

Introduction to GNAT Toolchain
Release 2024-07

Gustavo A. Hoffmann

Jul 20, 2024

CONTENTS:

1 GNAT Toolchain Basics 3
1.1 Basic commands . 3
1.2 Compiler warnings . 3

1.2.1 -gnatwa switch and warning suppression 4
1.2.2 Style checking . 6

2 GPRbuild 7
2.1 Basic commands . 7
2.2 Project files . 7

2.2.1 Basic structure . 7
2.2.2 Customization . 8

2.3 Project dependencies . 9
2.3.1 Simple dependency . 9
2.3.2 Dependencies to dynamic libraries . 11

2.4 Configuration pragma files . 11
2.5 Configuration packages . 12

3 GNAT Studio 15
3.1 Start-up . 15

3.1.1 Windows . 15
3.1.2 Linux . 15

3.2 Creating projects . 15
3.3 Building . 16
3.4 Debugging . 16

3.4.1 Debug information . 16
3.4.2 Improving main application . 17
3.4.3 Debugging the application . 18

3.5 Formal verification . 18

4 GNAT Tools 21
4.1 gnatchop . 21
4.2 gnatprep . 22
4.3 gnatmem . 24
4.4 gnatmetric . 25
4.5 gnatdoc . 25
4.6 gnatpp . 27
4.7 gnatstub . 28

i

ii

Introduction to GNAT Toolchain

Warning: This version of the website contains UNPUBLISHED contents. Please do not
share it externally!

Copyright © 2019 – 2023, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

This course presents an introduction to the GNAT toolchain. The course includes first steps
to get started with the toolchain and some details on the project manager (GPRbuild) and
the integrated development environment (GNAT Studio).
This document was written by Gustavo A. Hoffmann, with contributions and review from
Richard Kenner and Robert Duff.

Note: The code examples in this course use an 80-column limit, which is a typical limit
for Ada code. Note that, on devices with a small screen size, some code examples might
be difficult to read.

1 http://creativecommons.org/licenses/by-sa/4.0

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

Introduction to GNAT Toolchain

2 CONTENTS:

CHAPTER

ONE

GNAT TOOLCHAIN BASICS

This chapter presents a couple of basic commands from the GNAT toolchain.

1.1 Basic commands

Now that the toolchain is installed, you can start using it. From the command line, you can
compile a project using gprbuild. For example:

gprbuild -P project.gpr

You can find the binary built with the command above in the obj directory. You can the run it
in the same way as you would do with any other executable on your platform. For example:

obj/main

A handy command-line option for gprbuild you might want to use is -p, which automati-
cally creates directories such as obj if they aren't in the directory tree:

gprbuild -p -P project.gpr

Ada source-code are stored in .ads and .adb files. To view the content of these files, you
can use GNAT Studio. To open GNAT Studio, double-click on the .gpr project file or invoke
GNAT Studio on the command line:

gps -P project.gpr

To compile your project using GNAT Studio, use the top-level menu to invoke Build →
Project → main.adb (or press the keyboard shortcut F4). To run the main program, click
on Build → Run → main (or press the keyboard shortcut Shift + F2).

1.2 Compiler warnings

One of the strengths of the GNAT compiler is its ability to generate many useful warnings.
Some are displayed by default but others need to be explicitly enabled. In this section, we
discuss some of these warnings, their purpose, and how you activate them.

3

Introduction to GNAT Toolchain

1.2.1 -gnatwa switch and warning suppression

Section author: Robert Duff

We first need to understand the difference between a warning and an error. Errors are vio-
lations of the Ada language rules as specified in the Ada Reference Manual; warnings don't
indicate violations of those rules, but instead flag constructs in a program that seem suspi-
cious to the compiler. Warnings are GNAT-specific, so other Ada compilers might not warn
about the same things GNAT does or might warn about them in a different way. Warnings
are typically conservative; meaning that some warnings are false alarms. The programmer
needs to study the code to determine if each warning is describing a real problem.
Some warnings are produced by default while others are produced only if a switch enables
them. Use the -gnatwa switch to turn on (almost) all warnings.
Warnings are useless if you don't do anything about them. If you give your team member
some code that causes warnings, how are they supposed to know whether they represent
real problems? If you don't address each warning, people will soon starting ignoring warn-
ings and there'll be lots of things that generates warnings scattered all over your code. To
avoid this, you may want to use the -gnatwae switch to both turn on (almost) all warn-
ings and to treat warnings as errors. This forces you to get a clean (no warnings or errors)
compilation.
However, as we said, some warnings are false alarms. Use pragma Warnings (Off) to
suppress those warnings. It's best to be as specific as possible and narrow down to a single
line of code and a single warning. Then use a comment to explain why the warning is a
false alarm if it's not obvious.
Let's look at the following example:

with Ada.Text_IO; use Ada.Text_IO;

package body Warnings_Example is

procedure Mumble (X : Integer) is
begin

Put_Line ("Mumble processing...");
end Mumble;

end Warnings_Example;

