

SPARK for the MISRA-C
Developer

Release 2024-07

Yannick Moy

Jul 20, 2024

CONTENTS:

1 Preface 3

2 Enforcing Basic Program Consistency 5
2.1 Taming Text-Based Inclusion . 5
2.2 Hardening Link-Time Checking . 8
2.3 Going Towards Encapsulation . 10

3 Enforcing Basic Syntactic Guarantees 13
3.1 Distinguishing Code and Comments . 13
3.2 Specially Handling Function Parameters and Result 14

3.2.1 Handling the Result of Function Calls . 14
3.2.2 Handling Function Parameters . 15

3.3 Ensuring Control Structures Are Not Abused . 16
3.3.1 Preventing the Semicolon Mistake . 16
3.3.2 Avoiding Complex Switch Statements . 18
3.3.3 Avoiding Complex Loops . 20
3.3.4 Avoiding the Dangling Else Issue . 21

4 Enforcing Strong Typing 25
4.1 Enforcing Strong Typing for Pointers . 25

4.1.1 Pointers Are Not Addresses . 26
4.1.2 Pointers Are Not References . 27
4.1.3 Pointers Are Not Arrays . 28
4.1.4 Pointers Should Be Typed . 31

4.2 Enforcing Strong Typing for Scalars . 33
4.2.1 Restricting Operations on Types . 33

4.2.1.1 Arithmetic Operations on Arithmetic Types 34
4.2.1.2 Boolean Operations on Boolean . 36
4.2.1.3 Bitwise Operations on Unsigned Integers 37

4.2.2 Restricting Explicit Conversions . 38
4.2.3 Restricting Implicit Conversions . 39

5 Initializing Data Before Use 43
5.1 Detecting Reads of Uninitialized Data . 43
5.2 Detecting Partial or Redundant Initialization of Arrays and Structures 48

6 Controlling Side Effects 53
6.1 Preventing Undefined Behavior . 53
6.2 Reducing Programmer Confusion . 54
6.3 Side Effects and SPARK . 55

7 Detecting Undefined Behavior 59
7.1 Preventing Undefined Behavior in SPARK . 59
7.2 Proof of Absence of Run-Time Errors in SPARK . 60

i

8 Detecting Unreachable Code and Dead Code 65

9 Conclusion 69

10References 71
10.1 About MISRA C . 71
10.2 About SPARK . 72
10.3 About MISRA C and SPARK . 72

ii

SPARK for the MISRA-C Developer

Warning: This version of the website contains UNPUBLISHED contents. Please do not
share it externally!

Copyright © 2018 – 2022, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

This book presents the SPARK technology — the SPARK subset of Ada and its supporting
static analysis tools — through an example-driven comparison with the rules in the widely
known MISRA C subset of the C language.
This document was prepared by Yannick Moy, with contributions and review from Ben Bros-
gol.

Note: The code examples in this course use an 80-column limit, which is a typical limit
for Ada code. Note that, on devices with a small screen size, some code examples might
be difficult to read.

Note: Each code example from this book has an associated "code block metadata", which
contains the name of the "project" and an MD5 hash value. This information is used to
identify a single code example.
You can find all code examples in a zip file, which you can download from the learn website2.
The directory structure in the zip file is based on the code block metadata. For example, if
you're searching for a code example with this metadata:
• Project: Courses.Intro_To_Ada.Imperative_Language.Greet
• MD5: cba89a34b87c9dfa71533d982d05e6ab

you will find it in this directory:
projects/Courses/Intro_To_Ada/Imperative_Language/Greet/
cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:
1. Unpack the zip file;
2. Go to target directory;
3. Start GNAT Studio on this directory;
4. Build (or compile) the project;
5. Run the application (if a main procedure is available in the project).
1 http://creativecommons.org/licenses/by-sa/4.0
2 https://learn.adacore.com/zip/learning-ada_code.zip

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0
https://learn.adacore.com/zip/learning-ada_code.zip

SPARK for the MISRA-C Developer

2 CONTENTS:

CHAPTER

ONE

PREFACE

MISRA C appeared in 1998 as a coding standard for C; it focused on avoiding error-prone
programming features of the C programming language rather than on enforcing a particular
programming style. A study of coding standards for C by Les Hatton3 found that, compared
to ten typical coding standards for C, MISRA C was the only one to focus exclusively on error
avoidance rather than style enforcement, and by a very large margin.
The popularity of the C programming language, as well as its many traps and pitfalls, have
led to the huge success of MISRA C in domains where C is used for high-integrity sofware.
This success has driven tool vendors to proposemany competing implementations of MISRA
C4 checkers. Tools compete in particular on the coverage of MISRA C guidelines that they
help enforce, as it is impossible to enforce the 16 directives and 143 rules (collectively
referred to as guidelines) of MISRA C.
The 16 directives are broad guidelines, and it is not possible to define compliance in a
unique and automated way. For example, "all code should be traceable to documented
requirements" (Directive 3.1). Thus no tool is expected to enforce directives, as the MISRA
C:2012 states in introduction to the guidelines: "different tools may place widely different
interpretations on what constitutes a non-compliance."

The 143 rules on the contrary are completely and precisely defined, and "static analysis
tools should be capable of checking compliance with rules". But the same sentence contin-
ues with "subject to the limitations described in Section 6.5", which addresses "decidability
of rules". It turns out that 27 rules out of 143 are not decidable, so no tool can always detect
all violations of these rules without at the same time reporting "false alarms" on code that
does not constitute a violation.
An example of an undecidable rule is rule 1.3: "There shall be no occurrence of undefined
or critical unspecified behaviour." Appendix H of MISRA:C 2012 lists hundreds of cases of
undefined and critical unspecified behavior in the C programming language standard, a
majority of which are not individually decidable. For the most part, MISRA C checkers ignore
undecidable rules such as rule 1.3 and instead focus on the 116 rules for which detection of
violations can be automated. It is telling in that respect that the MISRA C:2012 document
and its accompanying set of examples (which can be downloaded from the MISRA website5)
does not provide any example for rule 1.3.
However, violations of undecidable rules such as rule 1.3 are known to have dramatic im-
pact on software quality. Violations of rule 1.3 in particular are commonly amplified by
compilers using the permission in the C standard to optimize aggressively without looking
at the consequences for programs with undefined or critical unspecified behavior. It would
be valid to ignore these rules if violations did not occur in practice, but on the contrary even
experienced programmers write C code with undefined or critical unspecified behavior. An
example comes from the MISRA C Committee itself in its "Appendix I: Example deviation
record" of the MISRA C:2012 document, repeated in "Appendix A: Example deviation record"
of the MISRA C: Compliance 2016 document6, where the following code is proposed as a

3 https://www.leshatton.org/Documents/MISRAC.pdf
4 https://en.wikipedia.org/wiki/MISRA_C
5 https://www.misra.org.uk
6 https://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA%3d&tabid=57

