

GNATstack's main output is the worst-case stack usage for every entry
point, together with the paths that result in these stack sizes. The
list of entry points can be automatically computed (all the tasks,
including the environment task) or can be specified by the user (a
list of entry points or all the subprograms matching a given regular
expression).

GNATstack can also detect and display a list of potential problems
when computing stack requirements:

	Indirect (including dispatching) calls. The tool will indicate the
number of indirect calls made from any subprogram.

	External calls. The tool displays all the subprograms that are
reachable from any entry point for which there is no stack or call
graph information.

	Unbounded frames. The tool displays all the subprograms that are
reachable from any entry point with an unbounded stack requirement.
The required stack size depends on the arguments passed to the
subprogram. For example:

procedure P(N : Integer) is
 S : String (1..N);
begin
 ...
end P;

	Cycles. The tool can detect all the cycles (i.e., potential
recursion) in the call graph.

GNATstack allows the user to supply a text file with the missing
information, such as the potential targets for indirect calls, the
stack requirements for external calls, and the maximal size for
unbounded frames.

TQL-5 qualification material can be made available for GNATstack.

3.4. GNAT Static Analysis Suite (GNAT SAS)

GNAT SAS is a stand-alone tool that runs on Windows and Linux
platforms and may be used with any standard Ada compiler or fully
integrated into the GNAT Pro development environment.

3.4.1. Defects and vulnerability analysis

GNAT SAS features an Ada source code analyzer that detects run-time
and logic errors. It assesses potential bugs and vulnerabilities
before program execution, serving as an automated peer reviewer,
helping to find errors easily at any stage of the development
life-cycle. It helps improve code quality and makes it easier to
perform safety and/or security analysis. GNAT SAS can detect several
of the "Top 25 Most Dangerous Software Errors" in the Common Weakness
Enumeration.

3.4.2. GNATmetric

The GNATmetric tool analyzes source code to calculate a set of
commonly used industry metrics, thus allowing developers to estimate
the size and better understand the structure of the source code. This
information also facilitates satisfying the requirements of certain
software development frameworks.

3.4.3. GNATcheck

GNATcheck is a coding standard verification tool that is extensible
and rule-based. It allows developers to completely define a coding
standard as a set of rules, for example a subset of permitted language
features. It verifies a program's conformance with the resulting rules
and thereby facilitates demonstration of a system's compliance with
Table A-5, Objective 4 of DO ‑ 178C/ED ‑ 12C ("Source Code conforms to
standards"). GNATcheck providess:

	An integrated Ada Restrictions mechanism for banning specific
features from an application. This can be used to restrict features
such as tasking, exceptions, dynamic allocation, fixed- or floating
point, input/output and unchecked conversions.

	Restrictions specific to GNAT Pro, such as banning features that
result in the generation of implicit loops or conditionals in the
object code, or in the generation of elaboration code.

	Additional Ada semantic rules resulting from customer input, such as
ordering of parameters, normalized naming of entities, and
subprograms with multiple returns.

	An easy-to-use interface for creating and using a complete coding
standard.

	Generation of project-wide reports, including evidence of the level
of compliance with a given coding standard.

	Over 30 compile-time warnings from GNAT Pro that detect typical
error situations, such as local variables being used before being
initialized, incorrect assumptions about array lower bounds,
infinite recursion, incorrect data alignment, and accidental hiding
of names.

	Style checks that allow developers to control indentation, casing,
comment style, and nesting level.

AdaCore's GNATformat tool, which formats Ada source code
according to the GNAT coding style[#1], can help avoid
having code that violates GNATcheck rules

GNATcheck comes with a query language (called LKQL) that lets
developers define their own checks for any in-house rules that need to
be followed. GNATcheck can thus be customized to meet an
organization's specific requirements, processes and procedures.

TQL-5 qualification material is available for GNATcheck.

3.5. GNAT Dynamic Analysis Suite (GNAT DAS)

3.5.1. GNATtest

The GNATtest tool helps create and maintain a complete unit testing
infrastructure for complex projects. Based on AUnit, it captures the
simple idea that each public subprogram (these are known as visible
subprograms in Ada) should have at least one corresponding unit
test. GNATtest takes a project file as input, and produces two
outputs:

	The complete harnessing code for executing all the unit tests under
consideration. This code is generated completely automatically.

	A set of separate test stubs for each subprogram to be tested. These
test stubs are to be completed by the user.

GNATtest handles Ada's Object-Oriented Programming features and can be
used to help verify tagged type substitutability (the Liskov
Substitution Principle) that can be used to demonstrate consistency of
class hierarchies.

Testing a private subprogram is outside the scope of GNATtest but can
be implemented by defining the relevant testing code in a private
child of the package that declares the private subprogram. For
DO ‑ 178C/ED ‑ 12C credit, such test code needs to be derived from the system's
low-level requirements. Additionally, hybrid verification can help
(see
Low-level verification by mixing test and proof ("Hybrid verification")):
augmenting testing with the use of SPARK to formally prove relevant
properties of the private subprogram.

3.5.2. GNATemulator

GNATemulator is an efficient and flexible tool that provides
integrated, lightweight target emulation.

Based on the QEMU technology, a generic and open-source machine
emulator and virtualizer, GNATemulator allows software developers to
compile code directly for their target architecture and run it on
their host platform, through an approach that translates from the
target object code to native instructions on the host. This avoids the
inconvenience and cost of managing an actual board, while offering an
efficient testing environment compatible with the final hardware.

There are two basic types of emulators. The first can serve as a
surrogate for the final hardware during development for a wide range
of verification activities, particularly those that require time
accuracy. However, they tend to be extremely costly, and are often
very slow. The second, which includes GNATemulator, does not attempt
to be a complete time-accurate target board simulator, and thus it
cannot be used for all aspects of testing. But it does provide a very
efficient and cost-effective way to execute the target code very early
in the development and verification processes. GNATemulator thus
offers a practical compromise between a native environment that lacks
target emulation capability, and a cross configuration where the final
target hardware might not be available soon enough or in sufficient
quantity.

3.5.3. GNATcoverage

GNATcoverage is a code coverage analysis tool. Its results are
computed from trace files that show which program constructs have been
exercised by a given test campaign. With source code instrumentation,
the tool produces these files by executing an alternative version of
the program, built from source code instrumented to populate
coverage-related data structures. Through an option to GNATcoverage,
the user can specify the granularity of the analysis by choosing any
of the coverage criteria defined in DO ‑ 178C/ED ‑ 12C: statement coverage,
decision coverage, or Modified Condition / Decision Coverage (MC/DC).

Source-based instrumentation brings several major benefits: efficiency
of tool execution (much faster than alternative coverage strategies
using binary traces and target emulation, especially on native
platforms), compact-size source trace files independent of execution
duration, and support for coverage of shared libraries.

TQL-5 qualification material for GNATcoverage is available for
DO ‑ 178C/ED ‑ 12C up to level A (MC/DC).

3.5.4. GNATfuzz

GNATfuzz is a fuzzing tool; i.e., a tool that automatically and
repeatedly executes tests and generates new test cases at a very high
frequency to detect faulty behavior of the system under test. Such
anomalous behavior is captured by monitoring the system for triggered
exceptions, failing built-in assertions, and signals such as SIGSEGV.

Fuzz testing has proven to be an effective mechanism for finding
corner-case vulnerabilities that traditional human-driven verification
mechanisms, such as unit and integration testing, can miss. Since
such vulnerabilities can often lead to malicious exploitations,
fuzzing technology is most useful for meeting security verification
objectives as stated within DO ‑ 326A/ED ‑ 202A ("Airworthiness Security Process
Specification") and more specifically the guidelines specified within
DO ‑ 356A/ED ‑ 203A ("Airworthiness Security Methods and Considerations").

However, fuzz-testing campaigns are complex and time-consuming to
construct, execute and monitor. GNATfuzz simplifies the process by
analyzing a code base and identifying subprograms that can act as
fuzz-test entry points. GNATfuzz then automates the creation of test
harnesses suitable for fuzzing. In addition, GNATfuzz will automate
the building, executing and analyzing of fuzz-testing campaigns.

Although GNATfuzz does not directly provide evidence for DO ‑ 178C/ED ‑ 12C
compliance, it can serve a useful role if used as part of the software
development and verification life cycle processes. For example, by
detecting some of the anomalous behavior cited in §6.3.4.f
(e.g., data corruption due to task or interrupt conflicts), GNATfuzz
can help prevent defects from being introduced into the Source Code.

3.5.5. TGen

TGen is an experimental run-time library / marshalling technology that
can be used by GNATtest and/or GNATfuzz to automate
the production of test cases for Ada code. It performs type-specific
low-level processing to generate test vectors for subprogram
parameters, such as uniform value distribution for scalar types and
analogous strategies for unconstrained arrays and record
discriminants. A command-line argument specifies the number of test
values to be generated, and these can then be used as input to test
cases created by GNATtest.

TGen can also be used with GNATfuzz, to help start a fuzz-testing
campaign when the user supplies an initial set of test cases where
some may contain invalid data. GNATfuzz will utilize coverage-driven
fuzzer mutations coupled with TGen to convert invalid test cases into
valid ones. TGen represents test data values compactly, removing a
large amount of memory padding that would otherwise be present for
alignment of data components. With its space-efficient representation,
TGen significantly increases the probability of a successful mutation
that results in a new valid test case.

3.6. GNAT Pro for Rust

The Rust language was designed for software that needs to meet
stringent requirements for both assurance and performance: Rust is a
memory-safe systems-programming language with software integrity
guarantees (in both concurrent and sequential code) enforced by
compile-time checks. The language is seeing growing use in domains
such as automotive systems and is a viable choice for airborne
software.

AdaCore's GNAT Pro for Rust is a complete development environment
for the Rust programming language, supporting both native builds and
cross compilation to embedded targets. The product is not a fork of
the Rust programming language or the Rust tools. Instead, GNAT Pro
for Rust is a professionally supported build of a selected version of
rustc and other core Rust development tools that offers stability for
professional and high-integrity Rust projects. Critical fixes to
GNAT Pro for Rust are upstreamed to the Rust community, and critical
fixes made by the community to upstream Rust tools are backported as
needed to the GNAT Pro for Rust code base. Additionally, the
Assurance edition of GNAT Pro for Rust includes the "sustained
branch" service (see Sustained Branches) that
strikes the balance between tool stability and project flexibility.

3.7. Integrated Development Environments (IDEs)

3.7.1. GNAT Studio

GNAT Studio is a powerful and simple-to-use IDE that streamlines
software development from the initial coding stage through testing,
debugging, system integration, and maintenance. It is designed to
allow programmers to get the most out of GNAT Pro technology.

3.7.1.1. Tools

GNAT Studio's extensive navigation and analysis tools can generate a
variety of useful information including call graphs, source
dependencies, project organization, and complexity metrics, giving a
thorough understanding of a program at multiple levels. It allows
interfacing with third-party version control systems, easing both
development and maintenance.

3.7.1.2. Robust, Flexible and Extensible

Especially suited for large, complex systems, GNAT Studio can import
existing projects from other Ada implementations while adhering to
their file naming conventions and retaining the existing directory
organization. Through the multi-language capabilities of GNAT Studio,
components written in C and C++ can also be handled. The IDE is highly
extensible; additional tools can be plugged in through a simple
scripting approach. It is also tailorable, allowing various aspects of
the program's appearance to be customized in the editor.

3.7.1.3. Easy to learn, easy to use

GNAT Studio is intuitive to new users thanks to its menu-driven
interface with extensive online help (including documentation on all
the menu selections) and tool tips. The Project Wizard makes it
simple to get started, supplying default values for almost all of the
project properties. For experienced users, it offers the necessary
level of control for advanced purposes; e.g., the ability to run
command scripts. Anything that can be done on the command line is
achievable through the menu interface.

3.7.1.4. Remote Programming

Integrated into GNAT Studio,
Remote Programming provides a secure and efficient way for programmers
to access any number of remote servers on a wide variety of platforms
while taking advantage of the power and familiarity of their local PC
workstations.

3.7.2. VS Code Extensions for Ada and SPARK

AdaCore's extensions to Visual Studio Code (VS Code) enable Ada and
SPARK development with a lightweight editor, as an alternative to the
full GNAT Studio IDE. Functionality includes:

	Syntax highlighting for Ada and SPARK files

	Code navigation

	Error diagnostics (errors reported in the Problems pane)

	Build integration (execution of GNAT-based toolchains from within VS
Code)

	Display of SPARK proof results (green/red annotations from
GNATprove)

	Basic IntelliSense (completion and hover information for known
symbols)

3.7.3. Eclipse support - GNATbench

GNATbench is an Ada development plug-in for Eclipse and Wind River's
Workbench environment. The Workbench integration supports Ada
development on a variety of VxWorks real-time operating systems. The
Eclipse version is primarily for native applications, with some
support for cross development. In both cases the Ada tools are tightly
integrated.

3.7.4. GNATdashboard

GNATdashboard serves as a one-stop control panel for monitoring and
improving the quality of Ada software. It integrates and aggregates
the results of AdaCore's various static and dynamic analysis tools
(GNATmetric, GNATcheck, GNATcoverage, SPARK Pro, among others) within
a common interface, helping quality assurance managers and project
leaders understand or reduce their software's technical debt, and
eliminating the need for manual input.

GNATdashboard fits naturally into a continuous integration
environment, providing users with metrics on code complexity, code
coverage, conformance to coding standards, and more.

Footnotes

[#1]
https://gcc.gnu.org/onlinedocs/gnat-style.pdf

4. Compliance with DO-178C/ED-12C Guidance: Analysis

4.1. Overview

DO ‑ 178C/ED ‑ 12C uses the term "requirement" to identify the expected
behavior of the system, the software, or a part thereof. The desired
functions are formulated at the system level as "system requirements"
and are refined and elaborated into "software requirements". DO ‑ 178C/ED ‑ 12C
identifies several categories of software requirements.

The High-Level Requirements (HLR) define the expected behavior of the
complete software loaded on the target computer, independent of the
software architecture. The HLR are further refined into one or more
lower levels, specifying the expected behavior of each software
subpart (component) based on the architecture definition. The lowest
level of requirements (the LLR) and the architecture are translated
into source code, which finally is compiled to produce the Executable
Object Code (EOC).

Within this basic framework, the development process activities
(requirements definition, design, coding, and integration) should be
conducted so as to reduce the likelihood of introducing
errors. Verification process activities are designed to detect errors
through multiple filters, by assessing the same artifacts in different
ways. This naturally applies to the EOC, whose verification involves
checking compliance with the requirements at each level, using both
normal and abnormal inputs. Such verification comprises manual
reviews, automated analyses (possibly including the use of formal
methods), and testing based on the software requirements. Finally, the
EOC verification must itself be verified.

While it is not a DO ‑ 178C/ED ‑ 12C concept, a V cycle is often used to
represent the complete software life cycle. A variation of the
traditional V cycle, oriented around the DO ‑ 178C/ED ‑ 12C processes, was
shown earlier in Fig. 1. As is seen in that figure,
AdaCore tools mostly apply towards the bottom stages of the V cycle:

	Design (architecture + LLR), coding and integration (EOC
generation), for the development activities.

	Design and source code review / analysis and LLR testing, for the
verification activities.

Additional support is provided for design activities in conjunction
with two technology supplements (Object-Oriented Technology and Formal
Methods).

Language development environments provide the foundation for AdaCore's
toolchains, including support for Ada, C, C++, and Rust.
Complementary tools support several verification activities for Ada:

	GNATstack for stack checking (which also supports C),

	the GNAT Static Analysis Suite, or GNAT SAS, for defect and
vulnerability detection, code standard checking (GNATcheck), and
code metrics generation (GNATmetric)

	the GNAT Dynamic Analysis Suite, or GNAT DAS, for testing (GNATtest,
TGen), structural code coverage analysis (GNATcoverage, which also
supports C and C++), processor emulation (GNATemulator), and fuzzing
(GNATfuzz).

To show how AdaCore tools can be used in connection with the software
life cycle processes for a system that is to be assessed against
DO ‑ 178C/ED ‑ 12C, several possible scenarios will be described:

	
	Use Case 1: Traditional development process, excluding or including
	OOT The development process produces requirements specified in text
(natural language) that are implemented in Ada source code. A code
standard defines a set of restrictions, which may or may not
include limitations on object-oriented features. Both cases need to
be considered:

	Use Case 1a: No use is made of object oriented technology or
related techniques

	Use Case 1b: Ada's OOT features are used, and the guidance in
DO ‑ 332/ED ‑ 217 is considered

	
	Use Case 2: Using SPARK and Formal Methods
	The development uses a formal description of the low-level
requirements, namely SPARK / Ada 2012 contracts. A formal analysis
is performed, and credit is claimed on reducing the testing. The
certification effort follows the additional guidance from the
Formal Methods Supplement (DO ‑ 333/ED ‑ 216).

In the tables that appear in this chapter, the references shown in
parentheses for the objectives identify the table, objective number,
and paragraph reference for the objective in the DO ‑ 178C/ED ‑ 12C standard or
the relevant technology supplement. For example, A-2[6]: 5.3.1.a
refers to Table A-2, Objective 6, paragraph 5.3.1a.

4.2. Use case #1a: Coding with Ada 2012

The adoption of Ada as the coding language brings a number of benefits
during design, coding, and testing, both from language features (as
summarized in the table below) and from the AdaCore ecosystem.

4.2.1. Benefits of the Ada language

	

	Contributions

	Objectives

	
	Software Coding (A-2[6]: 5.3.1.a)

	
	Reviews and Analyses of Source Code:
	
	Verifiability (A-5[3]- 6.3.4.c)

	Accuracy and consistency (A-5[6]- 6.3.4.f)

	
	Test Coverage Analysis:
	
	Test coverage for Data Coupling and Control Coupling
achieved (A-7[8] - 6.4.4.d)

	Activities

	
	Software Coding (5.3.2.a)

	Reviews and Analyses of Source Code (6.3.4)

	Structural Coverage Analysis (6.4.4.2.c, 6.4.4.2.d)

	Structural Coverage Analysis Resolution (6.4.4.3)

Ada's most significant contribution is towards the reliability of the
written code; the language is designed to promote readability and
maintainability, and to detect errors early in the software
development process. This section will summarize several Ada features
that help meet these goals.

4.2.1.1. Modularization

Ada's package facility was designed for programming in the large:
designing a system comprising millions of lines of code through
modules (packages) that maximize reuse while making explicit the
allowed inter-module dependencies. Ada directly supports the software
engineering principle of information hiding, with a package
comprising an interface (its specification) and an implementation (its
body). A package specification itself is separated into a visible part
that is accessible externally, and optionally a private part
that can only be accessed by the associated package body and by the
private parts and bodies of child packages. Packages support
programming by composition (bottom-up design), programming by
decomposition (top-down design), and programming by extension
(Object-Oriented Programming).

Packages make clear syntactically, and enforce with compile-time
checks, the ways in which one module can depend on another; in
DO ‑ 178C/ED ‑ 12C terms, their coupling. They thus help meet the DO ‑ 178C/ED ‑ 12C
objective A-7[8] of achieving test coverage of the system's control
and data coupling. For example, if a compilation unit Q has a
with dependence on package P, then Q has a
potential data coupling on any data item defined in the visible part
of the specification for P, and likewise a potential control
coupling on any subprogram defined in the visible part of the
specification for P. These couplings are actualized if Q
references these items, and they must be demonstrated by structural
code coverage tests. On the other hand, data items or subprograms
defined in P's private part or package body are inaccessible to
Q (any such accesses would be flagged as compile-time errors),
and thus they do not constitute a coupling for Q. For further
details, see
Data and control coupling coverage with GNATcoverage.

4.2.1.2. Strong typing

The emphasis on early error detection and program clarity is perhaps
most clearly illustrated in the language's strong typing. A type in
Ada is a semantic entity that can embody static (and possibly also
dynamic) constraints. For example:

type Ratio is digits 16 range -1.0 .. 1.0;

In the above example, Ratio is a floating-point type. Two
constraints are specified:

	digits specifies the minimum precision needed for objects of this
type, in terms of decimal digits. Here the compiler will likely
choose a 64-bit representation. If the target architecture only
supports 32-bit floating-point, the compiler will reject the
program.

	range defines the set of acceptable values. Here, only values
between -1.0 and 1.0 (inclusive) are acceptable; an
attempt to assign a value outside this range to a variable of type
Ratio will raise the Constraint_Error run-time
exception.

Strong typing means an absence of implicit conversions (implicit
casts), since such conversions can mask logical errors. For example:

type Miles is digits 16;
type Kilometers is digits 16;
...
Distance_1 : Miles;
Distance_2 : Kilometers;
...
Distance_1 := Distance_2; -- Illegal, rejected at compile time

Both Miles and Kilometers are 16-digit floating-point
types (the range constraint is optional in a floating-point type
declaration) but they are different types, and thus the assignment is
illegal. Likewise, it is illegal to combine Miles and
Kilometers in an expression; Miles + Kilometers would
also be rejected by the compiler.

With strong typing the program's data can be partitioned so that an
object of a given type can only be processed using operations that
make sense for that type. This helps prevent data mismatch errors.