We compile the above code with -gnatwae:

gnat compile -gnatwae ./src/warnings_example.adb

This causes GNAT to complain:

warnings_example.adb:5:22: warning: formal parameter "X" is not referenced

But the following compiles cleanly:

with Ada.Text_IO; use Ada.Text_IO;

package body Warnings_Example is

pragma Warnings (Off, "formal parameter ""X"" is not referenced");
procedure Mumble (X : Integer) is
pragma Warnings (On, "formal parameter ""X"" is not referenced");

-- X is ignored here, because blah blah blah...
begin

Put_Line ("Mumble processing...");
(continues on next page)

4 Chapter 1. GNAT Toolchain Basics

Introduction to GNAT Toolchain

(continued from previous page)
end Mumble;

end Warnings_Example;

Here we've suppressed a specific warning message on a specific line.
If you get many warnings of a specific type and it's not feasible to fix all of them, you
can suppress that type of message so the good warnings won't get buried beneath a pile
of bogus ones. For example, you can use the -gnatwaeF switch to silence the warning
on the first version of Mumble above: the F suppresses warnings on unreferenced formal
parameters. It would be a good idea to use it if you have many of those.
As discussed above, -gnatwa activates almost all warnings, but not all. Refer to the section
on warnings2 of the GNAT User's Guide to get a list of the remaining warnings you could
enable in your project. One is -gnatw.o, which displays warnings when the compiler detects
modified but unreferenced out parameters. Consider the following example:

package Warnings_Example is

procedure Process (X : in out Integer;
B : out Boolean);

end Warnings_Example;

package body Warnings_Example is

procedure Process (X : in out Integer;
B : out Boolean) is

begin
if X = Integer'First or else X = Integer'Last then

B := False;
else

X := X + 1;
B := True;

end if;
end Process;

end Warnings_Example;

with Ada.Text_IO; use Ada.Text_IO;

with Warnings_Example; use Warnings_Example;

procedure Main is
X : Integer := 0;
Success : Boolean;

begin
Process (X, Success);
Put_Line (Integer'Image (X));

end Main;

If we build the main application using the -gnatw.o switch, the compiler warns us that we
didn't reference the Success variable, which was modified in the call to Process:

main.adb:8:16: warning: "Success" modified by call, but value might not be␣
↪referenced

In this case, this actually points us to a bug in our program, since X only contains a valid
value if Success is True. The corrected code for Main is:

2 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_
gnat.html#warning-message-control

1.2. Compiler warnings 5

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#warning-message-control
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#warning-message-control

Introduction to GNAT Toolchain

-- ...
begin

Process (X, Success);

if Success then
Put_Line (Integer'Image (X));

else
Put_Line ("Couldn't process variable X.");

end if;
end Main;

We suggest turning on as many warnings as makes sense for your project. Then, when
you see a warning message, look at the code and decide if it's real. If it is, fix the code. If
it's a false alarm, suppress the warning. In either case, we strongly recommend you make
the warning disappear before you check your code into your configuration management
system.

1.2.2 Style checking

GNAT provides many options to configure style checking of your code. The main compiler
switch for this is -gnatyy, which sets almost all standard style check options. As indicated
by the section on style checking3 of the GNAT User's Guide, using this switch "is equiva-
lent to -gnaty3aAbcefhiklmnprst, that is all checking options enabled with the exception
of -gnatyB, -gnatyd, -gnatyI, -gnatyLnnn, -gnatyo, -gnatyO, -gnatyS, -gnatyu, and
-gnatyx."
You may find that selecting the appropriate coding style is useful to detect issues at early
stages. For example, the -gnatyO switch checks that overriding subprograms are explicitly
marked as such. Using this switch can avoid surprises when you didn't intentionally want
to override an operation for some data type. We recommend studying the list of coding
style switches and selecting the ones that seem relevant for your project. When in doubt,
you can start by using all of them — using -gnatyy and -gnatyBdIL4oOSux, for example —
and deactivating the ones that cause too much noise during compilation.

3 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_
gnat.html#style-checking

6 Chapter 1. GNAT Toolchain Basics

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/building_executable_programs_with_gnat.html#style-checking

CHAPTER

TWO

GPRBUILD

This chapter presents a brief overview of GPRbuild, the project manager of the GNAT
toolchain. It can be used to manage complex builds. In terms of functionality, it's simi-
lar to make and cmake, just to name two examples.
For a detailed presentation of the tool, please refer to the GPRbuild User’s Guide4.