3

https://www.leshatton.org/Documents/MISRAC.pdf
https://en.wikipedia.org/wiki/MISRA_C
https://en.wikipedia.org/wiki/MISRA_C
https://www.misra.org.uk
https://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA%3d&tabid=57

SPARK for the MISRA-C Developer

deviation of rule 10.6 "The value of a composite expression shall not be assigned to an
object with wider essential type":

uint32_t prod = qty * time_step;

Here, the multiplication of two unsigned 16-bit values and assignment of the result to an
unsigned 32-bit variable constitutes a violation of the aforementioned rule, which gets justi-
fied for efficiency reasons. What the authors seem to have missed is that the multiplication
is then performed with the signed integer type int instead of the target unsigned type
uint32_t. Thus the multiplication of two unsigned 16-bit values may lead to an overflow
of the 32-bit intermediate signed result, which is an occurrence of an undefined behavior.
In such a case, a compiler is free to assume that the value of prod cannot exceed 231 - 1
(the maximal value of a signed 32-bit integer) as otherwise an undefined behavior would
have been triggered. For example, the undefined behavior with values 65535 for qty and
time_step is reported when running the code compiled by either the GCC or LLVM compiler
with option -fsanitize=undefined.
The MISRA C checkers that detect violations of undecidable rules are either unsound tools
that can detect only some of the violations, or sound tools that guarantee to detect all
such violations at the cost of possibly many false reports of violations. This is a direct
consequence of undecidability. However, static analysis technology is available that can
achieve soundness without inundating users with false alarms. One example is the SPARK
toolset developed by AdaCore, Altran and Inria, which is based on four principles:
• The base language Ada provides a solid foundation for static analysis through a well-
defined language standard, strong typing and rich specification features.

• The SPARK subset of Ada restricts the base language in essential ways to support static
analysis, by controlling sources of ambiguity such as side-effects and aliasing.

• The static analysis tools work mostly at the granularity of an individual function, mak-
ing the analysis more precise and minimizing the possibility of false alarms.

• The static analysis tools are interactive, allowing users to guide the analysis if neces-
sary or desired.

In this document, we show how SPARK can be used to achieve high code quality with guar-
antees that go beyond what would be feasible with MISRA C.
An on-line and interactive version of this document is available at AdaCore's
learn.adacore.com site7.

7 https://learn.adacore.com/courses/SPARK_for_the_MISRA_C_Developer

4 Chapter 1. Preface

https://learn.adacore.com/courses/SPARK_for_the_MISRA_C_Developer
https://learn.adacore.com/courses/SPARK_for_the_MISRA_C_Developer

CHAPTER

TWO

ENFORCING BASIC PROGRAM CONSISTENCY

Many consistency properties that are taken for granted in other languages are not enforced
in C. The basic property that all uses of a variable or function are consistent with its type is
not enforced by the language and is also very difficult to enforce by a tool. Three features
of C contribute to that situation:
• the textual-based inclusion of files means that every included declaration is subject to
a possibly different reinterpretation depending on context.

• the lack of consistency requirements across translation units means that type incon-
sistencies can only be detected at link time, something linkers are ill-equipped to do.

• the default of making a declaration externally visible means that declarations that
should be local will be visible to the rest of the program, increasing the chances for
inconsistencies.

MISRA C contains guidelines on all three fronts to enforce basic program consistency.

2.1 Taming Text-Based Inclusion

The text-based inclusion of files is one of the dated idiosyncracies of the C programming
language that was inherited by C++ and that is known to cause quality problems, especially
during maintenance. Although multiple inclusion of a file in the same translation unit can
be used to emulate template programming, it is generally undesirable. Indeed, MISRA C
defines Directive 4.10 precisely to forbid it for header files: "Precautions shall be taken in
order to prevent the contents of a header file being included more than once".
The subsequent section on "Preprocessing Directives" contains 14 rules restricting the use
of text-based inclusion through preprocessing. Among other things these rules forbid the
use of the #undef directive (which works around conflicts in macro definitions introduced by
text-based inclusion) and enforces the well-known practice of enclosing macro arguments
in parentheses (to avoid syntactic reinterpretations in the context of the macro use).
SPARK (and more generally Ada) does not suffer from these problems, as it relies on se-
mantic inclusion of context instead of textual inclusion of content, using with clauses:

Listing 1: hello_world.adb
1 with Ada.Text_IO;
2

3 procedure Hello_World is
4 begin
5 Ada.Text_IO.Put_Line ("hello, world!");
6 end Hello_World;

Code block metadata

5

SPARK for the MISRA-C Developer

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 5ed9609dd61bbcee252bb8529a6d3479

Runtime output

hello, world!

Note that with clauses are only allowed at the beginning of files; the compiler issues an
error if they are used elsewhere:

Listing 2: hello_world.adb
1 procedure Hello_World is
2 with Ada.Text_IO; -- Illegal
3 begin
4 Ada.Text_IO.Put_Line ("hello, world!");
5 end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: afa19e8e2c114a5832b49e9efcbe675e

Importing a unit (i.e., specifying it in a with clause) multiple times is harmless, as it is
equivalent to importing it once, but a compiler warning lets us know about the redundancy:

Listing 3: hello_world.adb
1 with Ada.Text_IO;
2 with Ada.Text_IO; -- Legal but useless
3

4 procedure Hello_World is
5 begin
6 Ada.Text_IO.Put_Line ("hello, world!");
7 end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 270928968d7beb4809af9e62df530722

Runtime output

hello, world!

The order in which units are imported is irrelevant. All orders are valid and have the same
semantics.
No conflict arises from importing multiple units, even if the same name is defined in several,
since each unit serves as namespace for the entities which it defines. So we can define our
own version of Put_Line in some Helper unit and import it together with the standard
version defined in Ada.Text_IO:

Listing 4: helper.ads
1 package Helper is
2 procedure Put_Line (S : String);
3 end Helper;

6 Chapter 2. Enforcing Basic Program Consistency

SPARK for the MISRA-C Developer

Listing 5: helper.adb
1 with Ada.Text_IO;
2

3 package body Helper is
4 procedure Put_Line (S : String) is
5 begin
6 Ada.Text_IO.Put_Line ("Start helper version");
7 Ada.Text_IO.Put_Line (S);
8 Ada.Text_IO.Put_Line ("End helper version");
9 end Put_Line;
10 end Helper;

Listing 6: hello_world.adb
1 with Ada.Text_IO;
2 with Helper;
3

4 procedure Hello_World is
5 begin
6 Ada.Text_IO.Put_Line ("hello, world!");
7 Helper.Put_Line ("hello, world!");
8 end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 5fa012cc996e24e3b1f604e35bbba44f

Runtime output

hello, world!
Start helper version
hello, world!
End helper version

The only way a conflict can arise is if we want to be able to reference Put_Line directly,
without using the qualified name Ada.Text_IO.Put_Line or Helper.Put_Line. The use
clause makes public declarations from a unit available directly:

Listing 7: helper.ads
1 package Helper is
2 procedure Put_Line (S : String);
3 end Helper;