Explicit conversions between related types are allowed, either
predefined (for example between any two numeric types) or supplied by
the programmer. Explicit conversions make the programmer's intent
clear. For example:

type Grade is range 0..100; -- a new integer type

Test_Grade : Grade;
N : Integer; -- predefined type
...
Test_Grade := N;
 -- Illegal (type mismatch), rejected at compile time

Test_Grade := Grade (N);
 -- Legal, with run-time constraint check that N is in 0..100

4.2.1.3. Dimensionality checking

One of the challenges to a language's type model is the enforcement of
the proper use of units of measurement. For example dividing a
distance by a time should be allowed, yielding a velocity. But the
error of dividing a time by a distance where a velocity value is
required should be detected and reported as an error at compile time.

Although this issue could be addressed in theory by defining a
separate type for each unit of measurement, such an approach would
require defining functions (likely as overloaded operator symbols) for
the permitted operand combinations. This would be notationally
cumbersome and probably not used much in practice.

The GNAT Pro environment provides a solution through the
implementation-defined aspects Dimension_System which can be
applied to a type, and Dimension which can be applied to a
subtype. Uses of variables are checked at compile time for consistency
based on the Dimension aspect of their subtypes. The GNAT
library includes a package System.Dim.Mks that defines a type
and its associated subtypes that will be used for meters
(Length), kilograms (Mass), seconds (Time), and
other units. The programmer can define a subtype such as
Velocity that corresponds to Length (in meters) divided
by Time (in seconds):

subtype Velocity is Mks_Type with
Dimension => ("m/sec",
 Meter => 1,
 -- Values are exponents in the product of
 -- the units
 Second => -1,
 others => 0);

With such a declaration the following is permitted:

My_Distance : Length := 10 * m; -- m is 1.0 meter
My_Time : Time := 5.0 * h; -- h is 1.0 hour
 -- (3600.0 sec)
My_Velocity : Velocity := My_Distance / My_Time; -- OK

A Velocity value should be computed as a distance divided by a
time. The following will be detected as an error:

My_Distance : Length := 10 * m;
My_Time : Time := 5.0 * h;
My_Velocity : Velocity := My_Time / My_Distance; -- Illegal

GNAT Pro's support for dimensionality checking is a useful adjunct to
Ada's strong typing facilities.

4.2.1.4. Pointers

For compliance with DO ‑ 178C/ED ‑ 12C, the use of dynamic memory (and
pointers) should be kept to the bare minimum, and Ada helps support
this goal. Features such as arrays or by-reference parameter passing,
which require pointers or explicit references in other languages, are
captured by specific facilities in Ada. For example, Ada's parameter
passing mechanism reflects the direction of data flow (in, out, or in
out) rather than the implementation technique. Some data types always
require by-copy (for example scalars), and some types always require
by-reference (for example tagged types, in OOP). For all other types
the compiler will choose whether it is more efficient to use
by-reference (via a hidden pointer or reference) or by-copy. Since the
developer does not have to explicitly manipulate pointers to obtain
by-reference passing, many common errors are avoided. Here's an
example:

type Rec is
 record
 A, B : Integer;
 end record;

My_Rec : Rec;

procedure Update (R : in out Rec);

...

Update (My_Rec);

The above procedure takes a Rec object as an in out
parameter. In the invocation Update (My_Rec), the compiler may
choose to pass My_Rec either by reference or by copy based on
efficiency considerations. Other languages use pointers, either
explicitly or implicitly, to obtain by-reference passing if the actual
parameter needs to be modified by the called subprogram.

When pointers are absolutely required, Ada's approach is to supply a
type-safe and high-level mechanism (known as access types) to obtain
the needed functionality while also providing low-level facilities
that are potentially unsafe but whose usage is always explicitly
indicated in the source text (thus alerting the human reader).

One example is the use of the generic procedure
Ada.Unchecked_Deallocation to free the storage for an object
that is no longer needed:

with Ada.Unchecked_Deallocation;
procedure Proc is
 type String_Ptr is access String;
 procedure Free is new Ada.Unchecked_Deallocation (String, String_Ref);
 -- procedure Free (X : in out String_Ref);
 Ptr : String_Ptr;
begin
 ...
 Ptr := new String' ("Hello");
 -- Allocates a String, initialized to "Hello"
 ...
 Free (Ptr);
 -- Deallocates heap object, sets Ptr to null
 ...
end Proc;

An object of type String_Ptr is a value that is either
null or else points to a dynamically allocated String
object. To deallocate an allocated object, it is necessary to
instantiate the generic procedure Ada.Unchecked_Deallocation;
the result is the definition of procedure Free. The sample
code allocates an initialized heap object and subsequently frees its
storage

As another example, here's a C code fragment that performs pointer
arithmetic:

int *ptr = malloc (sizeof (int));
ptr++;

This may or may not be safe; after the increment, ptr points to a
location immediately beyond the storage for the allocated int.

As part of its C interfacing facilities Ada supports such pointer
arithmetic, indeed with algorithmic code that is similar to the C
notation, but the dependence on a potentially unsafe operation is
explicit:

with Interfaces.C.Pointers;
procedure Pointer_Arith is
 type Int_Array is
 array (Positive range <>) of aliased Integer;

 package P is
 new Interfaces.C.Pointers(Positive, Integer,
 Int_Array, Integer'First);
 -- This generic instantiation defines the access type
 -- Pointer and its associated operations
 use type P.Pointer;
 -- For notational convenience in invoking "+"

 Ref : P.Pointer := new Integer;
begin
 Ref := Ref+1;
 -- Increments Ref by the size (number of storage elements)
 -- of an Integer
end Pointer_Arith;

This syntax, though wordier than the C version, makes potentially
unsafe operations much more visible, hence easier to identify and
review.

4.2.1.5. Arrays

The array (an indexable sequence of elements) is a fundamental and
efficient data structuring mechanism, but a major vulnerability unless
attempted accesses to data outside the bounds of the array are
prevented. Ada avoids this vulnerability since array operations such
as indexing are checked to ensure that they are within the specified
bounds. In addition to indexing, Ada provides various array operations
(assignment, comparison, slicing, catenation, etc.) which allow
manipulating arrays in an explicit and safe manner.

Ada's arrays are fixed size; once an array object is created, its
bounds are established and cannot change. This simplifies the storage
management (arrays in Ada can go on the stack and do not require
hidden pointers). Additional flexibility (for example bounded-size
arrays whose length can vary up to a specified maximum limit, or
unbounded arrays of arbitrary length) is obtained through the Ada
predefined library.

Here's an example:

type Int_Array is array(Positive range <>) of Integer;
-- Different objects of type Int_Array can have different
-- bounds

A : Int_Array (1 .. 8);
B : Int_Array (2 .. 12);
I : Integer;
...

A := (others => 0);
B := (2 .. 7 => 0, others => 1);
...
if A (1 .. 3) = B (6 .. 8) then
 Put_Line ("Slices are equal");
end if;

Get (I); -- Read in an integer
A (I) := 100; -- Run-time check that I is in range

The above code creates two arrays, A with 8 elements indexed
from 1 to 8, and B with 11 elements indexed from 2
to 12. A is assigned all zeroes, and B is assigned 0 in
its first 6 elements and 1 in the rest. Contiguous sequences (slices)
of the two arrays are compared for equality. All of this is done
through standard language syntax as opposed to explicit loops or
library calls.

The code at the end of the example illustrates Ada's index
checking. If I is not in the index range of array A
(i.e., between 1 and 8 inclusive) then a run-time exception
(Constraint_Error) is raised.

4.2.1.6. Other Ada features

Many other features contribute to Ada's support for reliable and
maintainable embedded software. Some were described briefly in
Language Overview. Others include
the Ravenscar profile, a deterministic tasking subset that is
simple enough for certification but rich enough to program real-time
embedded systems; and Ada's low-level facilities, which allow the
programmer to specify target-specific representations for data types
(including the bit layout of fields in a record, and the values for
enumeration elements). Further information on features that contribute
to safe software may be found in [BB15].

In summary, Ada's benefits stem from its expressive power, allowing
the developer to specify the needed functionality or to constrain the
feature usage to a deterministic subset, together with its support for
reliability and readability. A variety of errors, including some of
the most frequent and harmful vulnerabilities, are detected in Ada
either at compilation time or through dynamic checks automatically
added by the compiler. Such checks can be either retained (for example
during a testing campaign) or removed (for example at production time,
after verification has provided confidence that they are not needed).

Additional Ada features will be described and highlighted in other
sections of this document.

4.2.2. Using Ada during the design process

	

	Contributions

	Objectives

	
	Software Design Process (A-2[3,4]: 5.2.1.a)

	Reviews and Analyses of Source Code: Compliance with
architecture (A-5[2]: 6.3.4.b), traceability (A-5[5]:6.3.4.e)

	Reviews and Analyses of LLR: Compatibility with target
(A-5[3]: 6.3.2.c)

	Reviews and Analyses of architecture: Compatibility with
target (A-4[10]: 6.3.3.c)"

	Activities

	
	Software Design Activities (5.2.2.a, 5.2.2.d)

	Software Development Process Traceability (5.5.c)

	Reviews and Analyses of Source Code (6.3.4)

	Reviews and Analyses of LLR: Compatibility with target
(6.3.2)

	Reviews and Analyses of architecture: Compatibility with
target (6.3.3)

An application's design — that is its low-level requirements and
software architecture — may be specified in many ways, combining
text and graphics at various levels of formality. The main principle
is to keep the design at a higher level of abstraction than the code:
in particular avoiding expression of requirements as code or
pseudo-code. Requirements are properties to be verified by the code
and are not the code itself. Thus the general advice is to avoid using
a programming language as the medium for expressing — even in
part — the software design.

Ada, however, presents an exception to this advice. The language
provides extensive facilities for capturing a program unit's
specification (its what) separately from the implementation (its
how). An Ada package and an Ada subprogram each consists of a
specification (the interface) and a body (the implementation) and a
similar separation of interface from implementation is found in
generic units, tasks, and encapsulated types.

A unit's specification establishes the constraints on its usage, that
is, the permitted relationships between that unit and other parts of
the program. These are the unit's architectural properties, in
contrast to its implementation. It thus makes sense for a significant
part of the Ada specifications to be developed during the design
process. An interesting effect is that the design elements defined as
Ada specifications are easy to verify, sometimes simply by compiling
the code and showing that the interface usages are correct.

The separation of specification and implementation means that an Ada
specification can have an implementation written in a different
language, for example C. Although this may lose some of Ada's
benefits, it illustrates the flexibility and relevance of the
approach.

4.2.2.1. Component identification

Regardless of the method used for designing the software as a
hierarchical set of components, Ada may be directly used to identify
the software components and define their interfaces. This is typically
done via package specifications and subprogram specifications.

A few comments on the term interface may be helpful. (It is not
referring to the OOP language feature here.) Informally, a component's
interface is the collection of its properties that establish whether
any given usage of the component is correct. These properties arise at
several levels. As an example, for a procedure that sorts an array of
floating point values its interface may be regarded as comprising the
following:

	Syntactic interface: the procedure's name and its formal parameters
(their names, parameter passing modes, and types).

	Information flow interface: how, if at all, non-local data are
accessed by the procedure (read, written, or both)

	Semantic (functional) interface: the function performed by the
procedure — what does it mean to sort an array, independent of
the algorithm — which is a low-level requirement for the
procedure

Other low-level constraints may also be considered as part of the
interface, such as a time or space constraint.

The syntactic interface in Ada is a simple subprogram specification:

type Float_Array is array (Integer range <>) of Float;

procedure Sort (My_Array : in out Float_Array);

This will also suffice for information flow if Sort does not access
non-local data. If Sort does access non-local data then the uses can
be specified informally by comments:

type Float_Array is array (Positive range <>) of Float;

procedure Sort (My_Array : in out Float_Array);

-- Inputs: None
-- Outputs
-- p_GLOBAL.Status : p_GLOBAL.T_Status;

They can also be captured more formally as aspects of the procedure
specification (an aspect is a technical feature that specifies a
property of program entity) if the SPARK subset of Ada is used, as
will be explained below.

The LLR (including the semantic interface) are developed in parallel
and may be specified separately from or together with the component's
specification. They can be defined in natural language, as comments,
or using contracts (pre- and/or postconditions) as illustrated in the
next subsection.

4.2.2.2. Low-Level Requirements

A simple example of a low-level requirement, for the Sort
procedure defined above, is the following:

The component shall order the array from the smallest value to highest one

In Ada, we can capture this requirement as a postcondition aspect of
the procedure:

type Some_Array is array (Positive range <>) of Integer;

procedure Sort (My_Array : in out Some_Array)
with Post =>
 (for all I in My_Array'First .. My_Array'Last-1 =>
 My_Array (I) <= My_Array (I+1));

The with Post construct defines a postcondition for the
procedure; i.e., a condition that is asserted to be True when the
procedure returns. Here it expresses, in Ada syntax, the low-level
requirement that the procedure sort the array in ascending order: for
each index I into the array, from the first position through
the next-to-last, the value of the element at position I+1 is
at least as large as the element at position I. In the
degenerate case where the array is either empty or contains a single
element (i.e., when the range of I is empty) the for all
condition is considered to be True.

It's clear that the postcondition expression says nothing about how
the procedure is implemented. It's not pseudo-code for an algorithm
but rather a property of the procedure that will need to be
verified. It's the formalization of a requirement that happens to use
Ada syntax. Moreover, a postcondition can refer to the values of
formal parameters and/or global data, both at the point of call and
the point of return. (In the above example, the postcondition could be
strengthened by specifying that the value of My_Array on return
is a permutation, possibly the identity mapping, of the value on
entry.) And a function postcondition can refer to the value being
returned by the function.

A subprogram can also have a precondition (a Boolean expression),
which is a requirement that the caller needs to satisfy and that is
assumed to be True by the called subprogram. For example, a function
that returns the maximum value in an array of integers should have a
precondition that the array is non-empty. The postcondition that is
shown reflects the two properties that need to be met:

	The function result is at least as large as each element in the
array, and

	The function result is present in the array

type Some_Array is array (Positive range <>) of Integer;

function Maximum (My_Array : in Some_Array) return Integer
 with Pre => My_Array'Length > 0,
 Post =>
 (for all I in My_Array'Range =>
 Maximum'Result >= My_Array (I)) and
 (for some I in My_Array'Range =>
 Maximum'Result = My_Array (I));

Preconditions and postconditions, and related features such as type
invariants, are referred to collectively as contract-based programming
and were introduced in the Ada 2012 version of the
language. Based on the assertion policy (as specified by a pragma),
the contracts can be checked at run-time, raising an exception on
failure. They also support (but do not require) formal analysis, since
the Ada syntax is the same as is used in SPARK. In SPARK the contracts
are subject to additional restrictions (for example they must conform
to the SPARK language subset). The contracts are then considered to be
low-level requirements and verification cases at the same time, used
by the SPARK proof technology for formal verification, for example to
demonstrate that if a subprogram satisfies its precondition then on
return it will satisfy its postcondition. In summary, functional
contracts (such as pre- and postconditions) serve three purposes:

	As conditions to be formally proved by SPARK technology,

	As run-time conditions to be evaluated/checked using standard Ada
semantics, and

	As requirements documentation to the human reader (if checks are not
enabled and formal methods are not used) in an unambiguous notation
(i.e., using Ada syntax rather than natural language)

When used for defining the software's architecture, Ada specifications
can obviously express concepts such as modules (packages), groups of
modules (package hierarchies), subprograms, class inheritance
hierarchies, etc. Additional interface properties can be expressed
using SPARK aspects, for example a subprogram's data and flow
dependencies. Here's an example which, for simplicity and purposes of
illustration, uses visible variables in a package specification to
represent a data structure for a last-in first-out stack:

package Stack_Pkg is

 Max_Length : constant := 100;
 subtype Element_Type is Integer;

 Length : Natural range 0.. Max_Length := 0;
 Stack : array (1..Max_Length) of Element_Type);

 procedure Push (Item : in Element_Type)
 with Global => (In_Out => (Length, Stack)),
 Depends => (Length => Length,
 Stack => (Stack, Length, Item)),
 Pre => Length < Max_Length,
 Post => Length = Length'Old+1;
 ...
end Stack_Pkg;

The Global aspect captures the data dependency: Push
will reference and assign to the global variables Length and
Stack. The Depends aspect captures the flow dependency:
the new value of Length depends on its old value, and the new
value of Stack depends on the values of Stack,
Length, and Item. These dependencies can be verified by
the SPARK tools (assuming that the subprogram body is written in the
SPARK subset). The pre- and postconditions reflect some of the
functional properties of the procedure, and the postcondition
illustrates the 'Old attribute for referencing the
point-of-call value of a variable.

A more realistic version of this example would hide the representation
in the private part or body of the package. The contracts would then
be expressed differently, for example with the Global and Depends
referring to the abstract state of the package rather than visible
variables.

Some low-level requirements might not be expressible using the aspect
mechanism (for example timing constraints). A convenient approach
during architecture definition is to separately specify those
components whose requirements can be defined using contracts, from
those that cannot.

4.2.2.3. Implementation of Hardware / Software Interfaces

Ada's type system makes it straightforward to implement
hardware/software interfaces, while also detecting target
incompatibilities at compile time. Such interfaces may be defined as
part of the coding process, but performing this activity during the
design process has a number of benefits. It may avoid duplication of
effort and also helps prevent errors from being introduced during the
translation from design to code. It also allows early error detection
through compilation checks.

4.2.2.3.1. Package Interfaces

Applications sometimes need to use types that correspond exactly to
the native numeric data representations supported on the target
machine, for example 16- or 32-bit signed and unsigned integers. Such
types are defined in package Interfaces, which is part of the
standard Ada library. The exact set of types depends on the target but
typically includes integer types such as Unsigned_16,
Unsigned_32, Integer_16, and Integer_32, as well
as several floating-point types. The unsigned integer types are
especially useful for hardware / software interfacing since they
support bitwise operations including shift and rotate functions.

4.2.2.3.2. Specifying data representation

Embedded systems often need to deal with external data having a
specific representation, and Ada has a variety of features to help
meet this requirement. For example, the following can be defined:

	the values of the elements in an enumeration type,

	the layout of a record (size and position of each field, possibly
with fields overlaid), and

	the address, size, and/or alignment of a data object.

The compiler will check that the specified representation is
consistent with the target hardware. For example,
Fig. 3 shows the required layout (on a
little-endian machine) for a data object consisting of an unsigned
16-bit integer (Num), a 4-bit enumeration value
(Urgency) that is either Low, Medium, or
High, with the respective values 2, 5, and 10), and a Boolean
flag (F).

[image: ../_images/analysis-fig3.png]

Fig. 3 Data Layout

As with other entities, Ada separates the type's interface (its
logical structure as a record type with named fields) from its
implementation (its physical representation / layout including size,
alignment, and exact position of each field). The representation can
be specified through a combination of aspects and representation
clauses. Defining the Bit_Order and the
Scalar_Storage_Order explicitly means that the code will work
correctly on both little-endian and big-endian hardware.

type Urgency_Type is (Low, Medium, High);
for Urgency_Type use (Low => 2, Medium => 5, High => 10);
for Urgency_Type'Size use 4; -- Number of bits
type Urgency_Type is (Low, Medium, High);
for Urgency_Type use (Low => 2, Medium => 5, High => 10);
for Urgency_Type'Size use 4; -- Number of bits

type Message is
 record
 Num : Interfaces.Unsigned_16;
 Urgency : Urgency_Type;
 F : Boolean;
 end record
with
 Bit_Order => System.Low_Order_First,
 Scalar_Storage_Order => System.Low_Order_First,
 -- Scalar_Storage_Order is a GNAT-specifc aspect
 Size => 32, -- Bits
 Alignment => 4; -- Storage units

for Message use -- Representation clause
 record
 Num at 0 range 0..15;
 Urgency at 2 range 0..3;
 F at 3 range 2..2;
 end record;

The at syntax in the record representation clause specifies the
offset (in storage units) to the storage unit where the field begins,
and the bit positions that are occupied. A field can overlap multiple
storage units.

When the program specifies these kinds of representational details,
it's typical for the application to read a raw value from an
external source, and in such cases it is important to ensure that such
data values are valid. In the above example, the Urgency field
needs to have one of the values 2, 5, or 10. Any other value has to be
detected by the program logic, and Ada's 'Valid attribute can
perform that check. The following example illustrates a typical style:

M : Message;
...
Device.Read (M); -- Reads a value into M
if not M.Urgency'Valid then
 ... -- Report non-valid input value
else
 ... -- Normal processing
end if;

The 'Valid attribute can be applied to data objects from
numeric and enumeration types. It is useful when the permitted values
for the object are a proper subset of the full value set supported by
the object's representation.

4.2.2.3.3. Numeric types

Another feature related to hardware/software interfaces is Ada's
numeric type facility (integer, floating-point, fixed-point). The
programmer can specify the type's essential properties, such as range
and precision, in a machine-independent fashion; these will be mapped
to an efficient data representation, with any incompatibilities
detected at compile time. As an example:

type Nanoseconds is range 0 .. 20_000_000_000;

V : Nanoseconds;

The above code requires integers up to 20 billion to be
represented. This would only be accepted on a 64-bit machine, and the
compiler would reject the program if the target lacks such
support. This can even be made explicit as part of the type
declaration:

type Nanoseconds is range 0 .. 20_000_000_000
with Size => 64;

V : Nanoseconds;

The compiler will check that 64 bits are sufficient, and that it can
be implemented on the target computer.