2.1 Basic commands

As mentioned in the previous chapter, you can build a project using gprbuild from the
command line:

gprbuild -P project.gpr

In order to clean the project, you can use gprclean:

gprclean -P project.gpr

2.2 Project files

You can create project files using GNAT Studio, which presentsmany options on its graphical
interface. However, you can also edit project files manually as a normal text file in an editor,
since its syntax is human readable. In fact, project files use a syntax similar to the one from
the Ada language. Let's look at the basic structure of project files and how to customize
them.

2.2.1 Basic structure

The main element of a project file is a project declaration, which contains definitions for
the current project. A project file may also include other project files in order to compose a
complex build. One of the simplest form of a project file is the following:

project Default is

for Main use ("main");
for Source_Dirs use ("src");

end Default;

4 https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

7

https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

Introduction to GNAT Toolchain

In this example, we declare a project named Default. The for Main use expression
indicates that the main.adb file is used as the entry point (main source-code file) of the
project. The main file doesn't necessary need to be called main.adb; we could use any
source-code implementing a main application, or even have a list of multiple main files.
The for Source_Dirs use expression indicates that the src directory contains the source-
file for the application (including the main file).

2.2.2 Customization

GPRbuild support scenario variables, which allow you to control the way binaries are built.
For example, you may want to distinguish between debug and optimized versions of your
binary. In principle, you could pass command-line options to gprbuild that turn debugging
on and off, for example. However, defining this information in the project file is usually
easier to handle and to maintain. Let's define a scenario variable called ver in our project:

project Default is

Ver := external ("ver", "debug");

for Main use ("main");
for Source_Dirs use ("src");

end Default;

In this example, we're specifying that the scenario variable Ver is initialized with the exter-
nal variable ver. Its default value is set to debug.
We can now set this variable in the call to gprbuild:

gprbuild -P project.gpr -Xver=debug

Alternatively, we can simply specify an environment variable. For example, on Unix sys-
tems, we can say:

export ver=debug

Value from environment variable "ver" used in the following call:

gprbuild -P project.gpr

In the project file, we can use the scenario variable to customize the build:

project Default is
Ver := external ("ver", "debug");

for Main use ("main.adb");
for Source_Dirs use ("src");

-- Using "ver" variable for obj directory
for Object_Dir use "obj/" & Ver;

package Compiler is
case Ver is

when "debug" =>
for Switches ("Ada") use ("-g");

when "opt" =>
for Switches ("Ada") use ("-O2");

when others =>
null;

end case;
(continues on next page)

8 Chapter 2. GPRbuild

Introduction to GNAT Toolchain

(continued from previous page)
end Compiler;

end Default;

We're now using Ver in the for Object_Dir clause to specify a subdirectory of the obj
directory that contains the object files. Also, we're using Ver to select compiler options in
the Compiler package declaration.
We could also specify all available options in the project file by creating a typed variable.
For example:

project Default is

type Ver_Option is ("debug", "opt");
Ver : Ver_Option := external ("ver", "debug");

for Source_Dirs use ("src");
for Main use ("main.adb");

-- Using "ver" variable for obj directory
for Object_Dir use "obj/" & Ver;

package Compiler is
case Ver is

when "debug" =>
for Switches ("Ada") use ("-g");

when "opt" =>
for Switches ("Ada") use ("-O2");

when others =>
null;

end case;
end Compiler;

end Default;

The advantage of this approach is that gprbuild can now check whether the value that
you provide for the ver variable is available on the list of possible values and give you an
error if you're entering a wrong value.

2.3 Project dependencies

GPRbuild supports project dependencies. This allows you to reuse information from existing
projects. Specifically, the keyword with allows you to include another project within the
current project.

2.3.1 Simple dependency

Let's look at a very simple example. We have a package called Test_Pkg associated with
the project file test_pkg.gpr, which contains:

project Test_Pkg is
for Source_Dirs use ("src");
for Object_Dir use "obj";

end Test_Pkg;

This is the code for the Test_Pkg package:

2.3. Project dependencies 9

Introduction to GNAT Toolchain

package Test_Pkg is

type T is record
X : Integer;
Y : Integer;

end record;

function Init return T;

end Test_Pkg;

package body Test_Pkg is

function Init return T is
begin

return V : T do
V.X := 0;
V.Y := 0;

end return;
end Init;

end Test_Pkg;

For this example, we use a directory test_pkg containing the project file and a subdirectory
test_pkg/src containing the source files. The directory structure looks like this:

|- test_pkg
| | test_pkg.gpr
| |- src
| | | test_pkg.adb
| | | test_pkg.ads

Suppose we want to use the Test_Pkg package in a new application. Instead of directly
including the source files of Test_Pkg in the project file of our application (either directly or
indirectly), we can instead reference the existing project file for the package by using with
"test_pkg.gpr". This is the resulting project file:

with "../test_pkg/test_pkg.gpr";

project Default is
for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("main.adb");

end Default;

And this is the code for the main application:

with Test_Pkg; use Test_Pkg;

procedure Main is
A : T;

begin
A := Init;

end Main;

When we build the main project file (default.gpr), we're automatically building all de-
pendent projects. More specifically, the project file for the main application automatically
includes the information from the dependent projects such as test_pkg.gpr. Using a with
in the main project file is all we have to do for that to happen.