Listing 8: helper.adb
1 with Ada.Text_IO;
2

3 package body Helper is
4 procedure Put_Line (S : String) is
5 begin
6 Ada.Text_IO.Put_Line ("Start helper version");
7 Ada.Text_IO.Put_Line (S);
8 Ada.Text_IO.Put_Line ("End helper version");
9 end Put_Line;
10 end Helper;

2.1. Taming Text-Based Inclusion 7

SPARK for the MISRA-C Developer

Listing 9: hello_world.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Helper; use Helper;
3

4 procedure Hello_World is
5 begin
6 Ada.Text_IO.Put_Line ("hello, world!");
7 Helper.Put_Line ("hello, world!");
8 Put_Line ("hello, world!"); -- ERROR
9 end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 405e138d78e0dc869e8a340681d87e61

Build output

hello_world.adb:8:04: error: ambiguous expression (cannot resolve "Put_Line")
hello_world.adb:8:04: error: possible interpretation at helper.ads:2
hello_world.adb:8:04: error: possible interpretation at a-textio.ads:507
gprbuild: *** compilation phase failed

Here, both units Ada.Text_IO and Helper define a procedure Put_Line taking a String as
argument, so the compiler cannot disambiguate the direct call to Put_Line and issues an
error.
Note that it helpfully points to candidate declarations, so that the user can decide which
qualified name to use as in the previous two calls.
Issues arising in C as a result of text-based inclusion of files are thus completely prevented
in SPARK (and Ada) thanks to semantic import of units. Note that the C++ committee
identified this weakness some time ago and has approved8 the addition of modules to
C++20, which provide a mechanism for semantic import of units.

2.2 Hardening Link-Time Checking

An issue related to text-based inclusion of files is that there is no single source for declaring
the type of a variable or function. If a file origin.c defines a variable var and functions
fun and print:

Listing 10: origin.c
1 #include <stdio.h>
2

3 int var = 0;
4 int fun() {
5 return 1;
6 }
7 void print() {
8 printf("var = %d\n", var);
9 }

Code block metadata

8 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4720.pdf

8 Chapter 2. Enforcing Basic Program Consistency

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4720.pdf

SPARK for the MISRA-C Developer

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Origin
MD5: 3395f1e43408d5bc5c1e6b8431c959d6

and the corresponding header file origin.h declares var, fun and print as having external
linkage:

Listing 11: origin.h
1 extern int var;
2 extern int fun();
3 extern void print();

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Origin
MD5: e8e880a16f5099dc1e0a75ffeeeb9468

then client code can include origin.h with declarations for var and fun:

Listing 12: main.c
1 #include "origin.h"
2

3 int main() {
4 var = fun();
5 print();
6 return 0;
7 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Origin
MD5: 3d4582d3956897b657778ae355d0ef1b

Runtime output

var = 1

or, equivalently, repeat these declarations directly:

Listing 13: main.c
1 extern int var;
2 extern int fun();
3 extern void print();
4

5 int main() {
6 var = fun();
7 print();
8 return 0;
9 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Origin
MD5: 4b25aa011b580f92f2831a48008fbef6

Runtime output

var = 1

2.2. Hardening Link-Time Checking 9

SPARK for the MISRA-C Developer

Then, if an inconsistency is introduced in the type of var of fun between these alternative
declarations and their actual type, the compiler cannot detect it. Only the linker, which has
access to the set of object files for a program, can detect such inconsistencies. However, a
linker's main task is to link, not to detect inconsistencies, and so inconsistencies in the type
of variables and functions in most cases cannot be detected. For example, most linkers
cannot detect if the type of var or the return type of fun is changed to float in the decla-
rations above. With the declaration of var changed to float, the above program compiles
and runs without errors, producing the erroneous output var = 1065353216 instead of var
=1. With the return type of fun changed to float instead, the program still compiles and
runs without errors, producing this time the erroneous output var = 0.
The inconsistency just discussed is prevented by MISRA C Rule 8.3 "All declarations of an ob-
ject or function shall use the same names and type qualifiers". This is a decidable rule, but
it must be enforced at system level, looking at all translation units of the complete program.
MISRA C Rule 8.6 also requires a unique definition for a given identifier across translation
units, and Rule 8.5 requires that an external declaration shared between translation units
comes from the same file. There is even a specific section on "Identifiers" containing 9 rules
requiring uniqueness of various categories of identifiers.
SPARK (and more generally Ada) does not suffer from these problems, as it relies on se-
mantic inclusion of context using with clauses to provide a unique declaration for each
entity.

2.3 Going Towards Encapsulation

Many problems in C stem from the lack of encapsulation. There is no notion of namespace
that would allow a file to make its declarations available without risking a conflict with
other files. Thus MISRA C has a number of guidelines that discourage the use of external
declarations:
• Directive 4.8 encourages hiding the definition of structures and unions in implemen-
tation files (.c files) when possible: "If a pointer to a structure or union is never deref-
erenced within a translation unit, then the implementation of the object should be
hidden."

• Rule 8.7 forbids the use of external declarations when not needed: "Functions and
objects should not be defined with external linkage if they are referenced in only one
translation unit."

• Rule 8.8 forces the explicit use of keyword static when appropriate: "The static stor-
age class specifier shall be used in all declarations of objects and functions that have
internal linkage."

The basic unit of modularization in SPARK, as in Ada, is the package. A package always has
a spec (in an .ads file), which defines the interface to other units. It generally also has a
body (in an .adb file), which completes the spec with an implementation. Only declarations
from the package spec are visible from other units when they import (with) the package. In
fact, only declarations from what is called the "visible part" of the spec (before the keyword
private) are visible from units that with the package.

Listing 14: helper.ads
1 package Helper is
2 procedure Public_Put_Line (S : String);
3 private
4 procedure Private_Put_Line (S : String);
5 end Helper;

10 Chapter 2. Enforcing Basic Program Consistency

SPARK for the MISRA-C Developer

Listing 15: helper.adb
1 with Ada.Text_IO;
2

3 package body Helper is
4 procedure Public_Put_Line (S : String) is
5 begin
6 Ada.Text_IO.Put_Line (S);
7 end Public_Put_Line;
8

9 procedure Private_Put_Line (S : String) is
10 begin
11 Ada.Text_IO.Put_Line (S);
12 end Private_Put_Line;
13

14 procedure Body_Put_Line (S : String) is
15 begin
16 Ada.Text_IO.Put_Line (S);
17 end Body_Put_Line;
18 end Helper;

Listing 16: hello_world.adb
1 with Helper; use Helper;
2

3 procedure Hello_World is
4 begin
5 Public_Put_Line ("hello, world!");
6 Private_Put_Line ("hello, world!"); -- ERROR
7 Body_Put_Line ("hello, world!"); -- ERROR
8 end Hello_World;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hello_World
MD5: 148fd8101cc72413909675534f5e359c