Similar constraints can be expressed for floating-point types:

type Temperature is digits 14;

V : Temperature;

At least 14 digits of decimal precision are required in the
representation of Temperature values. The program would be accepted if
the target has a 64-bit floating point unit, and would be rejected
otherwise.

4.2.3. Integration of C components with Ada

	

	Contributions

	Objectives

	
	Software Coding (A-2[6]: 5.3.1.a)

	Software Integration (A-2[7]: 5.4.1.a)

	Activities

	
	Software Coding (5.3.2.a)

	Software Integration (5.4.2a)

C is widely used for embedded development, including safety-critical
systems. Even where Ada is the main language for a system, components
written in C are very commonly included, either from legacy libraries
or third party software. (Languages such as Java and C++ are used much
less frequently. This is due in part to their semantic complexity and
the difficulty of demonstrating compliance with certification
standards, for example for the C++ standard library or the Java
Garbage Collector.)

Friendly cooperation between Ada and C is supported in several ways by
AdaCore tools and the Ada language.

	Most of the tools provided by AdaCore (compiler, debugger,
development environments, etc.) can support systems written entirely
in Ada, in a mixture of Ada and C, and entirely in C.

	Specific interfacing tools are available to automatically generate
bindings between Ada and C, either creating Ada specification from a
C header file:

$ g++ -fdump-ada-spec

or a C header file from an Ada specification:

$ gcc -gnatceg

These binding generators make it straightforward to integrate C
components in an Ada application or vice versa.

	The Ada language directly supports interfacing Ada with other
languages, most notably C (and also Fortran and COBOL). One of the
standard libraries is a package Interfaces.C that defines Ada
types corresponding to the C basic types (int, char, etc.)
and implementation advice in the Ada Language Reference Manual
explains how to import C functions and global data to be used in Ada
code, and in the other direction, how to export Ada subprograms and
global data so that they can be used in C.

	The GNAT Pro compiler uses the same back end technology for both Ada
and C, facilitating interoperability.

	A project using a C codebase can incrementally introduce Ada or
SPARK. Ada has standard support for interfacing with C, SPARK can be
combined with C (with checks at the interfaces)
[KOC16], and AdaCore's GNAT Pro Common
Code Generator compiles a SPARK-like subset of Ada into C (for use
on processors lacking an Ada compiler). C projects can thus
progressively adopt higher-tier languages without losing the
investment made in existing components.

4.2.4. Robustness / defensive programming

	

	Contributions

	Objectives

	
	Software Coding (A-2[6]: 5.3.1.a)

	Reviews and Analyses of Source Code: Accuracy and consistency
(A-5[6]: 6.3.4.f)

	Activities

	
	Software Coding (5.3.2.a)

	Software Coding (5.3.2.c - inadequate/incorrect inputs)

	Reviews and Analyses of Source Code (6.3.4)

	Robustness Test Cases (6.4.2.2)"

Robustness means ensuring correct software behavior in the presence of
abnormal input, and (as per DO ‑ 178C/ED ‑ 12C) such behavior should be defined
in the software requirements. There is no fundamental difference
between requirements concerning abnormal input (robustness
requirements) and those concerning normal input (functional
requirements).

One approach to meeting robustness requirements is through defensive
programming techniques; that is, code that detects incorrect input and
performs the appropriate actions. However, this has two undesirable
side effects.

	"Correct behavior in case of incorrect input" is sometimes difficult
to define, resulting in code that cannot be verified by requirements
based tests. Additional test cases based on the code itself (called
structural testing) are not acceptable from a DO ‑ 178C/ED ‑ 12C
perspective, since they are not appropriate for revealing errors.

	Unexercised defensive code complicates structural coverage
analysis. It can't be classified as extraneous (since it does meet
a requirement), but neither can it be considered as deactivated
(since it is intended to be executed when the input is abnormal). As
with any other non-exercised code, justification should be provided
for defensive code, and this may entail difficult discussions with
certification authorities.

An alternative approach is to ensure that no invalid input is ever
supplied (in other words, to make each caller responsible for ensuring
that the input is valid, rather than having the callee deal with
potential violations). This can be done through the use of Ada 2012
contracts. Here's an example, a procedure that interchanges two
elements in an array:

type Float_Array is array (1..100) of Float;

procedure Swap (FA : in out Float_Array;
 I1, I2 : in Integer);
-- I1 and I2 have to be indices into the array,
-- i.e., in FA'Range

procedure Swap (FA : in out Float_Array;
 I1, I2 : in Integer) is
 Temp : Float;
begin
 if I1 in FA'Range and then I2 in FA'Range then
 Temp := FA (I1);
 FA (I1) := FA (I2);
 FA (I2) := Temp;
 end if;
end Swap;

The above example illustrates the ambiguity of the requirements for
defensive code. What does it mean to invoke Swap when one or
both indices are out of range? Not doing anything (which is the effect
of the above code) is a possible answer, but this should be identified
as a derived requirement (since it is an additional behavior of the
component). Other possibilities:

	Raise an exception

	Report the error through an additional out parameter to the
procedure, or as a status value returned (if the subprogram were
expressed as a function rather than a procedure)

	Map an out-of-bounds low value to FA'First, and an
out-of-bounds high value to FA'Last

Even if one of these options is chosen as the required behavior, there
are both efficiency questions (why should the procedure spend
execution time checking for a condition that is expected to be met)
and methodological issues with such defensive code.

The responsibility should really be on the caller to avoid invoking
the procedure if any of the actual parameters has an incorrect
value. A comment in the code states that the indices should be in
range, but Ada 2012 allows formalizing this comment in an
automatically verifiable way:

type Float_Array is array (Positive range <>) of Float;

procedure Swap (FA : in out Float_Array; I1, I2 : Integer)
 with Pre => I1 in FA'Range and then I2 in FA'Range

procedure Swap (FA : in out Float_Array; I1, I2 : Integer) is
 Temp : Float;
begin
 Temp := FA (I1);
 FA (I1) := FA (I2);
 FA (I2) := Temp;
end Swap;

The comment has been replaced by a precondition, which is part of the
procedure specification. Assuming proper verification at each call
site, defensive code in the implementation of the procedure is not
needed. The requirement is now to check that the values passed at each
call meet the precondition, and to take appropriate action if
not. This action may differ from call to call, and may involve further
preconditions to be defined higher up in the call chain.

Enforcement of these preconditions may be accomplished through several
possible activities:

	Code reviews using the Ada contracts as constraints. This is the
least formal technique, but the explicit specification of the
preconditions in Ada contract syntax (versus comments) helps improve
the thoroughness of the review and avoids the potential ambiguity of
requirements expressed in natural language.

	Enabling dynamic checks during testing, and removing them in the
final executable object code. Run-time checks are generated for
pre- and postconditions if the program specifies pragma
Assertion_Policy (Check) and the code is compiled with the compiler
switch -gnata. A violation of a pre- or postcondition will then
raise the Assertion_Error exception. After testing and
related verification activities achieve sufficient assurance that no
violations will occur, the checking code can be removed (either by
pragma Asserion_Policy(Ignore) or by compiling without
-gnata).

	Enabling dynamic checks during testing, and keeping them in the
final executable object code. In this case, the software
requirements should define the expected behavior in case a pre- or
postcondition is violated, for example to reset the application to a
known safe state as soon as an inconsistency is detected.

	Static analysis or formal proof. The GNAT Static Analysis
Suite technology) takes
preconditions into account as part of its analysis in detecting
potential errors. It can be tuned based on whether the priority is
on finding as many errors as possible, at the expense of false
positives, or on "picking the low-hanging fruit": detecting defects
but minimizing the false positives at the expense of missing some
actual errors. The SPARK tools likewise use
preconditions, in this case to guide formal analysis. The proof
engine can statically verify (or else report otherwise) that (1) a
precondition is strong enough to guarantee the absence of run-time
errors in the subprogram, and (2) every call satisfies the
precondition. The SPARK analysis is sound (no false negatives): if
the proof succeeds, then there is no violation of the properties
that SPARK checks for.

The methods and activities adopted to address the robustness issue
should be described in the software plans and, when applicable, in the
software development standards (requirements and/or code standards).

Note that pre- or postcondition contracts do not in themselves
implement robustness requirements. Instead they help to formalize and
verify such requirements (through static analysis, formal proof,
and/or testing). The defensive code is the code that is developed, if
any, to make sure that these contracts are respected.

4.2.5. Defining and Verifying a Code Standard with GNATcheck

	

	Contributions

	Objectives

	
	Software Planning Process (A-1[5]: 4.1.e)

	Software Coding (A-2[6]: 5.3.1.a)

	Reviews and Analyses of Source Code (A-5[4]: 6.3.4.d)

	Activities

	
	Software Planning Process Activities (4.2.b)

	Software Development Standards (4.5.b, 4.5.c)

	Software Coding (5.3.2.b)

	Reviews and Analyses of Source Code (6.3.4)

Defining a Software Code Standard serves at least two purposes:

	It helps to make the application source code consistent, more
verifiable, and more easily maintainable. While these qualities do
not have a direct safety benefit, adherence to a code standard will
improve the efficiency of the source code verification activities.

	It can prevent the use of language features that complicate software
product verification or introduce potential safety issues. A common
example is the deallocation of dynamically allocated objects, which
can lead to dangling references if used incorrectly. Verification
that a program is not susceptible to such errors would require
thorough and complex analysis, and as a result it's typical for a
code standard to prohibit deallocation.

GNATcheck provides an extensive set of user-selectable rules to verify
compliance with various Ada coding standard requirements. These
includes style convention enforcement (casing, indentation, etc.),
detection of features that are susceptible to misuse (floating-point
equality, goto statements), static complexity checks (block
nesting, cyclomatic complexity) and detection of features with complex
run-time semantics (tasking, dynamic memory).

Since a code standard may include qualitative rules, or rules that are
not handled by GNATcheck, verifying that the source code complies with
the standard is not always fully automatable. However, there are two
ways to extend automated verification:

	GNATcheck's rules are extended on a regular basis in response to
customer input, and the tool's enforcement of the new rules is
eligible for qualification. Even in the absence of tool
qualification, the tool can still save time during verification by
detecting rule violations.

	Users can define their own rules as well, in particular using LKQL
(LangKit Query Language) for running queries on top of source code.

One issue that comes up with a code standard is how to apply it
retrospectively to an existing code base. The first time a compliance
checking tool is run, it would not be uncommon to find hundreds or
even thousands of deviations. Fixing them all is not only a cumbersome
and tedious task, but as a manual activity it's also a potential for
introducing new errors into the code. As a result, it is often more
practical to focus on those deviations that are directly linked to
safety, rather than trying to update the entire application. Then for
newly written code the compliance checker can verify that no new
deviations are introduced. Deviation identification may be monitored
(e.g. with SonarQube or SQUORE) and viewed with AdaCore's
GNATdashboard tool. This approach can provide an analysis
over time, for example showing the progress of removal of certain
categories of deviations that were present in a given baseline.

Another practicality with code standards is that some rules might need
to admit deviations in specific contexts when justified (for example
the goto statement might be acceptable to implement state
transitions in code that simulates a finite-state machine, and
forbidden elsewhere). GNATcheck allows adding local check exemptions,
around a statement or a piece of code. Such exemptions and their
justification would then appear in the tool's report.

4.2.6. Checking source code accuracy and consistency with GNAT SAS

	

	Contributions

	Objectives

	
	Reviews and Analyses of Source Code (A-5[6]: 6.3.4.f)

	Activities

	
	Reviews and Analyses of Source Code (6.3.4)

"Accuracy and consistency" is a rather broad objective in DO ‑ 178C/ED ‑ 12C,
identifying a range of development errors that need to be
prevented. Satisfying this objective requires a combination of
reviews, analyses and tests, and tools may be used for some of these
activities. The GNAT Static Analysis Suite (GNAT SAS) specifically targets issues
that correspond to Ada exceptions, such as scalar overflow, range
constraint violations, and array indexing errors. It also detects
other errors including reads of uninitialized variables, useless
assignments, and data corruption due to race conditions. The depth of
the tool's analysis can be adjusted based on whether the priority is
maximal error detection at the expense of false alarms, or minimal
false alarms at the expense of undetected errors.

4.2.7. Checking worst case stack consumption with GNATstack

	

	Contributions

	Objectives

	
	Reviews and Analyses of Source Code (A-5[6]: 6.3.4.f)

	Activities

	
	Reviews and Analyses of Source Code (6.3.4)

Stack usage is one of the items listed in the "source code accuracy
and consistency" objective; i.e., ensuring that the application has
sufficient stack memory reserved during program
execution. Verification is often achieved by running test cases and
measuring the actual stack space used. This approach may provide a
false sense of confidence, however, since there is no evidence that
the worst case usage has been addressed.

A more precise analysis method is to statically determine the actual
stack consumption, looking at the memory statically allocated by the
compiler together with the stack usage implied by the subprogram call
graphs. The GNATstack tool can perform
this analysis for Ada and C, determining the maximum amount of memory
needed for each task stack.

In many cases, however, not everything can be statically computed;
examples are recursive calls, dynamically sized stack frames, and
system calls. In such cases, the user can provide a worst-case
estimate as input to GNATstack's computation.

4.2.8. Compiling with the GNAT Pro compiler

	

	Contributions

	Objectives

	
	Integration Process (A-2[7]: 5.4.1.a)

	Reviews and Analyses of Integration (A-5[7]: 6.3.5.a)

	Activities

	
	Integration Process (5.4.2.a, 5.4.2.b, 5.4.2.d)

	Reviews and Analyses of Integration (6.3.5)

	Software Development Environment (4.4.1.f)

The GNAT Pro technology includes GNU gcc-based Ada and C compilation
toolsuites in wide use by developers of high assurance software, in
particular in a DO ‑ 178C/ED ‑ 12C context. They are available on a broad
range of platforms, both native and cross. Embedded targets include
various RTOSes for certified applications (such as VxWorks 653,
VxWorks 6 Cert, Lynx178, PikeOS) as well as bare metal configurations,
for a wide range of processors (such as PowerPC and ARM).

The Ada language helps reduce the risk of introducing errors during
software development (see [BKKF11]). This is
achieved through a combination of specific programming constructs
together with static and dynamic checks. As a result, Ada code
standards tend to be shorter and simpler than C code standards, since
many issues are taken care of by default. The GNAT Pro compiler and
linker provide detailed error and warning diagnostics, making it easy
to correct potential problems early in the development process.

As with all AdaCore tools, the list of known problems in the compiler
is kept up to date and is available to all subscribers to the
technology. A safety analysis of the list entries is also available,
helping developers assess potential impact and decide on appropriate
actions. Possible actions are code workarounds or a choice of a
different set of compiler code generation options.

For certain Ada language features the GNAT Pro compiler may generate
object code that is not directly traceable to source code. This
non-traceable code can be verified using a traceability analysis (see
Demonstrating traceability of source to object code).

4.2.9. Using GNATtest for low-level testing

	

	Contributions

	Objectives

	
	Software Testing (A-6[3,4]: 6.4.c, 6.4.d)

	Review and Analyses of Test procedures (A-7[1]: 6.4.5.b) and
results (A-7[2]: 6.4.5.c)

	Activities

	
	Normal Range Test Cases (6.4.2.1)

	Robustness Test Cases (6.4.2.2)

	Review and Analyses of Test procedures and results (6.4.5)

	Software Verification Process Traceability (6.5.b, 6.5.c)

The software architecture is developed during the design process,
identifying components and sometimes subcomponents. The behavior of
each terminal component is defined through a set of low-level
requirements. Typically, low-level testing consists in

	Developing test cases from the low-level requirements,

	Implementing the test cases into test procedures,

	Exercising the test procedures separately on one or more components, and

	Verifying the test results

GNATtest may be used to develop the test data. The
general approach is for GNATtest to generate an Ada test harness
around the component under test, leaving the tester to complete test
skeletons based on the predefined test cases, with actual inputs and
expected results. Since the test generation is carried out in a
systematic way, it's very easy to identify where tests are missing
(they will be reported as non-implemented).

The tool works iteratively. If it's called a second time on a set of
files that have changed, it will identify the changes automatically,
preserving existing tests and generating new tests for newly added
subprograms.

A component under test may call external components. One possible
approach is to integrate the components incrementally. This has the
benefit of preserving the actual calls, but it may be difficult to
accurately manage the component interfaces. Another approach is to
replace some of the called subprograms with dummy versions
(stubs). GNATtest supports both approaches, and can generate stub
skeletons if needed.

The functionality just described is common to most test tools. A novel
and useful feature of GNATtest is its ability to develop the test
cases during the design process. (Note that independence between
design and test cases is not required. Independence is required
between code development and test case derivation, to satisfy the
independence criteria of objectives A6-3 and 4 for software level A
and B).

4.2.9.1. Approach 1: Test cases are not specified in Ada specifications

A traditional approach can be followed by GNATtest — that is to
say, tests cases are described outside of the Ada specification, but
linked to a particular function. When working this way, GNATtest will
generate one test per subprogram; for example :

function Sqrt (X : Float) return Float;

This will generate one unique test procedure skeleton.

4.2.9.2. Approach 2: Test cases are developed during the design process

In this approach, Ada package specifications are considered as an
output of the design process (see
Using Ada during the design process). More than one
test per subprogram may be developed. Here's a simple example:

function Sqrt (X : Float) return Float
 with Pre => X >= 0.0,
 Post => Sqrt'Result >= 0.0,
 Test_Case =>
 (Name => "test case 1",
 Mode => Nominal,
 Requires => X = 16.0,
 Ensures => Sqrt'Result = 4.0),
 Test_Case =>
 (Name => "test case 2",
 Mode => Robustness,
 Requires => X < 0.0,
 Ensures => raise Constraint_Error
 with "Non-negative value needed");

As part of the specification for the Sqrt function, the GNAT-specific
aspect Test_Case is used to define two test cases. The one
named "test case 1" is identified as Nominal, which means that
the argument supplied as Requires should satisfy the function's
precondition, and the argument supplied as Ensures should
satisfy the function's postcondition. The test case named "test case
2" is specified as Robustness, so the pre- and postconditions
are ignored. As with all test cases, these are based on the function's
requirements.

When generating the test harness, GNATtest provides a skeleton of the
test procedures, and the user has to plug in the input values (from
the Requires argument) and the expected results (from the
Ensures argument) for all test cases defined in the Ada package
specification.

GNATtest will insert specific checks to verify that, within "test case
1", all calls made to Sqrt have X equal to 16.0,
and each value returned is equal to 4.0. This not only verifies that
the test succeeded, but also confirms that the test conducted is
indeed the intended test. As a result, GNATtest verifies that the test
procedures comply with the test cases, that they are complete (all
test cases have been implemented and exercised), and that the test
results are as expected.

In addition, the traceability between test case, test procedures and
test results is direct, and does not require production of further
trace data.

4.2.9.3. Approach 3: Test cases are developed separately from the design process

The two test cases developed in Approach 2 are not sufficient to fully
verify the Sqrt function. To comply with DO ‑ 178C/ED ‑ 12C Table A-6
Objectives 3 and 4, the activities presented in §6.4.2
(Requirements-Based Test Selection) for normal and robustness cases
are applicable. It is not generally practical to include all the test
cases in the Ada package specification.

Another consideration is the criterion of independence between code
and test case development. Thus Approach 2 is applicable only if the
Ada package specification is developed during the design process (and
not during the coding process).

An alternative approach is to develop the test data separately from
the Ada package specifications, while some test cases (effectively
test case classes) are still defined and used by GNATtest to develop
the test harness. Here's an example:

function Sqrt (X : Float) return Float
with Test_Case =>
 (Name => "test case 1",
 Mode => Nominal,
 Requires => X > 0.0,
 Ensures => Sqrt'Result > 0.0),
 Test_Case =>
 (Name => "test case 2",
 Mode => Nominal,
 Requires => X = 0.0,
 Ensures => Sqrt'Result = 0.0),
 Test_Case =>
 (Name => "test case 3",
 Mode => Robustness,
 Requires => X < 0.0,
 Ensures => raise Constraint_Error
 with "Non-negative value needed");

In this approach, three Test_Case aspects are defined —
in effect test case classes that partition the set of possible input
values — defining the expected high-level characteristics of the
function. For each Test_Case, at least one actual test case
will be developed. In this example, at least three test cases need to
be defined, corresponding to an actual parameter that is positive,
zero, or negative, with the respective expected results of positive,
zero, and raising an exception.

As in Approach 2, the skeleton generated by GNATtest must be completed
by the user, but in that case the data produced are the actual test
cases (and cannot be considered as test procedures). For example,
based on the range of the input, the user should define tests for
boundary values, for the value 1, or any representative data
(equivalence classes).

As previously, GNATtest will insert specific checks based on the
Requires and Ensures values for each
Test_Case. Then GNATtest will verify that at least one actual
test case has been implemented for each Test_Case, and that the
results are correct.