10 Chapter 2. GPRbuild

Introduction to GNAT Toolchain

2.3.2 Dependencies to dynamic libraries

We can structure project files to make use of dynamic (shared) libraries using a very similar
approach. It's straightforward to convert the project above so that Test_Pkg is now com-
piled into a dynamic library and linked to our main application. All we need to do is to make
a few additions to the project file for the Test_Pkg package:

library project Test_Pkg is
for Source_Dirs use ("src");
for Object_Dir use "obj";
for Library_Name use "test_pkg";
for Library_Dir use "lib";
for Library_Kind use "Dynamic";

end Test_Pkg;

This is what we had to do:
• We changed the project to library project.
• We added the specification for Library_Name, Library_Dir and Library_Kind.

We don't need to change the project file for the main application because GPRbuild auto-
matically detects the dependency information (e.g., the path to the dynamic library) from
the project file for the Test_Pkg package. With these small changes, we're able to compile
the Test_Pkg package to a dynamic library and link it with our main application.

2.4 Configuration pragma files

Configuration pragma files contain a set of pragmas that modify the compilation of source
files according to external requirements. For example, you may use pragmas to either relax
or strengthen requirements depending on your environment.
In GPRbuild, we can use Local_Configuration_Pragmas (in the Compiler package) to
indicate the configuration pragmas file we want GPRbuild to use with the source files in
our project.
The file gnat.adc shown here is an example of a configuration pragma file:

pragma Suppress (Overflow_Check);

We can use this in our project by declaring a Compiler package. Here's the complete project
file:

project Default is

for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("main.adb");

package Compiler is
for Local_Configuration_Pragmas use "gnat.adc";

end Compiler;

end Default;

Each pragma contained in gnat.adc is used in the compilation of each file, as if that pragma
was placed at the beginning of each file.

2.4. Configuration pragma files 11

Introduction to GNAT Toolchain

2.5 Configuration packages

You can control the compilation of your source code by creating variants for various cases
and selecting the appropriate variant in the compilation package in the project file. One
example where this is useful is conditional compilation using Boolean constants, shown in
the code below:

with Ada.Text_IO; use Ada.Text_IO;

with Config;

procedure Main is
begin

if Config.Debug then
Put_Line ("Debug version");

else
Put_Line ("Release version");

end if;
end Main;

In this example, we declared the Boolean constant in the Config package. By having mul-
tiple versions of that package, we can create different behavior for each usage. For this
simple example, there are only two possible cases: either Debug is True or False. However,
we can apply this strategy to create more complex cases.
In our next example, we store the packages in the subdirectories debug and release of the
source code directory. Here's the content of the src/debug/config.ads file:

package Config is

Debug : constant Boolean := True;

end Config;

Here's the src/release/config.ads file:

package Config is

Debug : constant Boolean := False;

end Config;

In this case, GPRbuild selects the appropriate directory to look for the config.ads file
according to information we provide for the compilation process. We do this by using a
scenario type called Mode_Type in our project file:

gprbuild -P default.gpr -Xmode=release

project Default is

type Mode_Type is ("debug", "release");

Mode : Mode_Type := external ("mode", "debug");

for Source_Dirs use ("src", "src/" & Mode);
for Object_Dir use "obj";
for Main use ("main.adb");

end Default;

12 Chapter 2. GPRbuild

Introduction to GNAT Toolchain

We declare the scenario variable Mode and use it in the Source_Dirs declaration to add the
desired path to the subdirectory containing the config.ads file. The expression "src/" &
Mode concatenates the user-specifiedmode to select the appropriate subdirectory. For more
complex cases, we could use either a tree of subdirectories or multiple scenario variables
for each aspect that we need to configure.

2.5. Configuration packages 13

Introduction to GNAT Toolchain

14 Chapter 2. GPRbuild

CHAPTER

THREE

GNAT STUDIO

This chapter presents an introduction to the GNAT Studio, which provides an IDE to develop
applications in Ada. For a detailed overview, please refer to the GNAT Studio tutorial5. Also,
you can refer to the GNAT Studio product page6 for some introductory videos.
In this chapter, all indications using "→" refer to options from the GNAT Studio menu that
you can click in order to execute commands.