Build output

hello_world.adb:6:04: error: "Private_Put_Line" is not visible
hello_world.adb:6:04: error: non-visible (private) declaration at helper.ads:4
hello_world.adb:7:04: error: "Body_Put_Line" is undefined
gprbuild: *** compilation phase failed

Note the different errors on the calls to the private and body versions of Put_Line. In
the first case the compiler can locate the candidate procedure but it is illegal to call
it from Hello_World, in the second case the compiler does not even know about any
Body_Put_Line when compiling Hello_World since it only looks at the spec and not the
body.
SPARK (and Ada) also allow defining a type in the private part of a package spec while
simply declaring the type name in the public ("visible") part of the spec. This way, client
code — i.e., code that with's the package — can use the type, typically through a public
API, but have no access to how the type is implemented:

Listing 17: vault.ads
1 package Vault is
2 type Data is private;
3 function Get (X : Data) return Integer;
4 procedure Set (X : out Data; Value : Integer);

(continues on next page)

2.3. Going Towards Encapsulation 11

SPARK for the MISRA-C Developer

(continued from previous page)
5 private
6 type Data is record
7 Val : Integer;
8 end record;
9 end Vault;

Listing 18: vault.adb
1 package body Vault is
2 function Get (X : Data) return Integer is (X.Val);
3 procedure Set (X : out Data; Value : Integer) is
4 begin
5 X.Val := Value;
6 end Set;
7 end Vault;

Listing 19: information_system.ads
1 with Vault;
2

3 package Information_System is
4 Archive : Vault.Data;
5 end Information_System;

Listing 20: hacker.adb
1 with Information_System;
2 with Vault;
3

4 procedure Hacker is
5 V : Integer := Vault.Get (Information_System.Archive);
6 begin
7 Vault.Set (Information_System.Archive, V + 1);
8 Information_System.Archive.Val := 0; -- ERROR
9 end Hacker;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Program_Consistency.Hacker
MD5: 065ed34dc727e2eb0bdc50a667cb1f78

Build output

hacker.adb:8:22: error: invalid prefix in selected component "Information_System.
↪Archive"

gprbuild: *** compilation phase failed

Note that it is possible to declare a variable of type Vault.Data in package Informa-
tion_System and to get/set it through its API in procedure Hacker, but not to directly access
its Val field.

12 Chapter 2. Enforcing Basic Program Consistency

CHAPTER

THREE

ENFORCING BASIC SYNTACTIC GUARANTEES

C's syntax is concise but also very permissive, which makes it easy to write programs whose
effect is not what was intended. MISRA C contains guidelines to:
• clearly distinguish code from comments
• specially handle function parameters and result
• ensure that control structures are not abused

3.1 Distinguishing Code and Comments

The problem arises from block comments in C, starting with /* and ending with */. These
comments do not nest with other block comments or with line comments. For example,
consider a block comment surrounding three lines that each increase variable a by one:

/*
++a;
++a;
++a; */

Now consider what happens if the first line is commented out using a block comment and
the third line is commented out using a line comment (also known as a C++ style comment,
allowed in C since C99):

/*
/* ++a; */
++a;
// ++a; */

The result of commenting out code that was already commented out is that the second line
of code becomes live! Of course, the above example is simplified, but similar situations
do arise in practice, which is the reason for MISRA C Directive 4.1 "Sections of code should
not be 'commented out'". This is reinforced with Rules 3.1 and 3.2 from the section on
"Comments" that forbid in particular the use of /* inside a comment like we did above.
These situations cannot arise in SPARK (or in Ada), as only line comments are permitted,
using --:

-- A := A + 1;
-- A := A + 1;
-- A := A + 1;

So commenting again the first and third lines does not change the effect:

-- -- A := A + 1;
-- A := A + 1;
-- -- A := A + 1;

13

SPARK for the MISRA-C Developer

3.2 Specially Handling Function Parameters and Result

3.2.1 Handling the Result of Function Calls

It is possible in C to ignore the result of a function call, either implicitly or else explicitly by
converting the result to void:

f();
(void)f();

This is particularly dangerous when the function returns an error status, as the caller is then
ignoring the possibility of errors in the callee. Thus the MISRA C Directive 4.7: "If a function
returns error information, then that error information shall be tested". In the general case
of a function returning a result which is not an error status, MISRA C Rule 17.7 states that
"The value returned by a function having non-void return type shall be used", where an
explicit conversion to void counts as a use.
In SPARK, as in Ada, the result of a function call must be used, for example by assigning it to
a variable or by passing it as a parameter, in contrast with procedures (which are equivalent
to void-returning functions in C). SPARK analysis also checks that the result of the function
is actually used to influence an output of the calling subprogram. For example, the first two
calls to F in the following are detected as unused, even though the result of the function
call is assigned to a variable, which is itself used in the second case:

Listing 1: fun.ads
1 package Fun is
2 function F return Integer is (1);
3 end Fun;

Listing 2: use_f.ads
1 procedure Use_F (Z : out Integer);

Listing 3: use_f.adb
1 with Fun; use Fun;
2

3 procedure Use_F (Z : out Integer) is
4 X, Y : Integer;
5 begin
6 X := F;
7

8 Y := F;
9 X := Y;
10

11 Z := F;
12 end Use_F;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Func_Return
MD5: 4fc78b4136677d6338984ab8ccfa5cd1

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
use_f.adb:6:06: warning: unused assignment

(continues on next page)

14 Chapter 3. Enforcing Basic Syntactic Guarantees

SPARK for the MISRA-C Developer

(continued from previous page)
use_f.adb:8:06: warning: unused assignment
use_f.adb:9:06: warning: unused assignment

Only the result of the third call is used to influence the value of an output of Use_F, here
the output parameter Z of the procedure.

3.2.2 Handling Function Parameters

In C, function parameters are treated as local variables of the function. They can be mod-
ified, but these modifications won't be visible outside the function. This is an opportunity
for mistakes. For example, the following code, which appears to swap the values of its
parameters, has in reality no effect:

void swap (int x, int y) {
int tmp = x;
x = y;
y = tmp;

}

MISRA C Rule 17.8 prevents such mistakes by stating that "A function parameter should not
be modified".
No such rule is needed in SPARK, since function parameters are only inputs so cannot be
modified, and procedure parameters have amode defining whether they can bemodified or
not. Only parameters of mode out or ada:in out can be modified — and these are prohibited
from functions in SPARK — and their modification is visible at the calling site. For example,
assigning to a parameter of mode in (the default parameter mode if omitted) results in
compilation errors:

Listing 4: swap.ads
1 procedure Swap (X, Y : Integer);

Listing 5: swap.adb
1 procedure Swap (X, Y : Integer) is
2 Tmp : Integer := X;
3 begin
4 X := Y; -- ERROR
5 Y := Tmp; -- ERROR
6 end Swap;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Swap
MD5: 187927c610e202f2e1eee6a602fda25e

Build output

swap.adb:4:04: error: assignment to "in" mode parameter not allowed
swap.adb:5:04: error: assignment to "in" mode parameter not allowed
gprbuild: *** compilation phase failed