Note that in this approach, the test procedures become the internal
files generated by GNATtest. Therefore, as it will be difficult to
verify the correctness of these files, GNATtest qualification is
needed in order to satisfy objective A7-1 "test procedures are
correct".

4.2.10. Using GNATemulator for low-level and software / software integration tests

	

	Contributions

	Objectives

	
	Software testing (A-6[1,2,3,4]: 6.4.a, 6.4.b, 6.4.c, 6.4.d)

	Activities

	
	Test environment (6.4.1)

	Software Integration testing (6.4.3.b)

	Low Level testing (6.4.3.c)

	As stated in DO ‑ 178C/ED ‑ 12C §6.4.1:
	"More than one test environment may be needed to satisfy the
objectives for software testing.... Certification credit may be
given for testing done using a target computer emulator or a host
computer simulator".

But an integrated target computer environment is still necessary to
satisfy the verification objective (A6-5) that the executable object
code is compatible with the target computer. These tests, referred to
as "Hardware / Software integration tests", are necessary since some
errors might only be detected in this environment. As stated in
DO ‑ 330/ED ‑ 215, FAQ D.3, qualification of a target emulator or simulator may
be required if they are used to execute the Hardware / Software
integration tests.

Although GNATemulator might thus not be applicable in the scope of
Hardware / Software integration tests, it is allowed for all other
tests (see DO ‑ 330/ED ‑ 215 FAQ D.3). Two approaches may be used:

	To perform some tests (that may be part of low-level testing and/or
Software / Software integration testing) on GNATemulator, and to
claim credit on this environment for satisfying the objectives
concerning the Executable Object Code's compliance with its
requirements

	To use GNATemulator to prototype and gain confidence in tests prior
to re-running the tests on the actual target computer environment.

In any event GNATemulator helps considerably in the early detection of
errors in both the software and the test procedures. GNATemulator
works in much the same fashion as a "Just In Time" (JIT) compiler: it
analyzes the target instructions as it encounters them and translates
them on the fly (if not done previously) into host instructions, for
example an x86. This makes it particularly suitable for low-level
testing, at least for those tests that do not depend on actual timing
on the target.

GNATemulator also provides an easy way to interact with emulated
devices and drivers on the host. Reads and writes to emulated memory
can trigger interactions with such code, through the GNATbus
interface.

4.2.11. Structural code coverage with GNATcoverage

	

	Contributions

	Objectives

	
	Test Coverage Analysis (A-7[5]: 6.4.4.c)

	Activities

	
	Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b)

The structural coverage analysis objectives of DO ‑ 178C/ED ‑ 12C serve to
verify the thoroughness of the requirements-based tests and to help
detect unintended functionality. The scope of this analysis depends on
the software Level:

	Statement coverage for Level C,

	Statement and Decision coverage for level B, and

	Statement, Decision and Modified Condition / Decision Coverage (MC/DC) at level A.

These three criteria will be explained through a simple (and
artificial) example, to determine whether a command should be issued
to open the aircraft doors:

Closed_Doors : Integer;
Open_Ordered, Plane_Landed : Boolean;
 ...

if Closed_Doors > 0 and then Open_Ordered and then Plane_Landed then
 Open_Doors;
end if;

Note: the Ada short-circuit form and then is equivalent to the
C shortcut boolean operator &&: the second operand is evaluated
if and only if the first operand evaluates to True. If the first
operand evaluates to False, then the expression's value is False.

This code fragment consists of two statements:

	The enclosing if statement

	The enclosed Open_Doors; statement, which will be executed if
the decision in the if statement is True

The if statement in turn contains a single decision:

Closed_Doors > 0 and then Open_Ordered and then Plane_Landed

and this decision contains three conditions:

	Closed_Doors > 0

	Open_Ordered

	Plane_Landed

At the statement level, both statements need to be executed during
requirements-based tests. This criterion may be achieved with only one
test, with all three conditions True.

It's important to realize that this piece of code is the
implementation of one or several requirements, and a single test with
all three conditions True will almost certainly fail to satisfy the
requirement coverage criterion. Further, this single test is probably
not sufficient to detect implementation errors: the purpose of testing
is to detect errors and to show that the software satisifes its
requirements, not to achieve structural code coverage. Structural
coverage analysis is mainly a test completeness activity.

At the decision level, each decision must be exercised both with a
True and False outcome. In the example above, this may be
achieved with only two tests; one test with all three conditions True,
and a second test with at least one False.

The third level is called MC/DC, for Modified Condition / Decision
Coverage. The goal is to assess that each condition within a decision
has an impact, independently of other conditions, on the decision
outcome.

The motivation for MC/DC is most easily appreciated if we first look
at what would be required for full coverage of each possible
combination of truth values for the constituent conditions. This would
require eight tests, represented in the following table:

	Closed_Doors > 0

	Open_Ordered

	Plane_Landed

	Result

	True

	True

	True

	True

	True

	True

	False

	False

	True

	False

	True

	False

	True

	False

	False

	False

	False

	True

	True

	False

	False

	True

	False

	False

	False

	False

	True

	False

	False

	False

	False

	False

In the general case, 2n cases would be needed for a decision
with n conditions, and this would be impractical for all but small
values of n. The MC/DC criterion is achieved by selecting combinations
demonstrating that each condition contributes to the outcome of the
decision.

With MC/DC, each condition in the decision must be exercised with both
True and False values, and each condition must be shown to
independently affect the result. That is, each condition must be
exercised by two tests, one with that condition True and the other
with the condition False, such that:

	The result of the decision is different in the two tests, and

	For each other condition, the condition is either True in both tests
or False in both tests

Here the MC/DC criterion may be achieved with four tests: one test
with all three conditions True, and each other test changing the value
of one condition to False:

	

	Closed_Doors > 0

	Open_Ordered

	Plane_Landed

	Result

	Baseline

	True

	True

	True

	True

	Test 1

	False

	True

	True

	False

	Test 2

	True

	False

	True

	False

	Test 3

	True

	True

	False

	False

Each condition thus has two associated tests, the one marked as
baseline, and the one with False in that condition's
column. These two tests show how that condition independently affects
the outcome: The given condition is True in the baseline and False
in the other, each other condition has the same value in both tests, and
the outcome of the two tests is different.

In the general case, the MC/DC criterion for a decision with n
conditions requires n+1 tests, instead of 2n. For more
information about MC/DC, see [HVCR01].

GNATcoverage provides output that helps comply with DO ‑ 178C/ED ‑ 12C
objectives for test coverage of software structure (Table 7,
objectives 5, 6, and 7), for both Ada and C source code. The tool
computes its results from trace files that show which program
constructs have been exercised by a given test campaign. With source
code instrumentation, the tool produces these files by executing an
alternative version of the program, built from source code
instrumented to populate coverage-related data structures. Through an
option to GNATcoverage, the user can specify the granularity of the
analysis by choosing any of the coverage criteria defined in
DO ‑ 178C/ED ‑ 12C: Statement Coverage, Decision Coverage, or Modified
Condition / Decision Coverage (MC/DC).

Source-based instrumentation brings several major benefits: efficiency
of tool execution (much faster than alternative coverage strategies
using binary traces and target emulation, especially on native
platforms), compact-size source trace files independent of execution
duration, and support for coverage of shared libraries.

4.2.12. Data and control coupling coverage with GNATcoverage

	

	Contributions

	Objectives

	
	Test Coverage Analysis (A-7[8]: 6.4.4.d)

	Activities

	
	Structural Coverage Analysis (6.4.4.2.c)

DO ‑ 178C/ED ‑ 12C objective A7-8 states:

"Test coverage of software structure (data coupling and control coupling) is achieved".

This is part of overall structural coverage analysis. Although
structural coverage activities (Statement, Decision, or MC/DC) can be
carried out at various times, it is often performed during low-level
testing. This allows precise control and monitoring of test inputs and
code execution. If code coverage data is retrieved during low-level
testing, structural coverage analysis can assess the completeness of
the low-level tests.

In addition, the completeness of the integration tests needs to be
verified. For that purpose the integration tests have to be shown to
exercise the interactions between components that are otherwise tested
independently. This is done through data and control coupling coverage
activities. Each data and control coupling relationship must be
exercised at least once during integration tests.

Data and control coupling are the interfaces between components, as
defined in the architecture. More specifically, data coupling concerns
the data objects that are passed between modules. These may be global
variables, subprogram parameters, or any other data passing
mechanisms. Control coupling concerns the influence on control
flow. Inter-module subprogram calls are obvious cases of control
coupling (they initiate a control flow sequence) but subtler cases
such as a global variable influencing a condition can be also
considered as control coupling. For example, if module Alpha
has something like:

if G then
 Do_Something;
else
 Do_Something_Else;
end if;

and in a module Beta:

G := False;

Then this is really an example of control coupling, and not data
coupling. Using a global variable to effect this control flow is
considered an implementation choice.

In the software engineering literature, the term coupling generally
has negative connotations since high coupling can interfere with a
module's maintainability and reusability. In DO ‑ 178C/ED ‑ 12C there is no
such negative connotation; coupling simply indicates a relationship
between two modules. That relationship needs to be defined in the
software architecture and verified by requirements-based integration
tests.

One strategy to verify coverage of data and control coupling is to
perform statement coverage analysis during integration testing.
GNATcoverage may be used in this way to detect incomplete execution of
such data and control flows. This may require coding constraints, such
as limited use of global data, or additional verification for such
data:

	Parameter passing and subprogram calls: Statement coverage ensures
that all subprograms are called at least once. Additional
verification is needed to demonstrate correctness properties for the
parameters.

	Global data: The Global aspect in SPARK (and in Ada 2022) can
be used to verify correct usages of global data.

4.2.13. Demonstrating traceability of source to object code

	

	Contributions

	Objectives

	
	Test Coverage Analysis (A-7[5]: 6.4.4.c)

	Activities

	
	Structural Coverage Analysis (6.4.4.2.b)

For software at level A, DO ‑ 178C/ED ‑ 12C objective A7-9 requires identifying
if code not visible at the source code level is added by the compiler,
linker, or other means; if so, it is necessary to verify such code for
correctness. Compiler-added code typically takes the form of extra
branches or loops that are explicit in the object code but not at the
source level. One example in Ada is the implicit checking that is
often required by the language semantics.

A statement like:

A : Integer range 1..10;
B : Integer;
...
A := B;

may be compiled into the following pseudo-object code:

if B >= 1 or else B <= 10 then
 A := B;
else
 raise Constraint_Error;
end if;

This assumes that checks are retained at run-time. However, even with
checks disabled, a compiler for either Ada or C may still need to
generate non-traceable code to implement some language constructs. An
Ada example is array slice assignment, which results in loops at the
object code level on typical target hardware:

A, B : String (1..100);
...
A (1..50) := B (11..60);

AdaCore has verified the correctness of non-traceable code for the
GNAT Pro for Ada and GNAT Pro for C compilers, based on
representative samples of source code. Samples were chosen for the
language features permitted by common code standards. Object code was
generated for each sample, and any additional (non-traceable) code was
identified. For each non-traceable feature, additional requirements
and tests were provided to verify that the behavior of the resulting
code was indeed as required.

Traceability analyses for GNAT Pro for Ada and GNAT Pro for C are
available. These analyses take into account the specific compiler
version, compiler options, and code standard that are used, to ensure
that the code samples chosen are representative. If some specific
language features, options, or compiler versions are not suitable for
the analysis, appropriate adaptations are made.

4.3. Use case #1b: Coding with Ada using OOT features

This use case is based on use case #1, taking advantage of Ada and the
AdaCore ecosystem, but with a design that uses Object-Oriented
Technologies. As a result, the following vulnerabilities identified
in the technology supplement DO ‑ 332/ED ‑ 217 need to be addressed:

	Local type consistency

	Dynamic memory management

	Parametric polymorphism (genericity)

	Overloading

	Type conversion

	Exception management

	Component-based development

4.3.1. Object orientation for the architecture

	

	Contributions

	Objectives

	
	Software Design Process Objectives (A-2[4]: 5.2.1.a)

	Activities

	
	Software Design Process Activities (OO.5.2.2.h)

	Software Development Process Traceability (OO.5.5.d)

	Vulnerabilities

	
	Traceability (OO.D.2.1)

Object orientation is a design methodology, a way to compose a system
where the focus is on the kinds of entities that the system deals
with, and their interrelationships. Choosing an object-oriented design
will thus have a significant impact on the architecture, which is
expressed in terms of classes and their methods (or primitive
operations in Ada). This architecture can be modeled in many ways, for
example with UML class diagrams.

The use of OOT can affect traceability between low-level requirements
and code. Without object orientation, traceability is generally
between a set of requirements and one module, one function or one
piece of code. In an object-oriented design, as defined in DO ‑ 332/ED ‑ 217,
§O.O.5.5:

"All functionality is implemented in methods; therefore,
traceability is from requirements to the methods and attributes
that implement the requirements".

4.3.2. Coverage in the case of generics

	

	Contributions

	Objectives

	
	Test Coverage Analysis (A-7[4,5]: 6.4.4.b, 6.4.4.c)

	Activities

	
	Requirement coverage analysis (6.4.4.1)

	Structural Coverage Analysis (6.4.4.2.a, 6.4.4.2.b)

	Vulnerabilities

	
	Parametric Polymorphism (OO.D.1.2)

	Structural Coverage (OO.D.2.2)

Genericity is one of the related techniques (not part of OOT) that
is covered by DO ‑ 332/ED ‑ 217. A generic unit is a template for a piece of
code that can be instantiated with different parameters, including
types and subprograms. A complication with respect to certification is
that the same generic unit may have different instantiations that
behave differently. Consider, for example, a simple generic Ada
function that can be instantiated with an integer type to perform some
basic computation:

generic
 type Int_Type is range <>;
function Add_Saturated (Left, Right, Max : Int_Type)
 return Int_Type
 with Pre => Max>0;
function Add_Saturated (Left, Right, Max : Int_Type)
 return Int_Type is
 Temp : Int_Type;
begin
 Temp := Left + Right;

 if Temp > Max then
 return Max;
 elsif Temp < -Max then
 return -Max;
 else
 return Temp;
 end if;
end Add_Saturated;

Then consider two separate instantiations:

with Add_Saturated;
procedure Test_Gen is
 function Add_1 is new Add_Saturated (Integer);

 type Small_Int is range -10 .. 10;
 function Add_2 is new Add_Saturated (Small_Int);

 N1 : Integer;
 N2 : Small_Int;
begin
 N1 := Add_1 (6, 6, 10); -- Correctly yields 10
 N2 := Add_2 (6, 6, 10); -- Raises Constraint_Error
end Test_Gen;

Calling Add_1 (6, 6, 10) will yield 10 as a result. Calling
Add_2 (6, 6, 10) will raise Constraint_Error on the
first addition, since the sum Left + Right will be equal to 12
and therefore violate the range constraint for Small_Int.

Different instantiations of the same generic unit can thus exhibit
different behaviors. As a result, DO ‑ 332/ED ‑ 217 specifies that each generic
instance must be tested (and covered); see section OO.D.1.2.3.

GNATtest will generate a test harness taking this requirement into
account. In particular, it will generate a separate testing setup for
each instance, while keeping a generic test procedure for all of them.

GNATcoverage can separately report the coverage of each generic
instance, based on the -S instance switch.

With respect to traceability, the code of a generic instantiation is
traceable to the source. Indeed, at the point of instantiation, the
effect is as though the generic template were expanded in place, with
formal parameters replaced by the actuals. (This expansion is not at
the level of source text, but rather is based on a program
representation where all names have been semantically resolved.) As a
result, using a generic doesn't add any non-traceable code. Code is
traced from the generic template to the object code, once per
instance.

4.3.3. Dealing with dynamic dispatching and substitutability

	

	Contributions

	Objectives

	
	Software Design Process Objectives (A-2[4]: 5.2.1.a)

	Local Type Consistency Verification Objective (OO.A-7[OO 10]:
OO.6.7.1)

	Activities

	
	Software Design Process Activities (OO.5.2.2.i)

	Local Type Consistency Verification Activity (OO.6.7.2)

	Vulnerabilities

	
	Inheritance (OO.D.1.1)

One of the major features of OOT is dynamic dispatching (also called
dynamic binding), which adds considerable expressive power but also
presents challenges to verification. With dynamic dispatching, the
subprogram to be invoked on a reference to a target object is not
known statically but rather is resolved at run time based on which
class the target object belongs to. This differs from a call through
an access-to-subprogram value in the sense that, with dynamic
dispatching, the potential destination subprograms are constrained to
a specific class hierarchy as determined by the type of the reference
to the target object (the controlling parameter, in Ada terms).

In Ada, a subprogram that can be invoked through dynamic dispatching
— this is known as a primitive subprogram — can never be
removed by a subclass; it is either inherited or overridden. Thus on a
call that is dynamically dispatched, although it is not known at
compile time which subclass's version of the subprogram will be
invoked, some subclass's implementation of the subprogram will indeed
be called. Ada is not susceptible to "no such method" errors that can
arise with dynamic dispatching in some other languages.

4.3.3.1. Understanding Substitutability

From a safety point of view, not knowing the specific target of a
given call introduces significant issues for verifiability. DO ‑ 332/ED ‑ 217
states that if an inheritance hierarchy is constructed so that each
subclass specializes its superclass (i.e., wherever a superclass
instance is permitted a subclass instance may be substituted) then
dynamic dispatching is acceptable. This substitutability property for
a class inheritance hierarchy is known as the Liskov Substitution Principle
(LSP).

If a hierarchy complies with LSP, then testing and other verification
can be conducted based on properties defined at the class level, which
will then need to be respected by each subclass. As will be explained
below, this has implications on the pre- and postconditions that are
allowed when a dispatching subprogram is overridden.

Here is a specific — although simplified — example: an
aircraft type with a subprogram that is supposed to open the doors.

package Aircraft_Pkg is
 type Aircraft is abstract tagged private;

 procedure Open_Doors (Self : Aircraft)
 with Pre'Class => Self.On_Ground,
 Post'Class => Self.Doors_Opened;

 ...
private
 ...
end Aircraft_Pkg;

The contracts for the pre- and postconditions reflect the low-level
requirements:

	the aircraft has to be on the ground prior to having its doors
opened, and

	the doors are opened as a result of the call.

The Aircraft type could be used as follows:

procedure Landing_Procedure (My_Aircraft : Aircraft'Class) is
begin
 ...
 while not My_Aircraft.On_Ground loop
 ...
 end loop;

 -- Here if My_Aircraft is on the ground

 My_Aircraft.Open_Doors; -- Dispatching call
 My_Aircraft.Let_Passengers_Out;
 ...
end Landing_Procedure;

We're first waiting until the aircraft is actually on the ground, then
open the doors, then as the doors are opened we let passengers out.

All types in the Aircraft inheritance hierarchy have to comply
with the Aircraft contracts. That is, for any type in the
Aircraft'Class hierarchy, the Open_Doors subprogram for
that type can require at most the On_Ground precondition and
nothing stronger. If a stronger precondition were imposed, then a
dynamically dispatching call of Open_Doors could fail if the
actual parameter were of this (non-substitutable) type. The extra
precondition would not necessarily be known to clients of the root
type Aircraft.

Analogously for the postcondition, any type in the
Aircraft'Class hierarchy has to guarantee at least the
Doors_Opened property, since this will be assumed by callers of
Open_Doors.

In short, the substitutability property can be summarized as follows:

If a type hierarchy is to be substitutable, then a dispatching
subprogram for a derived type can weaken but not strengthen the
precondition of the overridden subprogram for its parent type, and
can strengthen but not weaken the postcondition.

The class-wide Pre'Class and Post'Class aspects are
inherited (unless overridden) and have other semantics that directly
support this substitutability property. The specific (non-class-wide)
aspects Pre and Post are not inherited and should only
be used if the hierarchy does not support substitutability.

Let's now define a Jet:

type Jet is new Aircraft with ...

overriding
procedure Open_Doors (Self : Jet)
with Pre => Self.On_Ground and Self.Engines_Off,
 Post'Class => Self.Doors_Opened and not Self.Pressurized;

Suppose that Landing_Procedure is invoked on an object of type
Jet:

J : Aircraft'Class := Jet'(...);
...
Landing_Procedure (J);

In the call My_Aircraft.Open_Doors, first the precondition for
Open_Doors for Aircraft will be evaluated (since the
actual parameter is of the class-wide type
Aircraft'Class. That's not a problem, since the caller sees
this precondition. However, then the specific precondition for
Open_Doors for Jet is evaluated, and there is a problem with
the additional constraint — requiring the engines to be off. The
Jet type could have been defined long after the
Landing_Procedure subprogram was written, so the design of the
Landing_Procedure code would not have taken the added
precondition into account. As a result, the Open_Doors
procedure could be invoked when the engines were still running,
violating the requirement. (With run-time assertion checking enabled,
an exception would be raised.) The type Jet is not
substitutable for the type Aircraft on invocations of
Open_Doors.

The non-substitutabiity is reflected in the use of the specific aspect
Pre rather than the class-wide aspect Pre'Class. In a
type hierarchy rooted at type T where Pre'Class is
specified at each level for a subprogram Proc, the effective
precondition for a dispatching call X.Proc where X is of
the type T'Class is simply the precondition specified for
Proc for the root type T (which is the only precondition
known to the caller). In the Jet example, if Pre'Class
had been used, a dispatching call to Open_Doors would not check
the Engines_Off condition.