3.1 Start-up

The first step is to start-up the GNAT Studio. The actual step depends on your platform.

3.1.1 Windows

• You may find an icon (shortcut to GNAT Studio) on your desktop.
• Otherwise, start GNAT Studio by typing gnatstudio on the command prompt.

3.1.2 Linux

• Start GNAT Studio by typing gnatstudio on a shell.

3.2 Creating projects

After starting-up GNAT Studio, you can create a project. These are the steps:
• Click on Create new project in the welcome window

– Alternatively, if the wizard (which let's you customize new projects) isn't already
opened, click on File → New Project... to open it.

– After clicking on Create new project, you should see a window with this title:
Create Project from Template.

• Select one of the options from the list and click on Next.
– The simplest one is Basic > Simple Ada Project, which creates a project con-
taining a main application.

• Select the project location and basic settings, and click on Apply.
5 https://docs.adacore.com/live/wave/gps/html/gps_tutorial/index.html
6 https://www.adacore.com/gnatpro/toolsuite/gps

15

https://docs.adacore.com/live/wave/gps/html/gps_tutorial/index.html
https://www.adacore.com/gnatpro/toolsuite/gps

Introduction to GNAT Toolchain

– If you selected "Simple Ada Project" in the previous step, you may now select the
name of the project and of the main file.

– Note that you can select any name for the main file.
You should now have a working project file.

3.3 Building

As soon as you've created a project file, you can use it to build an application. These are
the required steps:

• Click on Build → Project → Build All

– You can also click on this icon:

• Alternatively, you can click on Build → Project → Build & Run → <name of your
main application>

– You can also click on this icon:

• You can also use the keyboard for building and running the main application:
– Press F4 to open a window that allows you to build the main application and click
on Execute.

– Then, press Shift + F2 to open a window that allows you to run the application,
and click on Execute.

3.4 Debugging

3.4.1 Debug information

Before you can debug a project, you need to make sure that debugging symbols have been
included in the binary build. You can do this by manually adding a debug version into your
project, as described in the previous chapter (see GPRbuild (page 7)).
Alternatively, you can change the project properties directly in GNAT Studio. In order to do
that, click on Edit → Project Properties..., which opens the following window:

16 Chapter 3. GNAT Studio

Introduction to GNAT Toolchain

Click on Build → Switches → Ada on this window, and make sure that the Debug Informa-
tion option is selected.

3.4.2 Improving main application

If you selected "Simple Ada Project" while creating your project in the beginning, you prob-
ably still have a very simple main application that doesn't do anything useful. Therefore,
in order to make the debugging activity more interesting, please enter some statements to
your application. For example:

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
begin

Put_Line ("Hello World!");
Put_Line ("Hello again!");

end Main;

3.4. Debugging 17

Introduction to GNAT Toolchain

3.4.3 Debugging the application

You can now build and debug the application by clicking on Build → Project → Build &
Debug → <name of your main application>.
You can then click on Debug → Run... to open a window that allows you to start the appli-
cation. Alternatively, you can press Shift + F9. As soon as the application has started,
you can press F5 to step through the application or press F6 to execute until the next line.
Both commands are available in the menu by clicking on Debug → Step or Debug → Next.
When you've finished debugging your application, you need to terminate the debugger. To
do this, you can click on Debug → Terminate.

3.5 Formal verification

In order to see how SPARK can detect issues, let's creating a simple application that accu-
mulates values in a variable A:

procedure Main
with SPARK_Mode is

procedure Acc (A : in out Natural;
V : Natural) is

begin
A := A + V;

end Acc;

A : Natural := 0;
begin

Acc (A, Natural'Last);
Acc (A, 1);

end Main;

You can now click on SPARK → Prove All, which opens a window with various options. For
example, on this window, you can select the proof level — varying between 0 and 4 — on
the Proof level list. Next, click on Execute. After the prover has completed its analysis,
you'll see a list of issues found in the source code of your application.
For the example above, the prover complains about an overflow check that might fail. This
is due to the fact that, in the Acc procedure, we're not dealing with the possibility that the
result of the addition might be out of range. In order to fix this, we could define a new
saturating addition Sat_Add that makes use of a custom type T with an extended range.
For example:

procedure Main
with SPARK_Mode is

function Sat_Add (A : Natural;
V : Natural) return Natural

is
type T is range Natural'First .. Natural'Last * 2;

A2 : T := T (A);
V2 : constant T := T (V);
A_Last : constant T := T (Natural'Last);

begin
A2 := A2 + V2;

-- Saturate result if needed
(continues on next page)

18 Chapter 3. GNAT Studio

Introduction to GNAT Toolchain

(continued from previous page)
if A2 > A_Last then

A2 := A_Last;
end if;

return Natural (A2);
end Sat_Add;

procedure Acc (A : in out Natural;
V : Natural) is

begin
A := Sat_Add (A, V);

end Acc;

A : Natural := 0;
begin

Acc (A, Natural'Last);
Acc (A, 1);

end Main;

Now, when running the prover again with the modified code, no issues are found.