Here is the output of AdaCore's GNAT compiler:

1. procedure Swap (X, Y : Integer) is
2. Tmp : Integer := X;
3. begin

(continues on next page)

3.2. Specially Handling Function Parameters and Result 15

SPARK for the MISRA-C Developer

(continued from previous page)
4. X := Y; -- ERROR

|
>>> assignment to "in" mode parameter not allowed

5. Y := Tmp; -- ERROR
|

>>> assignment to "in" mode parameter not allowed

6. end Swap;

The correct version of Swap in SPARK takes parameters of mode in out:

Listing 6: swap.ads
1 procedure Swap (X, Y : in out Integer);

Listing 7: swap.adb
1 procedure Swap (X, Y : in out Integer) is
2 Tmp : constant Integer := X;
3 begin
4 X := Y;
5 Y := Tmp;
6 end Swap;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Swap
MD5: c983a229fc5a69db5dbb85f49a91b325

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

3.3 Ensuring Control Structures Are Not Abused

The previous issue (ignoring the result of a function call) is an example of a control structure
being abused, due to the permissive syntax of C. There aremany such examples, and MISRA
C contains a number of guidelines to prevent such abuse.

3.3.1 Preventing the Semicolon Mistake

Because a semicolon can act as a statement, and because an if-statement and a loop accept
a simple statement (possibly only a semicolon) as body, inserting a single semicolon can
completely change the behavior of the code:

int func() {
if (0)

return 1;
while (1)

return 0;
return 0;

}

16 Chapter 3. Enforcing Basic Syntactic Guarantees

SPARK for the MISRA-C Developer

As written, the code above returns with status 0. If a semicolon is added after the first line
(if (0);), then the code returns with status 1. If a semicolon is added instead after the
third line (while (1);), then the code does not return. To prevent such surprises, MISRA C
Rule 15.6 states that "The body of an iteration-statement or a selection-statement shall be
a compound statement" so that the code above must be written:

int func() {
if (0) {

return 1;
}
while (1) {

return 0;
}
return 0;

}

Note that adding a semicolon after the test of the if or while statement has the same
effect as before! But doing so would violate MISRA C Rule 15.6.
In SPARK, the semicolon is not a statement by itself, but rather a marker that terminates
a statement. The null statement is an explicit null;, and all blocks of statements have
explicit begin and endmarkers, which prevents mistakes that are possible in C. The SPARK
(also Ada) version of the above C code is as follows:

Listing 8: func.ads
1 function Func return Integer;

Listing 9: func.adb
1 function Func return Integer is
2 begin
3 if False then
4 return 1;
5 end if;
6 while True loop
7 return 0;
8 end loop;
9 return 0;
10 end Func;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Semicolon
MD5: 34fc5967c41d337aada17429ee5f44e9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
func.adb:3:04: warning: statement has no effect
func.adb:4:07: warning: this statement is never reached

3.3. Ensuring Control Structures Are Not Abused 17

SPARK for the MISRA-C Developer

3.3.2 Avoiding Complex Switch Statements

Switch statements are well-known for being easily misused. Control can jump to any case
section in the body of the switch, which in C can be before any statement contained in the
body of the switch. At the end of the sequence of statements associated with a case, exe-
cution continues with the code that follows unless a break is encountered. This is a recipe
for mistakes, and MISRA C enforces a simpler well-formed syntax for switch statements
defined in Rule 16.1: "All switch statements shall be well-formed".
The other rules in the section on "Switch statements" go on detailing individual conse-
quences of Rule 16.1. For example Rule 16.3 forbids the fall-through from one case to the
next: "An unconditional break statement shall terminate every switch-clause". As another
example, Rule 16.4 mandates the presence of a default case to handle cases not taken into
account explicitly: "Every switch statement shall have a default label".
The analog of the C switch statements in SPARK (and in Ada) is the case statement. This
statement has a simpler and more robust structure than the C switch, with control auto-
matically exiting after one of the case alternatives is executed, and the compiler checking
that the alternatives are disjoint (like in C) and complete (unlike in C). So the following code
is rejected by the compiler:

Listing 10: sign_domain.ads
1 package Sign_Domain is
2

3 type Sign is (Negative, Zero, Positive);
4

5 function Opposite (A : Sign) return Sign is
6 (case A is -- ERROR
7 when Negative => Positive,
8 when Positive => Negative);
9

10 function Multiply (A, B : Sign) return Sign is
11 (case A is
12 when Negative => Opposite (B),
13 when Zero | Positive => Zero,
14 when Positive => B); -- ERROR
15

16 procedure Get_Sign (X : Integer; S : out Sign);
17

18 end Sign_Domain;

Listing 11: sign_domain.adb
1 package body Sign_Domain is
2

3 procedure Get_Sign (X : Integer; S : out Sign) is
4 begin
5 case X is
6 when 0 => S := Zero;
7 when others => S := Negative; -- ERROR
8 when 1 .. Integer'Last => S := Positive;
9 end case;
10 end Get_Sign;
11

12 end Sign_Domain;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Case_Statement
MD5: d345a4d23b5b2402f8bd103e5e550a3b

18 Chapter 3. Enforcing Basic Syntactic Guarantees

SPARK for the MISRA-C Developer

Build output

sign_domain.adb:7:15: error: the choice "others" must appear alone and last
sign_domain.ads:6:07: error: missing case value: "Zero"
sign_domain.ads:14:15: error: duplication of choice value: "Positive" at line 13
gprbuild: *** compilation phase failed

The error in function Opposite is that the when choices do not cover all values of the target
expression. Here, A is of the enumeration type Sign, so all three values of the enumeration
must be covered.
The error in function Multiply is that Positive is covered twice, in the second and the
third alternatives. This is not allowed.
The error in procedure Get_Sign is that the others choice (the equivalent of C default
case) must come last. Note that an others choice would be useless in Opposite and Mul-
tiply, as all Sign values are covered.
Here is a correct version of the same code:

Listing 12: sign_domain.ads
1 package Sign_Domain is
2

3 type Sign is (Negative, Zero, Positive);
4

5 function Opposite (A : Sign) return Sign is
6 (case A is
7 when Negative => Positive,
8 when Zero => Zero,
9 when Positive => Negative);
10

11 function Multiply (A, B : Sign) return Sign is
12 (case A is
13 when Negative => Opposite (B),
14 when Zero => Zero,
15 when Positive => B);
16

17 procedure Get_Sign (X : Integer; S : out Sign);
18

19 end Sign_Domain;

Listing 13: sign_domain.adb
1 package body Sign_Domain is
2

3 procedure Get_Sign (X : Integer; S : out Sign) is
4 begin
5 case X is
6 when 0 => S := Zero;
7 when 1 .. Integer'Last => S := Positive;
8 when others => S := Negative;
9 end case;
10 end Get_Sign;
11

12 end Sign_Domain;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Case_Statement
MD5: 1c99fc53d2d2c0dddbea5e5b0a6c5746

Prover output

3.3. Ensuring Control Structures Are Not Abused 19

SPARK for the MISRA-C Developer

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
sign_domain.ads:17:37: info: initialization of "S" proved

3.3.3 Avoiding Complex Loops

Similarly to C switches, for-loops in C can become unreadable. MISRA C thus enforces a sim-
pler well-formed syntax for for-loops, defined in Rule 14.2: "A for loop shall be well-formed".
The main effect of this simplification is that for-loops in C look like for-loops in SPARK (and
in Ada), with a loop counter that is incremented or decremented at each iteration. Section
8.14 defines precisely what a loop counter is:
1. It has a scalar type;
2. Its value varies monotonically on each loop iteration; and
3. It is used in a decision to exit the loop.