In short, if a subclass is to be substitutable then it may weaken but
not strengthen a subprogram's precondition, and it should use
Pre'Class rather than Pre. If a subclass needs to
strengthen a precondition then it is not substitutable and should use
Pre rather than Pre'Class.

The postcondition for Open_Doors for Jet does not have
this problem. It adds an additional guarantee: pressurization is off
after the opening of the doors. That's OK; it doesn't contradict the
expectations of the Landing_Procedure subprogram, it just adds
an additional guarantee.

The Jet type illustrated non-substitutability due to
precondition strengthening. Non-substitutability can also arise for
postconditions, as illustrated in a slight variation of the
Aircraft type:

package Aircraft_Pkg is
 type Aircraft is abstract tagged private;

 procedure Open_Doors (Self : Aircraft)
 with Pre'Class => Self.On_Ground,
 Post => Self.Doors_Opened;
 -- Specific, not class-wide

 ...
private
 ...
end Aircraft_Pkg;

Here's a possible declaration for a hot air balloon:

type Hot_Air_Balloon is new Aircraft with ...

overriding
procedure Open_Doors (Self : Hot_Air_Balloon)
with Pre'Class => Self.On_Ground or Self.Tethered,
 Post => Self.Doors_Unlocked;

In this case, the precondition is relaxed (we're assuming a short
tether). This is acceptable, since the landing procedure will still
check the stronger precondition and wait for the aircraft to be on the
ground; the class-wide precondition of the root type is checked on a
dispatching call. (The weaker precondition would be checked on a call
such as B.Open_Doors where B is either of the specific
type Hot_Air_Balloon or the class-wide type
Hot_Air_Balloon'Class.)

However, a Hot_Air_Balloon is less automated than a Jet:
the doors don't open automatically, they just unlock. The
Landing_Procedure subprogram assumes the postcondition for
Aircraft (that the doors are opened), but this is not
guaranteed for a Hot_Air_Balloon, so passengers might be pushed
out while the doors are unlocked but still closed. The new
postcondition is breaking the requirement by weakening its parent
type's postcondition, and this is not acceptable. Thus the
Hot_Air_Balloon type is not substitutable for Aircraft.

Substitutability defects may be evidence of a number of problems; for
example, the hierarchy of classes or requirements may be incorrect, or
the classes may be modeling properties inappropriately. Overall, this
indicates design issues to be addressed when specifying the low-level
requirements and/or architecture.

A natural question is how to detect substitutability defects (or
achieve confidence that such defects are not present) in the
application. DO ‑ 332/ED ‑ 217 provides three approaches: pessimistic testing,
local substitution tests, or formal proofs.

4.3.3.2. Verifying substitutability by pessimistic testing

Pessimistic testing is conceptually the easiest to understand. The
idea is to test at each point of dispatch all possible types that
could be substituted. In the Landing_Procedure example,
assuming that our system is managing both jets and hot air balloons,
this would mean two sets of tests: one for the Jet type, and one for
Hot_Air_Balloon. This is working around the difficulty of not knowing
statically the potential target of a call: we just test all possible
scenarios.

This is particularly appropriate with flat hierarchies, which may be
broad but not deep. An example is an OOP design pattern for an
abstract root type (such as a container data structure) with concrete
specializations corresponding to different representational
choices. In this case, regular requirement-based testing is equivalent
to pessimistic testing. However, the complexity of additional testing
can quickly become unmanageable as the depth of the class hierarchy
increases.

4.3.3.3. Verifying substitutability through requirement-based testing

In this case verification of substitutability is done on top of
regular testing. In the above examples the Aircraft, Jet
and Hot_Air_Balloon requirements are all associated with
specific requirement-based tests. Substitutability can be demonstrated
by running top level tests with instances of other types of the
class. In other words, tests developed based on requirements of
Aircraft must pass with instances of Jet and
Hot_Air_Balloon. This is enough to demonstrate
substitutability, effectively testing the substitution. This may
require more or fewer tests depending on OOP usage. In particular, for
large class hierarchies, testing at the class level is much more
cost-effective than testing every possible target of every possible
dispatching call in the actual code.

The GNATtest tool supports generation of the appropriate test
framework for substitution testing; see the GNATtest option
--validate-type-extensions.

4.3.3.4. Verifying substitutability through formal proof

In conjunction with DO ‑ 333/ED ‑ 216 (Formal Methods supplement), and assuming
that requirements can be expressed in the form of pre- and
postconditions, the consistency between an overriding subprogram and
its parent type's version can be verified through formal proof. This
can be done in particular with the SPARK language. There are two
criteria for substitutability:

	The precondition of a subprogram for a type must imply the
precondition of each overriding subprogram in the class hierarchy.

	The postcondition of any overriding subprogram for a type must imply
the postcondition of the corresponding subprogram for each ancestor
type in the hierarchy

These preconditions and postconditions — or requirements —
must also be verified, through either requirement-based testing or
formal proofs.

The SPARK GNATprove tool can verify consistency of classes of types,
and in particular consistency of pre- and postconditions as described
above. To enable such verification, these must be declared as
class-wide contracts as in the initial example of the Aircraft type
above.

4.3.3.5. Differences between local and global substitutability

DO ‑ 332/ED ‑ 217 does not require classes to be globally substitutable, but
only locally; that is, only around actual dispatching points. For
example, the following code is not globally substitutable, but is
locally substitutable at the dispatching calls:

package Aircraft_Pkg is
 type Aircraft is abstract tagged private;

 procedure Open_Doors (Self : Aircraft)
 with Pre'Class => Self.On_Ground,
 Post'Class => Self.Doors_Opened;

 procedure Take_Off (Self : Aircraft)
 with Pre'Class => Self.On_Ground and not
 Self.Doors_Opened,
 Post'Class => not Self.On_Ground;
 ...
private
 ...
end Aircraft_Pkg;

package Aircraft_Pkg.Jet_Pkg is
 type Jet is new Aircraft with ...

 overriding
 procedure Open_Doors (Self : Jet)
 with Pre => Self.On_Ground and Self.Engines_Off,
 -- Not substitutable
 Post'Class => not Self.Pressurized;

 overriding
 procedure Take_Off (Self : Aircraft)
 -- Inherit Aircraft's precondition
 with Post'Class => not Self.On_Ground and
 Self.Speed >= 100.0;

 ...
private
 ...
end Aircraft_Pkg.Jet_Pkg;
...
X, Y : Aircraft'Class := Jet'(...)
...

X.Take_Off;
Y.Take_Off;

The Jet type is not globally substitutable for Aircraft,
since the precondition on Open_Doors for Jet is stronger
than the precondition on Open_Doors for Aircraft. But
Jet is locally substitutable in the above fragment:

	The invocations X.Take_Off and Y.Take_Off dispatch to
Jet, but Jet is substitutable for Aircraft
here:

	The precondition for Take_Off(Aircraft) is inherited by
Jet,and

	The postcondition for Take_Off(Aircraft) is strengthened
by Jet

Whether it is easier to demonstrate local versus global suitability
for a given class depends on the architecture and the ease of
identification of actual dispatch destinations and
substitutability. DO ‑ 332/ED ‑ 217 allows the applicant to decide on whichever
means is the most appropriate.

4.3.4. Dispatching as a new module coupling mechanism

	

	Contributions

	Objectives

	
	Test Coverage Analysis (A-7[8]: 6.4.4.d)

	Activities

	
	Structural Coverage Analysis (6.4.4.2.c)

	Vulnerabilities

	
	Structural Coverage (OO.D.2.2)

With procedural programming, modules can be interfaced, or coupled,
through parameter passing, subprogram calls or global variables (data
and control coupling). Object orientation introduces a new way in
which two modules may interface with each other: by extension / type
derivation. Following-up on previous examples:

procedure Control_Flight (Plane : Aircraft'Class) is
begin

 ...

 -- Dispatching call, may call Take_Off from instances
 -- defined in other modules, creating coupling
 -- relationship with those modules
 Plane.Take_Off;

 ...

end Control_Flight;

Aircraft of different types may be defined in separate modules. A
connection between these modules and the rest of the application may
be made by dispatching from this call. All objectives that apply to
control and data coupling now apply to type derivation coupling, in
particular the coverage objectives. Whether or not testing with all
possible derivations in the system is used (i.e., pessimistic testing)
depends of the strategy chosen for substitutability demonstration.

4.3.5. Memory management issues

	

	Contributions

	Objectives

	
	Software Design Process Objectives (A-2[3,4]: 5.2.1.a)

	Reviews and Analyses of Software Architecture (OO.A-4[8]:
OO.6.3.3.a)

	Dynamic Memory Management Verification Objective
(OO.A-7[OO10]: OO.6.8.1)

	Activities

	
	Software Design Process Activities (OO.5.2.2.j)

	Dynamic Memory Management Verification Activities (OO.6.8.2)

	Reviews and Analyses of Software Architecture (OO.6.3.3)

	Vulnerabilities

	
	Dynamic Memory Management (OO.D.1.6)

In addition to local type consistency, which was described in the
preceding section, DO ‑ 332/ED ‑ 217 also introduced another new verification
objective: robustness of dynamic memory management. This objective
encompasses not only explicit use of dynamic memory, through either
automatic reclamation (garbage collection) or application-provided
allocation / deallocation, but also implicit uses through higher level
data structures such as object collections of various kinds. DO ‑ 332/ED ‑ 217
identifies a number of criteria that need to be met by any memory
management scheme:

	The allocator returns a reference to a valid piece of memory, not
otherwise in use

	If enough space is available, allocations will not fail due to
memory fragmentation

	An allocation cannot fail because of insufficient reclamation of
inaccessible memory

	The total amount of memory needed by the application is available
(that is, the application will not fail because of insufficient
memory)

	An object is only deallocated after it is no longer used

	If the memory management system moves objects to avoid
fragmentation, inconsistent references are prevented

	Allocations and deallocations complete in bounded time

Meeting these criteria may be the responsibility of the run-time
memory management library (referred to as the "memory management
infrastructure", or MMI in DO ‑ 332/ED ‑ 217) or the application code
(AC). Table OO.D.1.6.3 in DO ‑ 332/ED ‑ 217 presents several different memory
management techniques that can be used. For each technique the table
identifies whether the MMI or the AC is responsible for meeting each
criterion.

Dynamic memory is identified as a specific issue in object orientation
because, in many languages, it is very difficult or even impossible to
use object-oriented paradigms without dynamic memory management. This
is in particularly true for reference-based languages such as Java.

Although dynamic memory is also helpful when OOP is used in Ada,
simple architectures may allow creating (and subsequently dispatching
on) stack-resident or library-level objects, without needing dynamic
memory. This can be done if such objects are of a class-wide type. The
main constraint is that each object has to be initialized at
declaration, and its specific type cannot change later. For example,
the following code provides a function returning an object of a type
in the Aircraft class hierarchy, depending on a parameter:

type Aircraft is abstract tagged ...
type Jet is new Aircraft with ...
type Hot_Air_Balloon is new Aircraft with ...
...
function Create (T : Integer) return Aircraft'Class is
begin
 if T = 1 then
 return Jet'(<initialization of a Jet>);
 elsif T = 2 then
 return Hot_Air_Balloon'(...);
 -- initialization of a Hot_Air_Balloon
 else
 raise <some exception>;
 end if;
end Create;

Objects of the class-wide type Aircraft'Class can be created as
local or global variables:

N : Integer := Get_Integer; -- Dynamically computed
P : Aircraft'Class := Create (N);
...
P.Take_Off;

Here, P is allocated on the stack and may be either a
Jet or a Hot_Air_Balloon. The call to P.Take_Off
will dispatch accordingly.

For notational convenience it may be useful to reference objects of a
class-wide type through access values (pointers), since that makes it
easier to compose data structures, but to prevent dynamic
allocation. This can be achieved in Ada:

type Aircraft is abstract tagged ...
type Jet is new Aircraft with ...
type Hot_Air_Balloon is new Aircraft with ...

type Aircraft_Ref is access all Aircraft'Class;
for Aircraft_Ref'Storage_Size use 0;
 -- No dynamic allocations
...
Jet_1, Jet_2 : aliased Jet := ...;
Balloon_1, Balloon_2, Balloon_3 : aliased Hot_Air_Balloon := ...;

type Aircraft_Pool_Type is array(Positive range <>) of Aircraft_Ref;
Pool : Aircraft_Pool_Type := (Jet_2'Access,
 Balloon_3'Access,
 Jet_1'Access);
...
for P of Pool loop
 P.Take_Off; -- Dispatches
end loop;

These examples show how object orientation can be used in Ada without
dynamic memory. More complicated designs, however, would probably need
some form of dynamic memory and thus need to comply with the criteria
listed above.

4.3.6. Exception handling

	

	Contributions

	Objectives

	
	Software Design Process Objectives (A-2[4]: 5.2.1.a)

	Reviews and Analyses of Software Architecture (OO.A-4[8]: OO.6.3.3.a)

	Activities

	
	Software Design Process Activities (OO.5.2.2.k)

	Reviews and Analyses of Software Architecture (OO.6.3.3)

	Vulnerabilities

	
	Exception Management (OO.D.1.5)

An exception identifies a condition that is detected by the executing
program (often implicitly by the generated code) and causes an
interruption of the normal control flow and a transfer to a
handler. The condition is typically an error of some sort, for example
an out-of-bounds index.

Exceptions are useful in certain scenarios:

	When a program deals with externally provided data (operator input,
sensor readings), the exception mechanism is a convenient way to
express validity checks. A handler can perform appropriate
diagnostic / recovery actions.

	When an emergency shutdown is needed for a system component, a "last
chance handler" can take the appropriate measures.

However, the general exception mechanism complicates certification for
several reasons:

	Typically, verification should have detected and prevented the
exception from occurring in the final code. That is, exceptions can
correspond to violations of preconditions, and such violations
should not occur in verified code.

	Since the normal control flow has been abandoned, the program may be
in an instable state (for example with aggregate data structures not
fully updated) and writing an appropriate handler can be difficult.

DO ‑ 332/ED ‑ 217 specifies that exception handling needs to be taken into
account at the architecture level, but doesn't provide many more
details. It also lists vulnerabilities to consider; for example, an
exception might not be handled properly and as a result the program
could be left in an inconsistent state.

The GNAT Pro compiler supplies several strategies concerning
exceptions.

	Checks can be globally deactivated. By default, execution of certain
constructs (an out-of-range assignment for example) generates a
run-time check. This can be removed through the -p option for
the compiler. This should only be done after verifying that such
checks cannot fail.

	If exceptions are kept but are meant to trigger an application
shutdown, they can be connected to a "last chance handler". This
allows the application to perform the needed finalization, such as
diagnostics and logging, after which it is terminated and possibly
rebooted.

	Exceptions can also be locally handled; this is achieved by
specifying pragma Restrictions
(No_Exception_Propagation). This GNAT-specific restriction ensures
that an exception is only raised when its handler is statically in
the same subprogram. Exception handling can then be implemented
(conceptually) by a simple branch to its handler. Such a policy is
much easier to manage in a safe way than general exception
propagation. Local handling is useful in situations where the
software requirements specify a particular termination behavior for
a subprogram under conditions that are best detected by raising an
exception. An example is a "saturated add" procedure that takes two
positive integers and delivers a positive integer result and an
overflow status: the integer result will be the actual sum if no
overflow occurred, and the maximum positive value if an overflow
occurred.

type Overflow_Status is (No_Overflow, Overflow);

procedure Saturated_Add (I1, I2 : in Positive;
 Result : out Positive;
 Status : out Overflow_Status) is
begin
 Result := I1+I2;
 Status := No_Overflow;
exception
 when Constraint_Error =>
 Result := Integer'Last;
 Status := Overflow;
end Saturated_Add;

SPARK addresses the exception handling issue by ensuring that
exceptions are never raised:

	The SPARK tools can be used to demonstrate the absence of run-time
exceptions.

	Handlers are not permitted.

	Raise statements are permitted but must be proved to never execute.

4.3.7. Overloading and type conversion vulnerabilities

	

	Contributions

	Objectives

	
	Reviews and Analyses of Source Code (OO.A-5[6]: OO.6.3.4.f)

	Activities

	
	Reviews and Analyses of Source Code (OO.6.3.4)

	Vulnerabilities

	
	Overloading (OO.D.1.3)

	Type Conversion (OO.D.1.4)

Many languages allow subprogram overloading (use of the same name for
different subprograms, with a call resolved based on the types of the
actual parameters and possibly also the return type for a function)
and implicit type conversions. This combination can lead to
readability and/or maintainability issues. For example, the
application may have two functions with the same name and the same
number of parameters, only distinguished by their type. In C++ this
could be:

int f (int x);
int f (float x);

...

int r = f (100);

Knowing which function f() will be called is not immediately
obvious. Furthermore, if the original version of the program contained
only the declaration of f() with a float parameter, and
the declaration of f() with an int parameter was added during
maintenance, then the recompilation of f(100) would silently
change the effect of the program to invoke the new version of
f().

Compiler warnings or static analysis tools are required to identify
such cases and warn the user that a possibly unintended call may be
made.

Such problems are much less frequent in Ada, since the language does
not allow these sorts of implicit conversions. If a call is ambiguous,
this is detected and the developer will need to specify the
intent. Here is an example:

type Miles is new Integer;
type Kilometers is new Integer;

function F (Distance : Miles) return Integer;
function F (Distance : Kilometers) return Integer;

R : Integer := F (100); -- Ambiguous

The above code is illegal in Ada due to the ambiguity: the literal 100
could be interpreted as either a Miles or a Kilometers
value. A construct called type qualification can be used to make
the type explicit and the call unambiguous:

R1 : Integer := F (Miles'(100));
R2 : Integer := F (Kilometers'(100));

With its restrictions on implicit conversions and its provision of an
explicit facility for making subprogram calls unambiguous, Ada
supports the necessary verification activity to mitigate the
vulnerabilities in question.

4.3.8. Accounting for dispatching in performing resource analysis

	

	Contributions

	Objectives

	
	Reviews and Analyses of Source Code (OO.A-5[6]: OO.6.3.4.f)

	Activities

	
	Reviews and Analyses of Source Code (OO.6.3.4)

	Vulnerabilities

	
	Resource analysis (OO.D.2.4)

One of the difficulties in resource analysis (worst case execution
time, maximal stack usage, etc.) is how to take into account that the
target of a dispatching call is unknown. This can be addressed by
including resource consumption limits as part of the call
requirements. E.g., each overriding version of a given subprogram must
complete within a particular relative deadline, or use at most a
particular amount of stack space. The usual substitutability rules
would then apply; in effect such resource consumption requirements are
a form of postcondition.

The GNATstack tool would provide a more pessimistic approach to
worst-case stack computation, and use the maximum value required over
all possible targets in its computation.

4.4. Use case #2: Using SPARK and Formal Methods

This use case is also a variant of use case #1, since the source code
is developed in Ada. It thus benefits from Ada's advantages and the
AdaCore ecosystem. The difference here is that the contracts, in the
SPARK subset of Ada, are used to develop the low-level
requirements. These contracts are amenable to formal analysis by
GNATProve, which can verify consistency with the implementation.

4.4.1. Using SPARK for design data development

	

	Contributions

	Objectives

	
	Software Design (A-2[3,4]: 5.2.1.a, 5.2.1.b)

	Software Reviews and analyses — Requirement
formalization correctness (FM.A‑5[FM12]: FM.6.3.i)

	Considerations for formal methods (FM.A-5[FM13]: FM.6.2.1.a,
FM.6.2.1.b, FM.6.2.1.c)

	Activities

	
	Software Development Standards (4.5)

	Software Design (5.2.2.a, 5.2.2.b)

	Software Reviews and analyses — Requirement
formalization correctness (FM.6.3.i)

	Considerations for formal methods (FM.6.2.1)

The Ada language in itself is already a significant step forward in
terms of software development reliability. However, as a
general-purpose language it contains features whose semantics is not
completely specified (for example, order of evaluation in expressions)
or which complicate static analysis (such as pointers). Large
applications may need the latter, for example to define and manipulate
complex data structures, to implement low-level functionality, or to
interface with other languages. However, sound design principles
should isolate such uses in well-identified modules, outside a safe
core whose semantics is deterministic and which is amenable to static
analysis. This core can be developed with much more stringent coding
rules, such as those enforced in the SPARK language.

SPARK is an Ada subset with deterministic semantics, whose features
are amenable to static analysis based on formal methods. For example,
it excludes exception handling, side effects in functions, and
aliasing (two variables referring to the same object at the same
time); it limits the use of pointers (access values); and it
guarantees that variables are only read after they have been
initialized. Note that a SPARK program has the same run time semantics
as Ada. It is compiled with a standard Ada compiler, and can be
combined with code written in full Ada.

SPARK is also a superset of the Ada language in terms of statically
verified specifications. A variety of pragmas and aspects can be used
to define properties (contracts) such as data coupling, type
invariants, and subprogram pre- and postconditions. These are
interpreted by the SPARK analysis tool and do not have any effect at
run-time (and thus they can be ignored by the compiler, although
dynamic verification is allowed for some) but they can formally
document the code and allow further static analysis and formal proof.