3.5. Formal verification 19

Introduction to GNAT Toolchain

20 Chapter 3. GNAT Studio

CHAPTER

FOUR

GNAT TOOLS

In chapter we present a brief overview of some of the tools included in the GNAT toolchain.
For further details on how to use these tools, please refer to the GNAT User's Guide7.

4.1 gnatchop

gnatchop renames files so they match the file structure and naming convention expected
by the rest of the GNAT toolchain. The GNAT compiler expects specifications to be stored
in .ads files and bodies (implementations) to be stored in .adb files. It also expects file
names to correspond to the content of each file. For example, it expects the specification
of a package Pkg.Child to be stored in a file named pkg-child.ads.
However, we may not want to use that convention for our project. For example, we may
have multiple Ada packages contained in a single file. Consider a file example.ada contain-
ing the following:

with Ada.Text_IO; use Ada.Text_IO;

package P is
procedure Test;

end P;

package body P is
procedure Test is
begin

Put_Line("Test passed.");
end Test;

end P;

with P; use P;

procedure P_Main is
begin

P.Test;
end P_Main;

To compile this code, we first pass the file containing our source code to gnatchop before
we call gprbuild:

gnatchop example.ada
gprbuild p_main

This generates source files for our project, extracted from example_ada, that conform to
the default naming convention and then builds the executable binary p_main from those

7 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn.html

21

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn.html

Introduction to GNAT Toolchain

files. In this example gnatchop created the files p.ads, p.adb, and p_main.adb using the
package names in example.ada.
When we use this mechanism, any warnings or errors the compiler displays refers to the files
generated by gnatchop. We can, however, instruct gnatchop to instrument the generated
files so the compiler refers to the original file (example.ada in our case) when displaying
messages. We do this by using the -r switch:

gnatchop -r example.ada
gprbuild p_main

If, for example, we had an unused variable in example.ada, the compiler warning would
now refer to the line in the original file, not in one of the generated ones.
For documentation of other switches available for gnatchop, please refer to the gnatchop
chapter8 of the GNAT User's Guide.

4.2 gnatprep

We may want to use conditional compilation in some situations. For example, we might
need a customized implementation of a package for a specific platform or need to select a
specific version of an algorithm depending on the requirements of the target environment.
A traditional way to do this uses a source-code preprocessor. However, in many cases where
conditional compilation is needed, we can instead use the syntax of the Ada language or
the functionality provided by GPRbuild to avoid using a preprocessor in those cases. The
conditional compilation section9 of the GNAT User's Guide discusses how to do this in detail.
Nevertheless, using a preprocessor is often the most straightforward option in complex
cases. When we encounter such a case, we can use gnatprep, which provides a syntax
that reminds us of the C and C++ preprocessor. However, unlike in C and C++, this syntax
is not part of the Ada standard and can only be used with gnatprep. Also, you'll notice some
differences in the syntax from that preprocessor, such as shown in the example below:

#if VERSION'Defined and then (VERSION >= 4) then
-- Implementation for version 4.0 and above...

#else
-- Standard implementation for older versions...

#end if;

Of course, in this simple case, we could have used the Ada language directly and avoided
the preprocessor entirely:

package Config is
Version : constant Integer := 4;

end Config;

with Config;
procedure Do_Something is
begin

if Config.Version >= 4 then
null;
-- Implementation for version 4.0 and above...

else
null;
-- Standard implementation for older versions...

(continues on next page)
8 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#

renaming-files-with-gnatchop
9 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#

conditional-compilation

22 Chapter 4. GNAT Tools

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#renaming-files-with-gnatchop
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#renaming-files-with-gnatchop
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#conditional-compilation

Introduction to GNAT Toolchain

(continued from previous page)
end if;

end Do_Something;

But for the sake of illustrating the use of gnatprep, let's use that tool in this simple case.
This is the complete procedure, which we place in file do_something.org.adb:

procedure Do_Something is
begin

#if VERSION'Defined and then (VERSION >= 4) then
-- Implementation for version 4.0 and above...
null;
#else
-- Standard implementation for older versions...
null;
#end if;

end Do_Something;

To preprocess this file and build the application, we call gnatprep followed by GPRbuild:

gnatprep do_something.org.adb do_something.adb
gprbuild do_something

If we look at the resulting file after preprocessing, we see that the #else implementation
was selected by gnatprep. To cause it to select the newer "version" of the code, we include
the symbol and its value in our call to gnatprep, just like we'd do for C/C++:

gnatprep -DVERSION=5 do_something.org.adb do_something.adb

However, a cleaner approach is to create a symbol definition file containing all symbols we
use in our implementation. Let's create the file and name it prep.def:

VERSION := 5

Now we just need to pass it to gnatprep:

gnatprep do_something.org.adb do_something.adb prep.def
gprbuild do_something

When we use gnatprep in that way, the line numbers of the output file differ from those of
the input file. To preserve line numbers, we can use one of these command-line switches:

• -b: replace stripped-out code by blank lines
• -c: comment-out the stripped-out code

For example:

gnatprep -b do_something.org.adb do_something.adb prep.def
gnatprep -c do_something.org.adb do_something.adb prep.def

When we use one of these options, gnatprep ensures that the output file do_something.
adb has the same line numbering as the original file (do_something.org.adb).
The gnatprep chapter10 of the GNAT User's Guide contains further details about this tool,
such as how to integrate gnatprep with project files for GPRbuild and how to replace sym-
bols without using preprocessing directives (using the $symbol syntax).
10 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#

preprocessing-with-gnatprep

4.2. gnatprep 23

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/the_gnat_compilation_model.html#preprocessing-with-gnatprep

Introduction to GNAT Toolchain

4.3 gnatmem

Memory allocation errors involving mismatches between allocations and deallocations are
a common source of memory leaks. To test an application for memory allocation issues,
we can use gnatmem. This tool monitors all memory allocations in our application. We use
this tool by linking our application to a special version of the memory allocation library
(libgmem.a).
Let's consider this simple example:

procedure Simple_Mem is
I_Ptr : access Integer := new Integer;

begin
null;

end Simple_Mem;

To generate a memory report for this code, we need to:
• Build the application, linking it to libgmem.a;
• Run the application, which generates an output file (gmem.out);
• Run gnatmem to generate a report from gmem.out.

For our example above, we do the following:

Build application using gmem
gnatmake -g simple_mem.adb -largs -lgmem

Run the application and generate gmem.out
./simple_mem

Call gnatmem to display the memory report based on gmem.out
gnatmem simple_mem

For this example, gnatmem produces the following output:

Global information

Total number of allocations : 1
Total number of deallocations : 0
Final Water Mark (non freed mem) : 4 Bytes
High Water Mark : 4 Bytes

Allocation Root # 1

Number of non freed allocations : 1
Final Water Mark (non freed mem) : 4 Bytes
High Water Mark : 4 Bytes
Backtrace :

simple_mem.adb:2 simple_mem

This shows all the memory we allocated and tells us that we didn't deallocate any of it.
Please refer to the chapter on gnatmem11 of the GNAT User's Guide for a more detailed
discussion of gnatmem.
11 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_and_program_execution.html#

the-gnatmem-tool

24 Chapter 4. GNAT Tools

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_and_program_execution.html#the-gnatmem-tool

Introduction to GNAT Toolchain

4.4 gnatmetric

We can use the GNAT metric tool (gnatmetric) to compute various programming metrics,
either for individual files or for our complete project.
For example, we can compute the metrics of the body of package P above by running
gnatmetric as follows:

gnatmetric p.adb

This produces the following output:

Line metrics summed over 1 units
all lines : 13
code lines : 11
comment lines : 0
end-of-line comments : 0
comment percentage : 0.00
blank lines : 2

Average lines in body: 4.00

Element metrics summed over 1 units
all statements : 2
all declarations : 3
logical SLOC : 5

2 subprogram bodies in 1 units

Average cyclomatic complexity: 1.00

Please refer to the section on gnatmetric12 of the GNAT User's Guide for the many switches
available for gnatmetric, including the ability to generate reports in XML format.

4.5 gnatdoc

Use GNATdoc to generate HTML documentation for your project. It scans the source files in
the project and extracts information from package, subprogram, and type declarations.
The simplest way to use it is to provide the name of the project or to invoke GNATdoc from
a directory containing a project file:

gnatdoc -P some_directory/default.gpr

Alternatively, when the :file:`default.gpr` file is in the same directory

gnatdoc

Just using this command is sufficient if your goal is to generate a list of the packages and a
list of subprograms in each. However, to create more meaningful documentation, you can
annotate your source code to add a description of each subprogram, parameter, and field.
For example:

package P is
-- Collection of auxiliary subprograms

(continues on next page)
12 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#

the-gnat-metrics-tool-gnatmetric

4.4. gnatmetric 25

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-gnat-metrics-tool-gnatmetric

Introduction to GNAT Toolchain

(continued from previous page)
function Add_One
(V : Integer
-- Coefficient to be incremented
) return Integer;

-- @return Coefficient incremented by one

end P;

package body P is

function Add_One (V : Integer) return Integer is
begin

return V + 1;
end Add_One;

end P;

with P; use P;

procedure Main is

I : Integer;

begin
I := Add_One (0);

end Main;