In particular, Rule 14.2 forbids any modification of the loop counter inside the loop body.
Here's the example used in MISRA C:2012 to illustrate this rule:

bool_t flag = false;

for (int16_t i = 0; (i < 5) && !flag; i++)
{
if (C)
{

flag = true; /* Compliant - allows early termination of loop */
}

i = i + 3; /* Non-compliant - altering the loop counter */
}

The equivalent SPARK (and Ada) code does not compile, because of the attempt to modify
the value of the loop counter:

Listing 14: well_formed_loop.adb
1 procedure Well_Formed_Loop (C : Boolean) is
2 Flag : Boolean := False;
3 begin
4 for I in 0 .. 4 loop
5 exit when not Flag;
6

7 if C then
8 Flag := True;
9 end if;
10

11 I := I + 3; -- ERROR
12 end loop;
13 end Well_Formed_Loop;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Well_Formed_Loop
MD5: 842564c961aa018e03e03f81439995ec

Build output

well_formed_loop.adb:11:07: error: assignment to loop parameter not allowed
gprbuild: *** compilation phase failed

20 Chapter 3. Enforcing Basic Syntactic Guarantees

SPARK for the MISRA-C Developer

Removing the problematic line leads to a valid program. Note that the additional condition
being tested in the C for-loop has been moved to a separate exit statement at the start of
the loop body.
SPARK (and Ada) loops can increase (or, with explicit syntax, decrease) the loop counter by
1 at each iteration.

for I in reverse 0 .. 4 loop
... -- Successive values of I are 4, 3, 2, 1, 0

end loop;

SPARK loops can iterate over any discrete type; i.e., integers as above or enumerations:

type Sign is (Negative, Zero, Positive);

for S in Sign loop
...

end loop;

3.3.4 Avoiding the Dangling Else Issue

C does not provide a closing symbol for an if-statement. This makes it possible to write the
following code, which appears to try to return the absolute value of its argument, while it
actually does the opposite:

Listing 15: main.c
1 #include <stdio.h>
2

3 int absval (int x) {
4 int result = x;
5 if (x >= 0)
6 if (x == 0)
7 result = 0;
8 else
9 result = -x;
10 return result;
11 }
12

13 int main() {
14 printf("absval(5) = %d\n", absval(5));
15 printf("absval(0) = %d\n", absval(0));
16 printf("absval(-10) = %d\n", absval(-10));
17 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Dangling_Else_C
MD5: c180a948dd8bed4e3b97efde1522214c

Runtime output

absval(5) = -5
absval(0) = 0
absval(-10) = -10

The warning issued by GCC or LLVM with option -Wdangling-else (implied by -Wall) gives
a clue about the problem: although the else branch is written as though it completes the
outer if-statement, in fact it completes the inner if-statement.

3.3. Ensuring Control Structures Are Not Abused 21

SPARK for the MISRA-C Developer

MISRA C Rule 15.6 avoids the problem: "The body of an iteration-statement or a selection-
statement shall be a compound statement". That's the same rule as the one shown earlier
for Preventing the Semicolon Mistake (page 16). So the code for absval must be written:

Listing 16: main.c
1 #include <stdio.h>
2

3 int absval (int x) {
4 int result = x;
5 if (x >= 0) {
6 if (x == 0) {
7 result = 0;
8 }
9 } else {
10 result = -x;
11 }
12 return result;
13 }
14

15 int main() {
16 printf("absval(5) = %d\n", absval(5));
17 printf("absval(0) = %d\n", absval(0));
18 printf("absval(-10) = %d\n", absval(-10));
19 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Dangling_Else_
↪MISRA_C

MD5: 2b76377aca52ff45ed6b19fa1f367473

Runtime output

absval(5) = 5
absval(0) = 0
absval(-10) = 10

which has the expected behavior.
In SPARK (as in Ada), each if-statement has a matching endmarker end if; so the dangling-
else problem cannot arise. The above C code is written as follows:

Listing 17: absval.ads
1 function Absval (X : Integer) return Integer;

Listing 18: absval.adb
1 function Absval (X : Integer) return Integer is
2 Result : Integer := X;
3 begin
4 if X >= 0 then
5 if X = 0 then
6 Result := 0;
7 end if;
8 else
9 Result := -X;
10 end if;
11 return Result;
12 end Absval;

Code block metadata

22 Chapter 3. Enforcing Basic Syntactic Guarantees

SPARK for the MISRA-C Developer

Project: Courses.SPARK_For_The_MISRA_C_Dev.Syntactic_Guarantees.Dangling_Else_Ada
MD5: e867b6354ef7bdd89bae1673e888153a

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
absval.adb:9:17: medium: overflow check might fail, cannot prove upper bound for -

↪X [reason for check: result of negation must fit in a 32-bits machine integer]␣
↪[possible fix: add precondition (-X in Integer) to subprogram at absval.ads:1]

gnatprove: unproved check messages considered as errors

Interestingly, SPARK analysis detects here that the negation operation on line 9 might over-
flow. That's an example of runtime error detection which will be covered in the chapter on
Detecting Undefined Behavior (page 59).

3.3. Ensuring Control Structures Are Not Abused 23

SPARK for the MISRA-C Developer

24 Chapter 3. Enforcing Basic Syntactic Guarantees

CHAPTER

FOUR

ENFORCING STRONG TYPING

Annex C of MISRA C:2012 summarizes the problem succinctly:
"ISO C may be considered to exhibit poor type safety as it permits a wide range of
implicit type conversions to take place. These type conversions can compromise
safety as their implementation-defined aspects can cause developer confusion."

The most severe consequences come from inappropriate conversions involving pointer
types, as they can cause memory safety violations. Two sections of MISRA C are dedicated
to these issues: "Pointer type conversions" (9 rules) and "Pointers and arrays" (8 rules).
Inappropriate conversions between scalar types are only slightly less severe, as they may
introduce arbitrary violations of the intended functionality. MISRA C has gone to great
lengths to improve the situation, by defining a stricter type system on top of the C lan-
guage. This is described in Appendix D of MISRA C:2012 and in the dedicated section on
"The essential type model" (8 rules).