Even without taking advantage of SPARK's support for formal methods,
coding in SPARK (or using SPARK as the basis of a code standard) helps
make the software more maintainable and reliable. SPARK's contracts
use the same syntax as Ada, and as just noted, a number of checks that
a SPARK analysis tool could enforce statically can be enabled as
run-time checks using standard Ada semantics, allowing traditional
testing-based verification.

SPARK programs can be verified to have safety and security properties
at various levels. For critical software, SPARK analysis can
demonstrate absence of run-time errors/exceptions (such as buffer
overrun and integer overflow) and ensure that variables are assigned
to before they are read. In the extreme, SPARK can show that an
implementation complies with a formal specification of its
requirements, and this may be appropriate for some critical kernel
modules. (A description of how SPARK may be introduced into a project
at various levels, depending on the system's assurance requirements,
may be found in a booklet co-authored by AdaCore and Thales
[AT20].) Since subprogram pre- and postcondition
contracts often express low-level requirements, some low-level
requirements-based testing may be replaced by formal proofs as
described in the DO ‑ 333/ED ‑ 216 Formal Methods supplement to DO ‑ 178C/ED ‑ 12C.

In summary, SPARK enhances Ada's benefits in reducing programming
errors, increasing the quality and effectiveness of code reviews, and
improving the overall verifiability of the code. It facilitates
advanced static analysis and formal proof. At the start of a new
development, considering SPARK for at least part of the application
kernel can greatly decrease defects found late in the process. And
when adding functionality to an existing project, SPARK can likewise
bring major benefits since it allows interfacing with other languages
and supports combining formal methods with traditional testing-based
verification.

As part of the DO ‑ 178C/ED ‑ 12C processes, a manual review of the
requirements translated into SPARK contracts needs to be conducted.
Although SPARK can ensure that contracts are correctly and
consistently implemented by the source code, the language and its
analysis tools cannot verify that the requirements themselves are
correct.

Another issue that needs to be taken into account is the justification
of the formal method itself. It should provide a precise and
unambiguous notation, and it needs to be sound (i.e., if it is
supposed to identify a particular property in the source code, such as
no reads of uninitialized variables, then it has to detect all such
instances). The qualification material for the formal analysis tool
would typically address this issue. Moreover, any assumptions
concerning the formal method must be identified and justified.

4.4.2. Robustness and SPARK

	

	Contributions

	Objectives

	
	Software Design (A-2[3,4,5]: 5.2.1.a, 5.2.1.b)

	Activities

	
	Software Design (5.2.2.f)

As discussed in Robustness / defensive programming,
robustness is concerned with ensuring correct software behavior under
abnormal input conditions. Abnormal input can come from two sources:

	External: invalid data from the operational environment (for example
due to an operator input error or a hardware failure), or

	Internal: a defect in the software logic.

Behavior in the external case needs to be considered during
requirements development, and from the SPARK perspective (where these
requirements are captured as pre- or postconditions) there is no
fundamental difference between a regular requirement and a robustness
requirement. The proof performed by SPARK takes into account the
entire potential input space, whether normal or abnormal.

The internal case, where faulty code passes an invalid value to a
subprogram, can be detected by SPARK (GNATprove) if the validity
requirement is part of the subprogram's precondition. That is,
GNATprove will report its inability to prove that the subprogram
invocation satisfies the precondition.

4.4.3. Contributions to Low-Level Requirement reviews

	

	Contributions

	Objectives

	
	Reviews and Analyses of Low-Level Requirements
(FM.A-4[2,4,5]: FM.6.3.2.b, FM.6.3.2.d, FM.6.3.2.e)

	Reviews and analyses of formal analysis cases, procedures and
results (FM.A‑5[FM10,FM11]: FM.6.3.6.a, FM.6.3.6.b, FM
6.3.6.c)

	Activities

	
	Reviews and Analyses of Low-Level Requirements (FM.6.3.2)

	Reviews and analyses of formal analysis cases, procedures and
results (FM.6.3.6.)

Using SPARK to define low-level requirements (LLRs) simplifies the
verification process. Since the LLRs are expressed in a formal
language (Ada 2012 or SPARK contracts), they are accurate,
unambiguous, and verifiable: expressed as Boolean expressions that can
be either tested or formally proven.

SPARK also makes it easier to define a software design standard, which
can use the same terms and concepts as a code standard, and can be
checked with similar tools.

4.4.4. Contributions to architecture reviews

	

	Contributions

	Objectives

	
	Reviews and Analyses of Software Architecture
(FM.A-4[9,11,12]: FM.6.3.3.b, FM.6.3.3.d, FM.6.3.3.e)

	Activities

	
	Software Development Standards (4.5)

	Reviews and Analyses of Software Architecture (FM.6.3.3)

According to DO ‑ 333/ED ‑ 216, the reviews and analyses of the software
architecture "detect and report errors that may have been introduced
during the development of the software architecture". SPARK helps meet
several of the associated objectives:

	Consistency. SPARK's flow analysis contracts can specify various
relationships between the software components, including a
component's data dependencies and how its outputs depend on its
inputs. The SPARK analysis tool (GNATprove) can then verify the
correctness of these contracts / relationships, assuming TQL-5
qualification, and the consistency of the architecture. For example:

type Probe_Type is
 record
 ...
 end record;

Probes : array (1 .. 10) of Probe_Type;

procedure Calibrate_Probe (Index : Integer;
 Min, Max : Integer)
 with Globals =>
 (In_Out => Probes),
 Depends =>
 (Probes => (Probes, Index, Min, Max));

The Calibrate_Probe procedure will use the global variable
Probes in in out mode (it can read from and write to
the variable) and will compute its new value using the old value of
Probes (at the point of call) together with the parameters
Index, Min and Max. SPARK will verify that the
only global variable used is Probes, and that this variable
and the parameters specified in the Depends aspect (and no
other variables) are used to compute the value.

	Verifiability. As a formal notation with tool support, SPARK can
help ensure that the architecture is verifiable. One example is the
protection against one component sending invalid input to
another. As noted earlier, this is part of the robustness
requirement that is met by SPARK's pre- and postconditions. Keeping
these contracts active even in the final executable object code will
protect a component from sending or receiving invalid input, and
will detect any misuse.

	Conformance with standards. An architecture standard can be defined
in part using similar formalisms as a code standard, thus allowing
the use of similar tools for verification.

4.4.5. Contributions to source code reviews

	

	Contributions

	Objectives

	
	Reviews and Analyses of Source Code (FM.A-5[1,2,3,6]:
FM.6.3.4.a, FM.6.3.4.b, FM.6.3.4.c, FM.6.3.4.f)

	Activities

	
	Software Development Standards (4.5)

	Reviews and Analyses of Source Code (FM.6.3.4)

The SPARK analysis tool (GNATprove) can verify that the source code
complies with its low-level requirements (LLRs) defined as SPARK
contracts. This can satisfy the source code verification objectives,
depending on the part of the design data formally defined:

	Compliance with the LLRs: code is proven against the LLRs

	Compliance with the architecture: code is proven against the
architectural properties defined at the specification level

	Verifiability: if the code is verified by SPARK, it is
verifiable. No specific activity is needed here.

	Traceability: traceability is implicit, from the LLRs defined in the
specification to the implementation

The SPARK tool achieves proof in a local context; it's doing a unit proof.
The postcondition of a subprogram will be proven according to
its code and its precondition, which makes the SPARK approach
scalable. For example, consider the following function:

type My_Array is array(Positive range <>) of Integer;

function Search (Arr : My_Array;
 Start : Positive;
 Value : Integer)
 return Integer
with Pre =>
 Start in Arr'Range,
 Post =>
 (if Search'Result = -1 then
 (for all I in Start .. Arr'Last => Arr (I) /= Value)
 else Arr(Search'Result) = Value);

The code inside the body might start with:

function Search (Arr : My_Array;
 Start : Positive;
 Value : Integer)
 return Integer is
begin
 if Arr (Start) = Value then
 return Start;
 end if;
 ...

Because of the precondition, the SPARK analysis tool can deduce that
the array indexing will not raise an exception.

Here's another piece of code, responsible for replacing all
occurrences of one value by the other:

procedure Replace (Arr : in out My_Array;
 X, Y : in Integer)
with Pre => Arr'Length /= 0 and X /= Y,
 Post => (for all I in Arr'Range =>
 (if Arr'Old (I) = X then Arr (I) = Y));

procedure Replace (Arr : in out My_Array; X, Y : Integer) is
 Ind : Integer := Arr'First;
begin
 loop
 Ind := Search (Arr, Ind, X);
 exit when Ind = -1;
 Arr (Ind) := Y;
 exit when Ind = Arr'Last;
 end loop;
end Replace;

When Search is invoked, the only things that the prover knows
are its pre- and postconditions. It will attempt to show that the
precondition is satisfied, and will assume that the postcondition is
True. Whether or not Search is proven doesn't matter at this
stage. If it can't be proven with the SPARK tools, we may decide to
verify it through other means, such as testing.

The SPARK analysis tools can demonstrate absence of run-time errors,
absence of reads of uninitialized variables, absence of unused
assignments, and other properties. Additional contracts may sometimes
be needed for assistance (e.g., assertions), but overall SPARK's
restricted feature set and advanced proof technology automate contract
proofs with very few cases needing to be manually dismissed. This
almost entirely replaces manual reviews and analyses.

The analysis performed by SPARK is usually very tedious to conduct by
manual review. As an example, here's a simple piece of code:

subtype Some_Int is Integer range ...;
Arr : array (Integer range <>) of Some_Int := ...;

Index, X, Y, Z : Integer;
...
Arr (Index) := (X * Y) / Z;

Exhaustive analysis of all potential sources of errors requires
verifying that:

	X is initialized

	Y is initialized

	Z is initialized

	Index is initialized and is in Arr'Range

	(X * Y) does not overflow

	Z is not equal to zero

	(X * Y) / Z is within the range of Some_Int

The GNATprove tool will check each of these conditions, and report any
that might not hold.

4.4.6. Formal analysis as an alternative to low-level testing

	

	Contributions

	Objectives

	
	Software Testing (A-6[3,4]: 6.4.c, 6.4.d)

	Activities

	
	Low Level testing (6.4.3.c)

As stated in Section 6.4 of DO ‑ 178C/ED ‑ 12C, the purpose of software testing
is "to demonstrate that the software satisfies its requirements and to
demonstrate ... that errors that could lead to unacceptable failure
conditions ... have been removed". Thus it's not the source code but
the binary code that is tested, and within an environment
representative of the final target. As a consequence, the compiler
itself is not part of the trusted chain. Since its outputs are
verified, it can be assumed to be correct within the exact conditions
of the certified system.

Various activities in DO ‑ 178C/ED ‑ 12C increase the confidence in the
compilation step, such as selecting an appropriate set of options,
assessing the effect of its known problems and limitations, and (at
software level A) verifying the correctness of non-traceable code
patterns.

DO ‑ 333/ED ‑ 216 explains how certain classes of testing can be replaced by
formal analysis ("proof"). When low level requirements are expressed
as formal properties of the code, it's possible to formally verify
that the source code completely implements the requirements. Using
this technique, however, requires additional activities to demonstrate
absence of unintended function. Further, and more significantly, with
formal analysis it's the source code that is checked against
requirements, not the object code. As a result, additional activities
are required to demonstrate correct behavior of the object code. This
is the so-called property preservation issue, discussed in
Property preservation between source code and object code.

4.4.7. Low-level verification by mixing test and proof ("Hybrid verification")

	

	Contributions

	Objectives

	
	Software Testing (A-6[3,4]: 6.4.c, 6.4.d)

	Activities

	
	Low Level testing (6.4.3.c)

It is not always possible for the SPARK proof tool to prove all the
contracts in an application. When this is due to limited capabilities
in the proof technology, manually provided assistance may be a
solution. However, some assertions and contracts might not be provable
at all. This could be due to several factors:

	The specification is in SPARK but the actual implementation is in a
different language (such as C).

	The contract or implementation uses Ada features outside of the
SPARK subset.

	Some constructs might not be amenable to formal proof, even if
correct, because a piece of code is too complex.

	Some final proof step may be hard to reach, requiring an effort that
is excessive compared to some other verification technique.

For all of these reasons, a combination of proof and testing may be
appropriate to fully verify the software. The basic principle is that
SPARK proofs are local. They're performed assuming that each called
subprogram fulfills its contracts: if its precondition is satisfied
and the subprogram returns, then its postcondition will hold. If this
correctness is demonstrated by formal proof, then the whole program is
proven to comply with all contracts. However, correctness may also be
demonstrated by testing. In this case, the dual semantics of
contracts, dynamic and static, is key. The pre- and postconditions can
be enabled as run-time checks to verify the expected output of the
test procedures.

An efficient approach during the design process is to define an
architecture that distinguishes between those components verified by
formal proofs and those verified by testing. Mixing the two techniques
is sometimes referred to as hybrid verification.

4.4.8. Alternatives to code coverage when using proofs

	

	Contributions

	Objectives

	
	Principles of Coverage Analysis when using Formal Methods
(FM.A-7[FM5-8]: FM.6.7.1.c)

	Activities

	
	Requirement-Based Coverage Analysis (FM.6.7.1.2, FM.6.7.1.3,
FM.6.7.1.4, FM.6.7.1.5)

Structural code coverage is a test-based activity for verifying the
exhaustivity of the testing, the completeness of the requirements, and
the absence of unintended function (extraneous code, including dead
code). With formal proofs, a different set of activities is needed to
meet similar objectives. DO ‑ 333/ED ‑ 216 lists four activities to be
performed:

	Complete coverage of each requirement. This objective is to verify
that each assumption made during the analysis is verified. In SPARK,
these assumptions are easily identifiable. These are typically
assertions in the code that cannot be proven automatically, for
example because they are too complex or involve interfacing with
non-SPARK code. These assumptions can be verified not with proofs
but with alternative means such as testing and reviews.

	Completeness of the set of requirements. In particular, for each
input condition its corresponding output condition has been
specified, and vice versa. This can be achieved, for example, by
specifying dependency relationships between input and output (the
SPARK aspect Depends) or by partitioning the input space (the
SPARK aspect Contract_Case).

	Detection of unintended dataflow relationships. The SPARK aspect
Depends will verify that each output is computed from its
specified set of inputs.

	Detection of extraneous code. If the requirements are complete and
all output variables (and their dependencies) are specified in these
requirements, then any extraneous code should be dead and have no
unintended effect. A manual review of the code will help achieve
confidence that no such code is present.

4.4.9. Property preservation between source code and object code

	

	Contributions

	Objectives

	
	Verification of Property Preservation Between Source and
Executable Object Code (FM.A-7[FM9]: FM.6.7.f)

	Activities

	
	Verification of Property Preservation Between Source and
Executable Object Code (FM.6.7.f -1)

When part of the executable object code (EOC) verification is
performed using formal proof instead of testing, the source code is
verified against the requirements, but the compiler is out of the
loop. As a result, additional activities need to be performed to
confirm proper translation of the source code to object code.

This is an open topic, and several approaches are possible to achieve
credit for preservation of properties. One possibility is to perform
an analysis of the compiler's processing similar to the
source-code-to-object-code traceability study that addresses DO ‑ 178C/ED ‑ 12C
§6.4.4.2.b. However, in addition to analyzing and justifying
instances of non-traceability, the behavior of traceable code also
needs to be considered / verified.

An alternative solution is to rely on the fact that SPARK functional
contracts are executable Ada expressions. These are the actual
properties that need to be preserved between source code and EOC. One
way to demonstrate property preservation is to run the tests based on
a higher level of requirements (such as Software / Software
integration testing) once, with contract checks activated. If no
contract failure occurs, we can conclude that the expected behavior
has been properly translated by the compiler. This gives sufficient
confidence in the code generation chain.

Running tests to verify this activity may seem to defeat the purpose
of replacing testing by proof. However, this should not be considered
as requirement-based testing (which is indeed replaced by proof). This
property preservation verification is a confirmation of the formal
analysis by executing the EOC with contract checking enabled.

4.4.10. SPARK Development Cycle Example

An example in Appendix B of DO ‑ 333/ED ‑ 216 — "FM.B.1.5.1 Unit Proof"
— shows how the use of formal methods (in this case the CAVEAT
tool for C, based on Hoare logic) can help meet various DO ‑ 333/ED ‑ 216
objectives. The same example can be expressed in SPARK, with the same
contributions towards DO ‑ 333/ED ‑ 216 compliance.

The High-Level Requirements define the intent of the example; viz., to
check the contents of a flash zone:

	verify that the whole flash zone is initialized to the value 0xFF

	if a memory location is different from 0xFF, the check has failed

The Low-Level Requirments comprise a textual description and a set of
formal properties. The textual description appears in DO ‑ 333/ED ‑ 216 and is
not repeated here. The formal properties of the A1F2_TestZone
procedure are of three kinds:

	Global contract: identifies the dependence on external data

	Post contract: the postcondition for the procedure

	Loop_Invariant pragma: a condition that holds at each iteration

with Global => (Input => A1F2_Memory_Zone),
 Post =>
 -- COND_FCT
 ((for all K in T_A1F2_Index => A1F2_Memory_Zone(K) = 16#FF#) and then
 Rl_Return = OK and then pFailure.FailureIndex = INDEX_NO_ERROR) or else
 -- COND_ERR
 ((for some K in T_A1F2_Index => A1F2_Memory_Zone(K) /= 16#FF#) and then
 Rl_Return = NOT_OK and then pFailure.FailureIndex = INDEX_FLASH_2);

pragma Loop_Invariant(for all K in T_A1F2_Index'First .. Rl_Index =>
 A1F2_Memory_Zone(K) = Rl_Expectedvalue);
pragma Loop_Invariant(pFailure = APAT_Ce_sFAILURE_NO_ERROR
 and then
 Rl_Return = OK);

Here is the source code for the package spec (a1f2.ads) and
body (a1f2.adb):

package A1F2 with SPARK_Mode is
 -- Type declarations --
 type T_RESULT is (OK, NOT_OK);
 type T_FAILURES is (NCD, INDEX_NO_ERROR, INDEX_FLASH_2);

 -- 32-bit word type for hardware interaction
 type T_WORD32 is mod 2**32;
 for T_WORD32'Size use 32;

 -- Error descriptor record --
 -- Record containing several fields that are used to store information about
 -- the type of failure that occurred.
 type T_FAILURE_DESCRIPTOR is record
 FailureIndex : T_FAILURES;
 VmemoryState2 : T_WORD32;
 VmemoryState3 : T_WORD32;
 VmemoryState4 : T_WORD32;
 VmemoryState5 : T_WORD32;
 end record;

 -- Array type for memory zone ---
 A1F2_ZONE_SIZE : constant := 1024; -- Adjust based on your actual memory size
 subtype T_A1F2_Index is Integer range 0 .. A1F2_ZONE_SIZE - 1;
 type T_A1F2_MEMORY_ZONE is array (T_A1F2_Index) of T_WORD32;

 -- Hardware memory mapping --
 A1F2_Memory_Zone : T_A1F2_MEMORY_ZONE;
 -- pragma Volatile(A1F2_Memory_Zone); -- Ensure no optimizations on memory access
 -- pragma Import(Convention => Ada, Entity => A1F2_Memory_Zone);

 -- Constants ---
 APAT_Ce_sFAILURE_NCD : constant T_FAILURE_DESCRIPTOR := (
 FailureIndex => NCD,
 VmemoryState2 => 0,
 VmemoryState3 => 0,
 VmemoryState4 => 0,
 VmemoryState5 => 0
);

 APAT_Ce_sFAILURE_NO_ERROR : constant T_FAILURE_DESCRIPTOR := (
 FailureIndex => INDEX_NO_ERROR,
 VmemoryState2 => 16#FFFFFFFF#,
 VmemoryState3 => 16#FFFFFFFF#,
 VmemoryState4 => 16#FFFFFFFF#,
 VmemoryState5 => 16#FFFFFFFF#
);

 -- INDEX_FLASH_2 : constant Integer := 2;

 -- Main test function ---
 procedure A1F2_TestZone (pFailure : out T_FAILURE_DESCRIPTOR;
 Rl_Return : out T_RESULT)
 with Global => (Input => A1F2_Memory_Zone),
 Post =>
 -- COND_FCT
 ((for all K in T_A1F2_Index => A1F2_Memory_Zone(K) = 16#FF#) and then
 Rl_Return = OK and then pFailure.FailureIndex = INDEX_NO_ERROR) or else
 -- COND_ERR
 ((for some K in T_A1F2_Index => A1F2_Memory_Zone(K) /= 16#FF#) and then
 Rl_Return = NOT_OK and then pFailure.FailureIndex = INDEX_FLASH_2);
 -- The function checks a memory zone
 -- @param Rl_Return the result of the check and a failure description is
 -- updated.
 -- @param pFailure the description of the failure
 -- Definition of functional conditions
 -- LET COND_FCT = (for all k with k > 0 and k <= A1F2_ZONE_SIZE
 -- such that (A1F2_Memory_Zone.[.(k)] = 0xFF));
 -- (for all K in T_A1F2_Index => A1F2_Memory_Zone(K) = 16#FF#)
 --
 -- Definition of failure conditions
 -- LET COND_ERR = (there exists k with k > 0 and k <= A1F2_ZONE_SIZE
 -- such that (A1F2_Memory_Zone.[.(k)] <> 0xFF));
 -- There exists an index for which the initial value is wrong
 -- (for some K in T_A1F2_Index => A1F2_Memory_Zone(K) /= 16#FF#)
end A1F2;

package body A1F2 with SPARK_Mode is
 procedure A1F2_TestZone (pFailure : out T_FAILURE_DESCRIPTOR;
 Rl_Return : out T_RESULT)
 is
 Rl_Expectedvalue : constant T_WORD32 := 16#FF#;
 begin
 -- Return value of the service
 Rl_Return := OK;
 pFailure := APAT_Ce_sFAILURE_NO_ERROR;
 -- Treatment
 Find_Failure : for Rl_Index in T_A1F2_Index'Range loop
 declare
 Tmp : T_WORD32 := A1F2_Memory_Zone(Rl_Index);
 begin
 if Tmp /= Rl_Expectedvalue then
 -- Failure of Flash Test
 Rl_Return := NOT_OK;
 pFailure.FailureIndex := INDEX_FLASH_2;
 pFailure.VmemoryState2 := A1F2_Memory_Zone(Rl_Index);
 pFailure.VmemoryState3 := 0;
 pFailure.VmemoryState4 := Rl_Expectedvalue;
 pFailure.VmemoryState5 := A1F2_Memory_Zone(Rl_Index);
 exit;
 end if;
 end;
 pragma Loop_Invariant(for all K in T_A1F2_Index'First .. Rl_Index =>
 A1F2_Memory_Zone(K) = Rl_Expectedvalue);
 pragma Loop_Invariant(pFailure = APAT_Ce_sFAILURE_NO_ERROR
 and then
 Rl_Return = OK);
 end loop Find_Failure;
 end A1F2_TestZone;
end A1F2;

The SPARK proof tool produces the following output:

Phase 1 of 3: generation of data representation information ...
Phase 2 of 3: generation of Global contracts ...
Phase 3 of 3: flow analysis and proof ...
a1f2.adb:27:32: info: loop invariant initialization proved
a1f2.adb:27:32: info: loop invariant preservation proved
a1f2.adb:27:96: info: index check proved
a1f2.adb:28:32: info: loop invariant preservation proved
a1f2.adb:28:32: info: loop invariant initialization proved
a1f2.ads:49:29: info: initialization of "pFailure" proved
a1f2.ads:49:63: info: initialization of "Rl_Return" proved
a1f2.ads:50:10: info: data dependencies proved
a1f2.ads:52:18: info: postcondition proved

As with the example in DO ‑ 333/ED ‑ 216, the use of SPARK contributes to
meeting the following objectives. In some cases additional
verification activity is needed, and, as noted in the DO ‑ 333/ED ‑ 216
example, "functional tests are always required to establish
correctness of the overall system."