When we run this example, GNATdoc will extract the documentation from the specification
of package P and add the description of each element, which we provided as a comment
in the line below the actual declaration. It will also extract the package description, which
we wrote as a comment in the line right after package P is. Finally, it will extract the
documentation of function Add_One (both the description of the V parameter and the return
value).
In addition to the approach we've just seen, GNATdoc also supports the tagged format that's
commonly found in tools such as Javadoc and uses the @ syntax. We could rewrite the
documentation for package P as follows:

package P is
-- @summary Collection of auxiliary subprograms

function Add_One
(V : Integer
) return Integer;

-- @param V Coefficient to be incremented
-- @return Coefficient incremented by one

end P;

You can control what parts of the source-code GNATdoc parses to extract the documentation.
For example, you can specify the -b switch to request that the package body be parsed for
additional documentation and you can use the -p switch to request GNATdoc to parse the
private part of package specifications. For a complete list of switches, please refer to the
GNATdoc User's Guide13.
13 http://docs.adacore.com/gnatdoc-docs/users_guide/_build/html/index.html

26 Chapter 4. GNAT Tools

http://docs.adacore.com/gnatdoc-docs/users_guide/_build/html/index.html

Introduction to GNAT Toolchain

4.6 gnatpp

The term 'pretty-printing' refers to the process of formatting source code according to a
pre-defined convention. gnatpp is used for the pretty-printing of Ada source-code files.
Let's look at this example, which contains very messy formatting:

PrOcEDuRE Main
IS

FUNCtioN
Init_2

RETurn
inteGER iS

(2);

I : INTeger;

BeGiN
I := Init_2;

ENd;

We can request gnatpp to clean up this file by using the command:

gnatpp main.adb

gnatpp reformats the file in place. After this command, main.adb looks like this:

procedure Main is

function Init_2 return Integer is (2);

I : Integer;

begin
I := Init_2;

end Main;

We can also process all source code files from a project at once by specifying a project file.
For example:

gnatpp -P default.gpr

gnatpp has an extensive list of options, which allow for specifying the formatting of many
aspects of the source and implementing many coding styles. These are extensively dis-
cussed in the section on gnatpp14 of the GNAT User's Guide.
14 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#

the-gnat-pretty-printer-gnatpp

4.6. gnatpp 27

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-gnat-pretty-printer-gnatpp

Introduction to GNAT Toolchain

4.7 gnatstub

Suppose you've created a complex specification of an Ada package. You can create the
corresponding package body by copying and adapting the content of the package speci-
fication. But you can also have gnatstub do much of that job for you. For example, let's
consider the following package specification:

package Aux is

function Add_One (V : Integer) return Integer;

procedure Reset (V : in out Integer);

end Aux;

We call gnatstub, passing the file containing the package specification:

gnatstub aux.ads

This generates the file aux.adb with the following contents:

pragma Ada_2012;
package body Aux is

-- Add_One --

function Add_One (V : Integer) return Integer is
begin

-- Generated stub: replace with real body!
pragma Compile_Time_Warning (Standard.True, "Add_One unimplemented");
return raise Program_Error with "Unimplemented function Add_One";

end Add_One;

-- Reset --

procedure Reset (V : in out Integer) is
begin

-- Generated stub: replace with real body!
pragma Compile_Time_Warning (Standard.True, "Reset unimplemented");
raise Program_Error with "Unimplemented procedure Reset";

end Reset;

end Aux;

As we can see in this example, not only has gnatstub created a package body from all the
elements in the package specification, but it also created:

• Headers for each subprogram (as comments);
• Pragmas and exceptions that prevent us from using the unimplemented subprograms
in our application.

This is a good starting point for the implementation of the body. Please refer to the section
on gnatstub15 of the GNAT User's Guide for a detailed discussion of gnatstub and its options.

15 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#
the-body-stub-generator-gnatstub

28 Chapter 4. GNAT Tools

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-body-stub-generator-gnatstub
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-body-stub-generator-gnatstub

	GNAT Toolchain Basics
	Basic commands
	Compiler warnings
	-gnatwa switch and warning suppression
	Style checking

	GPRbuild
	Basic commands
	Project files
	Basic structure
	Customization

	Project dependencies
	Simple dependency
	Dependencies to dynamic libraries

	Configuration pragma files
	Configuration packages

	GNAT Studio
	Start-up
	Windows
	Linux

	Creating projects
	Building
	Debugging
	Debug information
	Improving main application
	Debugging the application

	Formal verification

	GNAT Tools
	gnatchop
	gnatprep
	gnatmem
	gnatmetric
	gnatdoc
	gnatpp
	gnatstub