4.1 Enforcing Strong Typing for Pointers

Pointers in C provide a low-level view of the addressable memory as a set of integer ad-
dresses. To write at address 42, just go through a pointer:

Listing 1: main.c
1 int main() {
2 int *p = 42;
3 *p = 0;
4 return 0;
5 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointers_C
MD5: 005183ada50cb6642f38a3640d77efff

Running this program is likely to hit a segmentation fault on an operating system, or to
cause havoc in an embedded system, both because address 42 will not be correctly aligned
on a 32-bit or 64-bit machine and because this address is unlikely to correspond to valid
addressable data for the application. The compiler might issue a helpful warning on the
above code (with option -Wint-conversion implied by -Wall in GCC or LLVM), but note
that the warning disappears when explicitly converting value 42 to the target pointer type,
although the problem is still present.
Beyond their ability to denote memory addresses, pointers are also used in C to pass ref-
erences as inputs or outputs to function calls, to construct complex data structures with
indirection or sharing, and to denote arrays of elements. Pointers are thus at once perva-
sive, powerful and fragile.

25

SPARK for the MISRA-C Developer

4.1.1 Pointers Are Not Addresses

In an attempt to rule out issues that come from direct addressing of memory with pointers,
MISRA C states in Rule 11.4 that "A conversion should not be performed between a pointer
to object and an integer type". As this rule is classified as only Advisory, MISRA C completes
it with two Required rules:
• Rule 11.6: "A cast shall not be performed between pointer to void and an arithmetic
type"

• Rule 11.7: "A cast shall not be performed between pointer to object and a non-integer
arithmetic type"

In Ada, pointers are not addresses, and addresses are not integers. An opaque standard
type System.Address is used for addresses, and conversions to/from integers are provided
in a standard package System.Storage_Elements. The previous C code can be written as
follows in Ada:

Listing 2: pointer.adb
1 with System;
2 with System.Storage_Elements;
3

4 procedure Pointer is
5 A : constant System.Address := System.Storage_Elements.To_Address (42);
6 M : aliased Integer with Address => A;
7 P : constant access Integer := M'Access;
8 begin
9 P.all := 0;
10 end Pointer;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointers_Ada
MD5: 32ac91ade61a39d3505d155d7b97a8a5

The integer value 42 is converted to a memory address A by calling System.
Storage_Elements.To_Address, which is then used as the address of integer variable M.
The pointer variable P is set to point to M (which is allowed because M is declared as aliased).
Ada requires more verbiage than C:
• The integer value 42 must be explicitly converted to type Address
• To get a pointer to a declared variable such as M, the declaration must be marked as
aliased

The added syntax helps first in making clear what is happening and, second, in ensuring
that a potentially dangerous feature (assigning to a value at a specific machine address) is
not used inadvertently.
The above example is legal in SPARK, but the SPARK analysis tool issues warnings as it
cannot control how the program or its environment may update the memory cell at address
42.

26 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer

4.1.2 Pointers Are Not References

Passing parameters by reference is critical for efficient programs, but the absence of refer-
ences distinct from pointers in C incurs a serious risk. Any parameter of a pointer type can
be copied freely to a variable whose lifetime is longer than the object pointed to, a problem
known as "dangling pointers". MISRA C forbids such uses in Rule 18.6: "The address of
an object with automatic storage shall not be copied to another object that persists after
the first object has ceased to exist". Unfortunately, enforcing this rule is difficult, as it is
undecidable.
In SPARK, parameters can be passed by reference, but no pointer to the parameter can be
stored past the return point of the function, which completely solves this issue. In fact, the
decision to pass a parameter by copy or by reference rests in many cases with the compiler,
but such compiler dependency has no effect on the functional behavior of a SPARK program.
In the example below, the compiler may decide to pass parameter P of procedure Rotate_X
either by copy or by reference, but regardless of the choice the postcondition of Rotate_X
will hold: the final value of P will be modified by rotation around the X axis.

Listing 3: geometry.ads
1 package Geometry is
2

3 type Point_3D is record
4 X, Y, Z : Float;
5 end record;
6

7 procedure Rotate_X (P : in out Point_3D) with
8 Post => P = P'Old'Update (Y => P.Z'Old, Z => -P.Y'Old);
9

10 end Geometry;

Listing 4: geometry.adb
1 package body Geometry is
2

3 procedure Rotate_X (P : in out Point_3D) is
4 Tmp : constant Float := P.Y;
5 begin
6 P.Y := P.Z;
7 P.Z := -Tmp;
8 end Rotate_X;
9

10 end Geometry;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Geometry
MD5: d3801cf1413887ffd5fff8b6b86b7742

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
geometry.ads:8:14: info: postcondition proved

SPARK's analysis tool can mathematically prove that the postcondition is true.

4.1. Enforcing Strong Typing for Pointers 27

SPARK for the MISRA-C Developer

4.1.3 Pointers Are Not Arrays

The greatest source of vulnerabilities regarding pointers is their use as substitutes for ar-
rays. Although the C language has a syntax for declaring and accessing arrays, this is just
a thin syntactic layer on top of pointers. Thus:
• Array access is just pointer arithmetic;
• If a function is to manipulate an array then the array's length must be separately
passed as a parameter; and

• The program is susceptible to the various vulnerabilities originating from the confusion
of pointers and arrays, such as buffer overflow.

Consider a function that counts the number of times a value is present in an array. In C,
this could be written:

Listing 5: main.c
1 #include <stdio.h>
2

3 int count(int *p, int len, int v) {
4 int count = 0;
5 while (len--) {
6 if (*p++ == v) {
7 count++;
8 }
9 }
10 return count;
11 }
12

13 int main() {
14 int p[5] = {0, 3, 9, 3, 3};
15 int c = count(p, 5, 3);
16 printf("value 3 is seen %d times in p\n", c);
17 return 0;
18 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Arrays_C
MD5: 34e3f7c2352e89a7c834184761293e57

Runtime output

value 3 is seen 3 times in p

Function count has no control over the range of addresses accessed from pointer p. The
critical property that the len parameter is a valid length for an array of integers pointed to
by parameter p rests completely with the caller of count, and count has no way to check
that this is true.
To mitigate the risks associated with pointers being used for arrays, MISRA C contains eight
rules in a section on "Pointers and arrays". These rules forbid pointer arithmetic (Rule 18.4)
or, if this Advisory rule is not followed, require pointer arithmetic to stay within bounds (Rule
18.1). But, even if we rewrite the loop in count to respect all decidable MISRA C rules, the
program's correctness still depends on the caller of count passing a correct value of len:

Listing 6: main.c
1 #include <stdio.h>
2

3 int count(int *p, int len, int v) {
(continues on next page)

28 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer

(continued from previous page)
4 int count = 0;
5 for (int i = 0; i < len; i++) {
6 if (p[i] == v) {
7 count++;
8 }
9 }
10 return count;
11 }
12

13 int main() {
14 int p[5] = {0, 3, 9, 3, 3};
15 int c = count(p, 5, 3);
16 printf("value 3 is seen %d times in p\n", c);
17 return 0;
18 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Arrays_MISRA_C
MD5: d04179de3f1e309541b3d88e53eb5e3a