	Table FM.A-4, Objective FM17: Formal method is correctly defined,
justified, and appropriate

	Table FM.A-5, Objective FM13: Formal method is correctly defined,
justified, and appropriate

	Table FM.A-7, Objective FM10: Formal method is correctly defined,
justified, and appropriate

	Table FM.A-4, Objective FM16: Requirement formalization is correct

	Table FM.A-4, Objective 2: Low-level requirements are accurate and
consistent

	Table FM.A-4, Objective 5: Low-level requirements conform to
standards

	Table FM.A-5, Objective 1: Source code complies with low-level
requirements

	Table FM.A-5, Objective FM-10: Formal analysis cases and procedures
are correct

	Table FM.A-5, Objective FM-11: Formal analysis results are correct
and discrepancies explained

	Table FM.A-6, Objective 3: Executable object code complies with
low-level requirements

	Table FM.A-6, Objective 4: Executable object code is tobust with
low-level requirements

	Table FM.A-7, Objective FM 4: Coverage of low-level requirements is
achieved

	Table FM.A-7, Objective FM 5-8: Verification of software structure
is achieved

	Table FM.A-7, Objective FM 9: Verification of property preservation
between source and object code

4.5. Parameter Data Items

	

	Contributions

	Objectives

	
	Software requirements process (A-2[1]: 5.1.1.a)

	Software integration process (A-2[7]: 5.4.1.a)

	Verification of Parameter Data Items (A-5[8,9]: 6.6)

	Activities

	
	Software requirements process (5.1.2.j)

	Software Integration process (5.4.2.a)

	Verification of Parameter Data Items (6.6.a), (6.6.b)

The term "Parameter Data Item" (PDI) in DO ‑ 178C/ED ‑ 12C refers to a set of
parameters that influence the behavior of the software without
modifying the Executable Object Code. The verification of a parameter
data item can be conducted separately from the verification of the
Executable Object Code.

PDI development implies the production of three kinds of data:

	The "structure and attributes": These define the characteristics of
each item, such as its type, range, or set of allowed values. In
order to ensure the data item correctness and consistency, a set of
consistency rules should also be defined. For example, if one item
defines the number of temperature sensors, and other items define
the characteristics of each sensor, there is an obvious relationship
between these items.

	The specification of an instance of a PDI: The defined set of values
for each item for an applicable configuration

	The PDI file that implements an instance of a PDI directly usable by
the processing unit of the target computer (e.g. a binary file)

An efficient way to develop such artifacts is to use Ada and/or SPARK.

The structure and attributes can be defined in one or more package
specifications. Each item is defined with its type, defining range and
set of allowed values. Predicates can be used to define relationships
between parameters. The example below combines a classical approach
using strong typing and type ranges, with a dynamic predicate to
describe relationships between components of the structure. The intent
is to specify the accepted range of temperatures for a given sensor.

type Sensor is
 record
 Min_Temp : Float range -40.0 .. 60.0;
 Max_Temp : Float range -20.0 .. 80.0;
 end record
with Dynamic_Predicate => Sensor.Min_Temp < Sensor.Max_Temp;

Each PDI instance needs to satisfy the constraints expressed in the
Dynamic_Predicate aspect. These constraints are based on a
higher-level specification, such as customer-supplied requirements, a
system configuration description, or an installation file. Generating
the PDI file for an instance consists in using GNAT Pro to
compile/link the Ada source code for the PDI, producing a binary file.

Verifying the correctness of a PDI instance (compliance with structure
and attributes) can be automated by compiler checks. This means that
inconsistencies will be detected at load time. For example,

S1 : Sensor := (Min_Temp => -30.0, Max_Temp => 50.0);
S2 : Sensor := (Min_Temp => -50.0, Max_Temp => 50.0);
S3 : Sensor := (Min_Temp => 40.0, Max_Temp => 30.0);

S1 will be accepted, S2 will not (Min_Temp is out
of range), S3 will not (Min_Temp is above
Max_Temp). (The Dynamic_Predicate check can also be
enabled as a run-time check, via pragma Assertion_Policy(Check)
and the -gnata switch to the GNAT compiler.) If all PDIs are defined
in this manner, completeness of verification is ensured.

The only remaining activity is to check that the PDI instance value
complies with the system configuration.

Footnotes

5. Summary of contributions to DO-178C/ED-12C objectives

5.1. Overall summary: which objectives are met

The following tables summarize how the Ada and SPARK languages and
AdaCore's tools help meet the objectives in DO ‑ 178C/ED ‑ 12C and the
technology supplements. The numbers refer to the specific objectives
in the core document or the relevant supplement.

Table A-3 and Tables A-8 through A-10 are not included, since they are
independent of AdaCore's technologies.

5.1.1. Mapping of AdaCore's Technologies to DO-178C/ED-12C Objectives

Table 1 Overall Summary, Part 1 - Which DO ‑ 178C/ED ‑ 12C objectives are met by AdaCore's Technologies

	

	

	Objectives

	Objectives

	Objectives

	Technology

	Component

	Table A-1 Software Planning Process

	Table A-2 Software Development Process

	Table A-4 Verification of Outputs of Software Design Process

	Programming Language

	Ada

	3, 5

	3, 4, 5, 6, 7

	3, 7, 8, 10

	Programming Language

	SPARK (GNATprove)

	3, 5

	3, 4, 5, 6, 7

	FM 14, 15, 16, 17

	GNAT Pro Toolchain

	GNAT Pro Assurance

	3

	7

	

	GNAT Pro Toolchain

	GNATstack

	3, 4

	

	

	GNAT SAS

	Defects & Vulnerability Analysis

	3, 4

	

	

	GNAT SAS

	GNATmetric

	3

	

	

	GNAT SAS

	GNATcheck

	3, 4, 5

	

	

	GNAT DAS

	GNATtest

	3, 4

	

	

	GNAT DAS

	GNATemulator

	3

	

	

	GNAT DAS

	GNATcoverage

	3, 4

	

	

	IDE

	GPS

	3

	

	

	IDE

	GNATbench

	3

	

	

	IDE

	GNATdashboard

	3

	

	

Table 2 Overall Summary, Part 2 - Which DO ‑ 178C/ED ‑ 12C objectives are met by AdaCore's Technologies

	

	

	Objectives

	Objectives

	Objectives

	Technology

	Component

	Table A-5 Verification of Outputs of Software Coding and Verification Processes

	Table A-6 Verification of Outputs of Integration Processes

	Table A-7 Verification of Outputs of Verification Process Results

	Programming Language

	Ada

	2, 3, 5, 6, 8, 9

	

	OO 10, 11

	Programming Language

	SPARK (GNATprove)

	FM 10, 11, 12, 13

	3, 4

	FM 1-10

	GNAT Pro Toolchain

	GNAT Pro Assurance

	7

	

	

	GNAT Pro Toolchain

	GNATstack

	6

	

	

	GNAT SAS

	Defects & Vulnerability Analysis

	3, 4, 6

	

	

	GNAT SAS

	GNATmetric

	4

	

	

	GNAT SAS

	GNATcheck

	4

	

	

	GNAT DAS

	GNATtest

	

	3, 4

	1, 2

	GNAT DAS

	GNATemulator

	3, 4

	

	

	GNAT DAS

	GNATcoverage

	

	

	5, 6, 7, 8

	IDE

	GPS

	

	

	

	IDE

	GNATbench

	

	

	

	IDE

	GNATdashboard

	

	

	

5.2. Detailed summary: which activities are supported

In the tables below, the references in the Activities column are to
sections in DO ‑ 178C/ED ‑ 12C or to one of the technology supplements. The
references in the Use case columns are to sections in this document.

Since AdaCore's tools mostly contribute to the bottom stages of the
V cycle (design, coding, integration and related verification
activities), verification of High-Level Requirements (and thus Table
A-3) are outside the scope of AdaCore solutions.

Likewise, the objectives in Table A-8 (Configuration Management), A-9
(Quality Assurance) and A-10 (Certification Liaison Process) are
independent of AdaCore's technologies; they are the responsibility of
the user.

5.2.1. Table A-1: Software Planning Process

The objectives of the Software Planning process are satisfied by
developing software plans and standards. These activities are the
responsibility of the software project. However, using AdaCore
solutions can reduce the effort in meeting some of these objectives.

	Objective

	Summary

	Activities

	Use case #1a

	Use case #1b (OOT)

	Use case #2

	1

	The activities of the software life cycle processes are defined

	All

	This document describes possible methods and tools that may be used. When an AdaCore solution is adopted, it should be documented in the plans.

	Same as #1a

	Same as #1a

	2

	The software life cycle(s), including the inter-relationships between the processes, their sequencing, and transition criteria, is defined.

	All

	A variety of software life cycles may be defined (such as V cycle, Incremental, Iterative, and Agile). AdaCore solutions do not require any specific software life cycle.

	Same as #1a

	Same as #1a

	3

	Software life cycle environment is selected and defined

	4.4.1.a, 4.4.1.f, 4.4.2.b, 4.4.3.a, 4.4.3.b

	When an AdaCore solution is used, the plans should identify and escribe the associated tools. In particular, see Sustained Branches and Compiling with the GNAT Pro compiler

	Same as #1a

	Same as #1a

	4

	Additional considerations are addressed

	4.2.j, 4.2.k

	The need for tool qualification is addressed throughout this document.

	Same as #1a

	Same as #1a

	5

	Software development standards are defined.

	4.2.b, 4.5.b, 4.5.c, 4.5.d

	This document describes possible languages, methods and tools that may be used during the design and coding processes. When any of them are used, design and code standards must be developed accordingly. A Code Standard can be defined through GNATcheck

	Same as #1a

	Same as #1a

	6

	Software plans comply with this document.

	All

	This objective is satisfied through the review and analysis of the plans and standards.

	Same as #1a

	Same as #1a

	7

	Development and revision of software plans are coordinated.

	All

	This objective is satisfied through the review and analysis of the plans and standards.

	Same as #1a

	Same as #1a

5.2.2. Table A-2: Software Development Processes

AdaCore tools mostly contribute to the bottom stages of the
traditional V cycle (design, coding, integration, and the related
verification activities).

	Objective

	Description

	Activities

	Use case #1a

	Use case #1b (OOT)

	Use case #2

	1

	High-level requirements are developed

	5.1.2.j

	Outside the scope of AdaCore solutions, except for Parameter Data Items

	Same as #1a

	Same as #1a

	2

	Derived high-level requirements are defined and provided to the system processes, including the system safety assessment process.

	

	Outside the scope of AdaCore solutions

	Same as #1a

	Same as #1a

	3

	Software architecture is developed.

	5.2.2.a

	See Using Ada during the design process

	See Object orientation for the architecture, Memory management issues, Exception handling

	See Using SPARK for design data development

	4

	Low-level requirements are developed.

	5.2.2.a

	See Using Ada during the design process

	See Dealing with dynamic dispatching and substitutability

	See Using SPARK for design data development, Robustness and SPARK

	5

	Derived low-level requirements are defined and provided to the system processes, including the system safety assessment process

	5.2.2.b

	See Using Ada during the design process

	See Dealing with dynamic dispatching and substitutability

	See Using SPARK for design data development, Robustness and SPARK

	6

	Source code is developed

	All

	See Benefits of the Ada language, Integration of C components with Ada, Robustness / defensive programming

	Same as #1a

	See Benefits of the Ada language

	7

	Executable Object Code and Parameter Data Files, if any produced and loaded in the target computer.

	5.4.2.a, 5.4.2.b, 5.4.2.d

	See Compiling with the GNAT Pro compiler, Integration of C components with Ada, Parameter Data Items

	Same as #1a

	Same as #1a

5.2.3. Table A-4: Verification of Outputs of Software Design Process

AdaCore solutions may contribute to the verification of the
architecture and Low-Level Requirements when Ada/SPARK is used during
design process. However, compliance with High-Level Requirements is
not addressed by AdaCore solutions.

	Objective

	Description

	Activities

	Use case #1a

	Use case #1b (OOT)

	Use case #2

	1

	Low-level requirements comply with high-level requirements.

	6.3.2

	Outside the scope of AdaCore solutions, except for Parameter Data Items

	Same as #1a

	Same as #1a

	2

	Low-level requirements are accurate and consistent

	6.3.2

	

	

	See Contributions to Low-Level Requirement reviews

	3

	Low-level requirements are compatible with target computer.

	6.3.2

	See Implementation of Hardware / Software Interfaces

	

	

	4

	Low-level requirements are verifiable.

	6.3.2

	

	

	See Contributions to Low-Level Requirement reviews

	5

	Low-level requirements conform to standards.

	6.3.2

	

	

	See Contributions to Low-Level Requirement reviews

	6

	Low-level requirements are traceable to high-level requirements.

	

	Outside the scope of AdaCore solutions

	Same as #1a

	Same as #1a

	7

	Algorithms are accurate.

	6.3.2

	See Using Ada during the design process

	Same as #1a

	See Contributions to Low-Level Requirement reviews

	8

	Software architecture is compatible with high-level requirements.

	6.3.3

	

	See Memory management issues, Exception handling

	

	9

	Software architecture is consistent.

	6.3.3

	

	

	See Contributions to architecture reviews

	10

	Software architecture is compatible with target computer.

	6.3.3

	See Implementation of Hardware / Software Interfaces

	Same as #1a

	Same as #1a

	11

	Software architecture is verifiable.

	6.3.3

	

	

	See Contributions to architecture reviews

	12

	Software architecture conforms to standards.

	6.3.3

	

	

	See Contributions to architecture reviews

	13

	Software partitioning integrity is confirmed.

	

	Outside the scope of AdaCore solutions

	Same as #1a

	Same as #1a

	FM14

	Formal analysis cases and procedures are correct.

	FM 6.3.6

	

	

	See Contributions to Low-Level Requirement reviews

	FM15

	Formal analysis results are correct and discrepancies explained.

	FM 6.3.6

	

	

	See Contributions to Low-Level Requirement reviews

	FM16

	Requirements formalization is correct.

	FM 6.3.6

	

	

	See Contributions to Low-Level Requirement reviews

	FM17

	Formal method is appropriately defined, justified, and appropriate.

	FM 6.3.6

	

	

	See Contributions to Low-Level Requirement reviews

5.2.4. Table A-5 Verification of Outputs of Software Requirement Process

	Objective

	Description

	Activities

	Use case #1a

	Use case #1b (OOT)

	Use case #2

	1

	Source Code complies with low-level requirements.

	6.3.4

	

	

	See Contributions to source code reviews

	2

	Source Code complies with software architecture.

	6.3.4

	See Using Ada during the design process

	

	See Contributions to source code reviews

	3

	Source Code is verifiable.

	6.3.4

	See Benefits of the Ada language

	See Benefits of the Ada language

	See Contributions to source code reviews

	4

	Source Code conforms to standards.

	6.3.4

	See Defining and Verifying a Code Standard with GNATcheck

	

	

	5

	Source Code is traceable to low-level requirements.

	6.3.4

	See Using Ada during the design process

	

	See Contributions to source code reviews

	6

	Source Code is accurate and consistent.

	6.3.4

	See Benefits of the Ada language, Robustness / defensive programming, Checking worst case stack consumption with GNATstack, Checking source code accuracy and consistency with GNAT SAS

	See Benefits of the Ada language, Robustness / defensive programming, Checking worst case stack consumption with GNATstack, Checking source code accuracy and consistency with GNAT SAS, Overloading and type conversion vulnerabilities, Accounting for dispatching in performing resource analysis

	See Checking worst case stack consumption with GNATstack

	7

	Output of software integration process is complete and correct.

	6.3.5

	See Compiling with the GNAT Pro compiler

	Same as #1a

	Same as #1a

	8

	Parameter Data Item File is complete and correct.

	6.6

	See Parameter Data Items

	Same as #1a

	Same as #1a

	9

	Verification of Parameter Data Item File is achieved.

	6.6

	See Parameter Data Items

	Same as #1a

	Same as #1a

	FM 10

	Formal analysis cases and procedures are correct.

	FM.6.3.6.a, FM.6.3.6.b

	

	

	See Contributions to Low-Level Requirement reviews

	FM 11

	Formal analysis results are correct and discrepancies explained.

	FM.6.3.6.c

	

	

	See Contributions to Low-Level Requirement reviews

	FM 12

	Requirement formalization is correct.

	

	

	See Using SPARK for design data development

	

	FM 13

	Formal method is correctly defined, justified and appropriate.

	FM.6.2.1.a, FM.6.2.1.b, FM.6.2.1.c

	

	

	See Using SPARK for design data development

5.2.5. Table A-6 Testing of Outputs of Integration Process

	Objective

	Description

	Activities

	Use case #1a

	Use case #1b (OOT)

	Use case #2

	1

	Executable Object Code complies with high-level requirements.

	

	This objective is outside the scope of AdaCore solutions

	Same as #1a

	Same as #1a

	2

	Executable Object Code is robust with high-level requirements.

	

	This objective is outside the scope of AdaCore solutions

	Same as #1a

	Same as #1a

	3

	Executable Object Code complies with low-level requirements.

	6.4.2, 6.4.2.1, 6.4.3, 6.5

	See Using GNATtest for low-level testing, Using GNATemulator for low-level and software / software integration tests

	See Formal analysis as an alternative to low-level testing, Low-level verification by mixing test and proof ("Hybrid verification")

	

	4

	Executable Object Code is robust with low-level requirements.

	6.4.2, 6.4.2.2, 6.4.3, 6.5

	See Using GNATtest for low-level testing, Using GNATemulator for low-level and software / software integration tests, Robustness / defensive programming

	Same as #1a

	See Formal analysis as an alternative to low-level testing, Low-level verification by mixing test and proof ("Hybrid verification")

	5

	Executable Object Code is compatible with target computer.

	

	This objective is based on High-Level Requirements and is thus outside the scope of AdaCore solutions

	Same as #1a

	Same as #1a

5.2.6. Table A-7 Verification of Verification Process Results

Use case #2 applied formal analysis to verify compliance with
Low-Level Requirements. In applying DO ‑ 333/ED ‑ 216, objectives 4 to 7 from
DO ‑ 178C/ED ‑ 12C are replaced with objectives FM 1 to FM 10.

	Objective

	Description

	Activities

	Use case #1a

	Use case #1b (OOT)

	Use case #2

	1

	Test procedures are correct.

	6.4.5

	See Using GNATtest for low-level testing

	Same as #1a

	Limited to verification not performed by formal analysis

	2

	Test results are correct and discrepancies explained.

	6.4.5

	See Using GNATtest for low-level testing

	Same as #1a

	Limited to verification not performed by formal analysis

	3

	Test coverage of high-level requirements is achieved.

	

	This objective concerns the verification of High-Level Requirements and thus is outside the scope of Adacore solutions

	Same as #1a

	Same as #1a

	4

	Test coverage of low-level requirements is achieved.

	6.4.4.1

	

	See Coverage in the case of generics

	

	5

	Test coverage of software structure (modified condition / decision coverage) is achieved.

	6.4.4.2.a, 6.4.4.2.b

	See Structural code coverage with GNATcoverage, Coverage in the case of generics

	

	

	6

	Test coverage of software structure (design coverage) is achieved.

	6.4.4.2.a, 6.4.4.2.b

	See Structural code coverage with GNATcoverage, Coverage in the case of generics

	

	

	7

	Test coverage of software structure (statement coverage) is achieved.

	6.4.4.2.a, 6.4.4.2.b

	See Structural code coverage with GNATcoverage, Coverage in the case of generics

	

	

	8

	Test coverage of software structure (data coupling and control coupling) is achieved.

	See Data and control coupling coverage with GNATcoverage

	See Data and control coupling coverage with GNATcoverage, Dispatching as a new module coupling mechanism

	See Data and control coupling coverage with GNATcoverage

	

	9

	Verification of additional code, that cannot be traced to Source Code, is achieved.

	6.4.4.2.b

	See Demonstrating traceability of source to object code

	Same as #1a

	Same as #1a

	OO 10

	Verify local type consistency.

	OO.6.7.2

	

	See Dealing with dynamic dispatching and substitutability

	

	OO 11

	Verify the use of dynamic memory management is robust.

	OO.6.8.2

	

	See Memory management issues

	

	FM 1

	Formal analysis cases and procedures are correct.

	

	

	

	See Contributions to Low-Level Requirement reviews

	FM 2

	Formal analysis results are correct and discrepancies explained.

	

	

	

	See Contributions to Low-Level Requirement reviews

	FM 3

	Coverage of high-level requirements is achieved.

	

	

	

	In this use case, only LLR are used for formal analysis

	FM 4

	Coverage of low-level requirements is achieved.

	

	

	

	See Alternatives to code coverage when using proofs

	FM 5-8

	Verification coverage of software structure is achieved.

	FM.6.7.1.2, FM.6.7.1.3, FM.6.7.1.4, FM.6.7.1.5

	

	

	See Alternatives to code coverage when using proofs

	FM 9

	Verification of additional code, that cannot be traced to Source Code, is achieved.

	FM.6.7

	

	

	See Property preservation between source code and object code

	FM 10

	Formal method is appropriately defined, justified and appropriate.

	FM.6.2.1.a, FM.6.2.1.b, FM.6.2.1.c

	

	

	See Using SPARK for design data development

5.3. AdaCore Tool Qualification and Library Certification

Qualification material can be developed for GNATstack and is available
for GNATcheck and GNATcoverage:

	Tool

	TQL

	DO ‑ 178C/ED ‑ 12C Objectives / Activities

	DO ‑ 330/ED ‑ 215 Objectives / Activities

	GNATstack

	TQL-5

	A-5[6]: 6.3.4.f

	

	GNATcheck

	TQL-5

	A-5[4]: 6.3.4.d

	T-5[1..6y]: 6.1.3.4.d

	GNATcoverage

	TQL-5

	A-7[5..9]: 6.4.4.2

	T-7[5..9]: 6.1.4.3.2.a

Certification material up to Software Level A can be developed for the
Light and Light-Tasking run-time libraries.

Footnotes

6. Bibliography

[Ada]
AdaCore. Online training for Ada and SPARK. AdaCore. URL: https://learn.adacore.com/.

[Ada16]
AdaCore. High-Integrity Object-Oriented Programming in Ada. AdaCore, 2016. URL: https://www.adacore.com/knowledge/technical-papers/high-integrity-oop-in-ada/.

[AA20]
AdaCore and Altran. PARK Reference Manual, Release 2020. AdaCore, 2020. URL: https://www.adacore.com/uploads/techPapers/spark_rm_community_2020.pdf.

[AT20]
AdaCore and Thales. Implementation Guidance for the Adoption of SPARK. AdaCore, 2020. URL: https://www.adacore.com/books/implementation-guidance-spark.

[Bar14]
John Barnes. Programming in Ada 2012. Cambridge University Press, 2014.

[BB15]
John Barnes and Ben Brosgol. Software, an invitation to Ada 2012. AdaCore, 2015. URL: https://www.adacore.com/books/safe-and-secure-software.

[BKKF11]
Paul E. Black, Michael Kass, Michael Koo, and Elizabeth Fong. Source Code Security Analysis Tool Functional Specification. National Institute for Standards and Technology (NIST), 2011.

[CDMM24]
Roderick Chapman, Claire Dross, Stuart Matthews, and Yannick Moy. Co-Developing Programs and Their Proof of Correctness. Communications OF The ACM, 2024. URL: https://www.adacore.com/uploads/techPapers/Co-Developing-Programs-and-Their-Proof-of-Correctness.pdf.

[Cri22]
Common Criteria. Common Criteria Development Board; *Common Criteria for Information Technology Security Evaluation (ISO/IEC 15408). Common Criteria, 2022. URL: https://www.commoncriteriaportal.org/.

[Dro22]
Claire Dross. The Work of Proof in SPARK. AdaCore, 2022. URL: https://www.adacore.com/uploads/techPapers/222293-adacore-spark-press-paper-v3.pdf.

[HVCR01]
Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson. A Practical Tutorial on Modified Condition / Decision Coverage. NASA, 2001. URL: https://shemesh.larc.nasa.gov/fm/papers/Hayhurst-2001-tm210876-MCDC.pdf.

[ICA44]
ICAO. Convention on International Civil Aviation. ICAO, 1944. URL: https://www.icao.int/publications/documents/7300_orig.pdf.

[ISOIEC12]
ISO/IEC. Ada Language Reference Manual, Language and Standard Libraries. AdaIC, 2012. URL: https://www.adaic.org/ada-resources/standards/ada12/.

[ISOIEC22]
ISO/IEC. Ada Language Reference Manual, Language and Standard Libraries. AdaIC, 2022. URL: https://www.adaic.org/ada-resources/standards/ada22/.

[KOC16]
Johannes Kanig, Quentin Ochem, and Cyrille Comar. Bringing SPARK to C developers. ERTS, 2016.

[MC15]
John W. McCormick and Peter C. Chapin. Building High Integrity Applications with SPARK. Cambridge University Press, 2015.

[Moy17]
Yannick Moy. Formal program verification in avionics certification. Military Embedded, 2017. URL: https://militaryembedded.com/avionics/safety-certification/formal-program-verification-avionics-certification.

[MLD+13]
Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and Benjamin Monate. Testing or Formal Verification: DO-178C Alternatives and Industrial Experience. IEEE, 2013.

[RCT11]
RCTA. Software Considerations in Airborne Systems and Equipment Certification. RCTA, 2011. URL: https://my.rtca.org/productdetails?id=a1B36000001IcmqEAC.

[Rie13]
Leanna Rierson. Developing Safety-Critical Software: A Practical Guide for Aviation Software and DO-178C Compliance. CRC Press, 2013.

Footnotes

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	
 Ada language

 	'Valid attribute

 	Arrays

 	Benefits

 	Concurrent programming

 	Contract-based programming, [1]

 	Dimensionality checking

 	Dynamic dispatching (primitive

 	Endianness

 	Generic templates

 	High-integrity systems

 	History

 	Information hiding

 	Interface / implementation separation, [1]

 	Interfacing with C

 	Memory safety

 	Modulatization

 	Numeric types

 	Object-Oriented Programming (OOP), [1]

 	package Interfaces

 	Packages

 	Pointers

 	Post'Class aspect

 	Postconditions

 	pragma Restrictions

 	Pre'Class aspect

 	Preconditions

 	Prevention of buffer overflow

 	Prevention of dangling references

 	Prevention of null pointer

 	Prevention of vulnerabilities

 	Programming in the large, [1]

 	Real-time programming

 	Scalar ranges

 	Specifying data representation

 	Strong typing, [1]

 	Systems programming

 	
 	and DO-278A/ED-109A

 	ARM processor support (by GNAT Pro)

B

 	
 	Bare metal support (by GNAT Pro)

 	
 	Buffer overflow

C

 	
 	C language support

 	CENELEC EN 50716:2023 standard

 	Certifiable profile

 	code reviews

 	
 Code Standard enforcement

 	GNATcheck

 	
 	Common Criteria security standard

 	Considerations

 	Considerations for CNS/ATM Systems

 	consistency with GNAT SAS

D

 	
 	
 Data and control coupling coverage

 	GNATcoverage

 	Decision Coverage (MC/DC)

 	Defects and vulnerability analysis (in GNAT SAS)

 	dereferencing

 	Design Assurance Level (DAL)

 	DO-178C/ED-12C

 	Compliance

 	Executable Object Code (EOC)

 	High-Level Requirement (HLR)

 	Low-Level Requirement (LLR)

 	
 DO-178C/ED-12C and AdaCore technologies

 	Summary

 	Table A-1:

 	Table A-2: Software Development Processes

 	Table A-4:

 	Table A-5: Verification of Outputs of Software Requirement Process

 	Table A-6:

 	Table A-7:

 	
 	DO-248C/ED-94C: Supporting Information for DO-178C/ED-12C

 	DO-278A/ED-109A: Software Integrity Assurance

 	DO-326A/ED-202A: Airworthiness Security Process

 	DO-330/ED-215: Software Tool Qualification Considerations, [1], [2]

 	DO-331/ED-218: Model-Based Development and Verification, [1], [2]

 	DO-332/ED-217: Object-Oriented Technology and, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]

 	DO-332/ED-217: Object-Oriented Technology and Related, [1]

 	DO-332/ED-217: Object-Oriented Technology and Related Techniques

 	Traceability

 	DO-333/ED-216: Formal Methods, [1], [2], [3], [4]

 	DO-356A/ED-203A: Airworthiness Security Methods and

E

 	
 	Eclipse IDE

 	Embedded system support (by GNAT Pro)

 	
 excluding OOT

 	Checking source code accuracy and

 	Checking worst-case stack consumption with

 	Coding with Ada 2012

 	Compiling with the GNAT Pro compiler

 	Contract-based programming

 	Implementation of hardware / software

 	Integration of C components with Ada

 	Low-level requirements

 	Structural code coverage with GNATcoverage

 	Using Ada during the design process

 	Using GNATemulator for low-level and

 	
 	Executable Object Code (EOC)

F

 	
 	formal proof, [1]

G

 	
 	Global aspect

 	GNAT Dynamic Analysis Suite (GNAT DAS), [1]

 	GNATfuzz

 	GNATtest

 	GNAT Dynamic Analysis Suite (GNAT DAS);, [1]

 	GNAT Pro Assurance

 	Ada language support

 	C language support

 	Configurable Run-Time Libraries

 	Libadalang

 	Source-to-object traceability

 	Sustained branch, [1]

 	GNAT Pro Common
Code Generator

 	GNAT Pro Common Code Generator

 	
 GNAT Pro compiler

 	Exception handling

 	GNAT Pro for Rust

 	GNAT Static Analysis Suite (GNAT SAS), [1]

 	Defects and

 	GNATcheck

 	GNATmetric

 	
 	GNAT Studio IDE

 	GNATbench

 	GNATcheck, [1], [2], [3]

 	LKQL (LangKit Query Language)

 	TQL-5 qualification material, [1]

 	GNATcoverage, [1], [2], [3], [4]

 	Data and control coupling coverage

 	Example for Use Case 1a

 	Source-based instrumentation

 	TQL-5 qualification material, [1]

 	GNATdashboard, [1], [2]

 	GNATemulator, [1], [2]

 	GNATformat

 	GNATfuzz, [1], [2]

 	GNATmetric

 	GNATprove, [1], [2], [3], [4]

 	GNATstack, [1], [2], [3], [4]

 	TQL-5 qualification material, [1]

 	GNATtest, [1], [2], [3], [4]

 	GNU GCC technology, [1]

H

 	
 	High-Level Requirement (HLR)

 	
 	Hybrid verification, [1]

I

 	
 	Ichbiah (Jean)

 	integer overflow

 	Integrated Development Environments (IDEs)

 	Eclipse

 	GNAT Studio

 	
 	Integrated Development Environments (IDEs);, [1], [2]

 	interfaces

J

 	
 	Jorvik
profile

L

 	
 	Libadalang

 	Light Profile

 	Level A certification material, [1]

 	Light-Tasking Profile

 	Level A certification material, [1]

 	
 	Liskov Substitution Principle (LSP)

 	LKQL (LangKit Query Language)

 	Lovelace (Augusta Ada)

 	Low-Level Requirement (LLR)

M

 	
 	mapping to DO-178C/ED-12C Objectives

 	
 	mechanism

 	Memory safety

P

 	
 	Parameter Data Items, [1]

 	performing resource analysis

 	
 	pessimistic testing

 	PowerPC processor support (by GNAT Pro)

R

 	
 	Ravenscar
profile

 	Ravenscar profile, [1], [2], [3]

 	
 Related Techniques

 	Accounting for dispatching in

 	Component-based development

 	Dispatching as a new module coupling

 	Dynamic dispatching

 	Dynamic dispatching and

 	Dynamic memory management

 	Exception handling

 	Exception management

 	Liskov Substitution Principle (LSP)

 	Local and global substitutablity

 	Local type consistency

 	Memory management issues

 	Overloading

 	Overloading and type conversion

 	Parametric polymorphism (genericity)

 	Traceability

 	Type conversion

 	Verifying substitutability by

 	Verifying substitutability through, [1]

 	
 	Requirement reviews

 	requirement-based testing

 	reviews

 	Robustness / defensive programming, [1]

 	Precondition

 	RTOS support (by GNAT Pro)

 	Rust language support

S

 	
 	software / software integration tests

 	Software level

 	Software Planning Process

 	source code and object code, [1]

 	SPARK for design data development

 	SPARK language, [1]

 	Absence of Run-Time Errors

 	Absence of run-time errors

 	Alternatives to code coverage when

 	Contributions to architecture

 	Contributions to Low-Level

 	Contributions to Low-Level source

 	Eliminating / reducing testing, [1], [2]

 	Exception handling

 	Formal verification

 	GNATprove

 	Hybrid verification, [1]

 	Prevention of buffer overrun and

 	Property preservation between, [1]

 	Reduced cost of verification

 	Robustness

 	Static verification

 	Usage

 	Verifying substitutability through

 	
 	SPARK Pro toolsuite

 	Specification

 	Structural code coverage

 	Decision Coverage

 	GNATcoverage

 	Modified Condition /

 	Statement Coverage

 	subprogram)

 	substitutability

 	Sustained branch

T

 	
 	Taft (Tucker)

 	Techniques, [1]

 	Testing of Outputs of Integration Process

 	TGen, [1]

 	Tool qualification

 	GNATcheck

 	GNATcoverage

 	GNATstack

 	
 	Traceability of source to object code

 	Analysis for GNAT Pro for Ada and GNAT Pro for C

U

 	
 	Use Case 1a: Traditional development process, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	Use Case 1a: Traditional development process excluding OOT

 	Using GNATtest for low-level testing

 	Use Case 1b: Traditional development process including OOT, [1]

 	
 	Use Case 2: Using SPARK and Formal Methods, [1]

 	Using

 	Use Case 2: Using SPARK and Formal Methods;

 	using proofs

V

 	
 	V software life cycle, [1], [2]

 	Verification of Outputs of Software Design Process

 	Verification of Verification Process Results

 	
 	VS Code extensions for Ada and SPARK

 	vulnerabilities

 	vulnerability analysis

W

 	
 	Workbench

 	
 	Workbench IDE (Wind River)

 _static/learn_meta_img.jpeg
LEARN.

ADACORE.COM

An interactive learning platform to teach the
Ada and SPARK programming languages.

_static/logo.png
LEARN.

ADACORE.COM

_static/minus.png

_static/plus.png

_static/file.png

_images/standards-fig2.png
High-Level Requirements

..., Consistency
"™ Verifiability
I implied
Software Architecture Low-Level Requirements
Software Architecture
is compliant
by formal proof

,~" Compliance
Robustness
Source Code by formal proof
Source Code
is accurate and consistent Property preservation
by formal proof

by formal proof and contract execution

nav.xhtml

 Table of Contents

 		
 AdaCore Technologies for Airborne Software

 		
 Introduction

 		
 The DO-178C/ED-12C Standards Suite

 		
 Overview

 		
 Software Tool Qualification Considerations: DO-330/ED-215

 		
 Model-Based Development and Verification Supplement: DO-331/ED-218

 		
 Object-Oriented Technology and Related Techniques Supplement: DO-332/ED-217

 		
 Formal Methods Supplement: DO-333/ED-216

 		
 AdaCore Tools and Technologies Overview

 		
 Ada

 		
 Background

 		
 Language Overview

 		
 SPARK

 		
 Flexibility

 		
 Powerful Static Verification

 		
 Ease of Adoption

 		
 Reduced Cost and Improved Efficiency of Executable Object Code (EOC) verification

 		
 GNAT Pro Assurance

 		
 Sustained Branches

 		
 Configurable Run-Time Libraries

 		
 Full Implementation of Ada Standards

 		
 Source to Object Traceability

 		
 Safety-Critical Support and Expertise

 		
 Libadalang

 		
 GNATstack

 		
 GNAT Static Analysis Suite (GNAT SAS)

 		
 Defects and vulnerability analysis

 		
 GNATmetric

 		
 GNATcheck

 		
 GNAT Dynamic Analysis Suite (GNAT DAS)

 		
 GNATtest

 		
 GNATemulator

 		
 GNATcoverage

 		
 GNATfuzz

 		
 TGen

 		
 GNAT Pro for Rust

 		
 Integrated Development Environments (IDEs)

 		
 GNAT Studio

 		
 VS Code Extensions for Ada and SPARK

 		
 Eclipse support - GNATbench

 		
 GNATdashboard

 		
 Compliance with DO-178C / ED-12C Guidance: Analysis

 		
 Overview

 		
 Use case #1a: Coding with Ada 2012

 		
 Benefits of the Ada language

 		
 Using Ada during the design process

 		
 Integration of C components with Ada

 		
 Robustness / defensive programming

 		
 Defining and Verifying a Code Standard with GNATcheck

 		
 Checking source code accuracy and consistency with GNAT SAS

 		
 Checking worst case stack consumption with GNATstack

 		
 Compiling with the GNAT Pro compiler

 		
 Using GNATtest for low-level testing

 		
 Using GNATemulator for low-level and software / software integration tests

 		
 Structural code coverage with GNATcoverage

 		
 Data and control coupling coverage with GNATcoverage

 		
 Demonstrating traceability of source to object code

 		
 Use case #1b: Coding with Ada using OOT features

 		
 Object orientation for the architecture

 		
 Coverage in the case of generics

 		
 Dealing with dynamic dispatching and substitutability

 		
 Dispatching as a new module coupling mechanism

 		
 Memory management issues

 		
 Exception handling

 		
 Overloading and type conversion vulnerabilities

 		
 Accounting for dispatching in performing resource analysis

 		
 Use case #2: Using SPARK and Formal Methods

 		
 Using SPARK for design data development

 		
 Robustness and SPARK

 		
 Contributions to Low-Level Requirement reviews

 		
 Contributions to architecture reviews

 		
 Contributions to source code reviews

 		
 Formal analysis as an alternative to low-level testing

 		
 Low-level verification by mixing test and proof (“Hybrid verification”)

 		
 Alternatives to code coverage when using proofs

 		
 Property preservation between source code and object code

 		
 SPARK Development Cycle Example

 		
 Parameter Data Items

 		
 Summary of contributions to DO-178C/ED-12C objectives

 		
 Overall summary: which objectives are met

 		
 Mapping of AdaCore's Technologies to DO-178C/ED-12C Objectives

 		
 Detailed summary: which activities are supported

 		
 Table A-1: Software Planning Process

 		
 Table A-2: Software Development Processes

 		
 Table A-4: Verification of Outputs of Software Design Process

 		
 Table A-5 Verification of Outputs of Software Requirement Process

 		
 Table A-6 Testing of Outputs of Integration Process

 		
 Table A-7 Verification of Verification Process Results

 		
 AdaCore Tool Qualification and Library Certification

 		
 Bibliography

_images/ccheart_black.png

_images/introduction-fig1.png
HLR &
Integration

Testing

Table A-2:1,2 TableA-6:1,2,5
Table A-3

High-Level
Requirements

Development Verification Table A-7
Processes Processes

Low-Level Ada and SPARK
Requirements languages

Testing GNAT Dynamic

Table A-6:3,4 Analysis Suite
Table A-7

Ada and SPARK Software
languages Design

Table A-2:3,4,5
Table A-4

Software Coding
Table A-2: 6,7

Ada and SPARK languages, GNAT Compiler, GNATstack
GNAT IDEs (GNAT Studio, GNATbench, GNAT Static Analysis Suite
Visual Studio Code Extensions, GNATdashboard) SPARK tools

_images/analysis-fig3.png
Num

F Urgency

7654321076543210