Runtime output

value 3 is seen 3 times in p

The resulting code is more readable, but still vulnerable to incorrect values of parameter
len passed by the caller of count, which violates undecidable MISRA C Rules 18.1 (pointer
arithmetic should stay within bounds) and 1.3 (no undefined behavior). Contrast this with
the same function in SPARK (and Ada):

Listing 7: types.ads
1 package Types is
2 type Int_Array is array (Positive range <>) of Integer;
3 end Types;

Listing 8: count.ads
1 with Types; use Types;
2

3 function Count (P : Int_Array; V : Integer) return Natural;

Listing 9: count.adb
1 function Count (P : Int_Array; V : Integer) return Natural is
2 Count : Natural := 0;
3 begin
4 for I in P'Range loop
5 if P (I) = V then
6 Count := Count + 1;
7 end if;
8 end loop;
9 return Count;
10 end Count;

Listing 10: test_count.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Types; use Types;
3 with Count;

(continues on next page)

4.1. Enforcing Strong Typing for Pointers 29

SPARK for the MISRA-C Developer

(continued from previous page)
4

5 procedure Test_Count is
6 P : constant Int_Array := (0, 3, 9, 3, 3);
7 C : constant Integer := Count (P, 3);
8 begin
9 Put_Line ("value 3 is seen" & C'Img & " times in p");
10 end Test_Count;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Arrays_Ada
MD5: 82e9d18d4b8ad8aa87ca8520bd7b830c

Runtime output

value 3 is seen 3 times in p

The array parameter P is not simply a homogeneous sequence of Integer values. The com-
piler must represent P so that its lower and upper bounds (P'First and P'Last) and thus
also its length (P'Length) can be retrieved. Function Count can simply loop over the range
of valid array indexes P'First .. P'Last (or P'Range for short). As a result, function
Count can be verified in isolation to be free of vulnerabilities such as buffer overflow, as
it does not depend on the values of parameters passed by its callers. In fact, we can go
further in SPARK and show that the value returned by Count is no greater than the length
of parameter P by stating this property in the postcondition of Count and asking the SPARK
analysis tool to prove it:

Listing 11: types.ads
1 package Types is
2 type Int_Array is array (Positive range <>) of Integer;
3 end Types;

Listing 12: count.ads
1 with Types; use Types;
2

3 function Count (P : Int_Array; V : Integer) return Natural with
4 Post => Count'Result <= P'Length;

Listing 13: count.adb
1 function Count (P : Int_Array; V : Integer) return Natural
2 is
3 Count : Natural := 0;
4 begin
5 for I in P'Range loop
6 pragma Loop_Invariant (Count <= I - P'First);
7 if P (I) = V then
8 Count := Count + 1;
9 end if;
10 end loop;
11 return Count;
12 end Count;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Arrays_Ada
MD5: 4c9a34614d53c4d268cbff787c9b73e6

30 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
count.adb:6:30: info: loop invariant preservation proved
count.adb:6:30: info: loop invariant initialization proved
count.adb:6:41: info: overflow check proved
count.adb:8:25: info: overflow check proved
count.ads:4:11: info: postcondition proved
count.ads:4:28: info: range check proved

The only help that SPARK analysis required from the programmer, in order to prove the
postcondition, is a loop invariant (a special kind of assertion) that reflects the value of
Count at each iteration.

4.1.4 Pointers Should Be Typed

The C language defines a special pointer type void* that corresponds to an untyped pointer.
It is legal to convert any pointer type to and from void*, which makes it a convenient
way to simulate C++ style templates. Consider the following code which indirectly applies
assign_int to integer i and assign_float to floating-point f by calling assign on both:

Listing 14: main.c
1 #include <stdio.h>
2

3 void assign_int (int *p) {
4 *p = 42;
5 }
6

7 void assign_float (float *p) {
8 *p = 42.0;
9 }
10

11 typedef void (*assign_fun)(void *p);
12

13 void assign(assign_fun fun, void *p) {
14 fun(p);
15 }
16

17 int main() {
18 int i;
19 float f;
20 assign((assign_fun)&assign_int, &i);
21 assign((assign_fun)&assign_float, &f);
22 printf("i = %d; f = %f\n", i, f);
23 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Typed_Pointers_C
MD5: fc00ba9eb97640037488569347591cc2

Runtime output

i = 42; f = 42.000000

The references to the variables i and f are implicitly converted to the void* type as a
way to apply assign to any second parameter p whose type matches the argument type
of its first argument fun. The use of an untyped argument means that the responsibility
for the correct typing rests completely with the programmer. Swap i and f in the calls to

4.1. Enforcing Strong Typing for Pointers 31

SPARK for the MISRA-C Developer

assign and you still get a compilable program without warnings, that runs and produces
completely bogus output:

i = 1109917696; f = 0.000000

instead of the expected:

i = 42; f = 42.000000

Generics in SPARK (and Ada) can implement the desired functionality in a fully typed way,
with any errors caught at compile time, where procedure Assign applies its parameter
procedure Initialize to its parameter V:

Listing 15: assign.ads
1 generic
2 type T is private;
3 with procedure Initialize (V : out T);
4 procedure Assign (V : out T);

Listing 16: assign.adb
1 procedure Assign (V : out T) is
2 begin
3 Initialize (V);
4 end Assign;

Listing 17: apply_assign.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Assign;
3

4 procedure Apply_Assign is
5 procedure Assign_Int (V : out Integer) is
6 begin
7 V := 42;
8 end Assign_Int;
9

10 procedure Assign_Float (V : out Float) is
11 begin
12 V := 42.0;
13 end Assign_Float;
14

15 procedure Assign_I is new Assign (Integer, Assign_Int);
16 procedure Assign_F is new Assign (Float, Assign_Float);
17

18 I : Integer;
19 F : Float;
20 begin
21 Assign_I (I);
22 Assign_F (F);
23 Put_Line ("I =" & I'Img & "; F =" & F'Img);
24 end Apply_Assign;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Typed_Pointers_Ada
MD5: af23d6f8a742676139aac38a385c7bf7

Runtime output

32 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer

I = 42; F = 4.20000E+01

The generic procedure Assignmust be instantiated with a specific type for T and a specific
procedure (taking a single out parameter of this type) for Initialize. The procedure
resulting from the instantiation applies to a variable of this type. So switching I and F
above would result in an error detected by the compiler. Likewise, an instantiation such as
the following would also be a compile-time error:

procedure Assign_I is new Assign (Integer, Assign_Float);

4.2 Enforcing Strong Typing for Scalars

In C, all scalar types can be converted both implicitly and explicitly to any other scalar type.
The semantics is defined by rules of promotion and conversion, which can confuse even
experts. One example was noted earlier, in the Preface (page 3). Another example appears
in an article introducing a safe library for manipulating scalars9 by Microsoft expert David
LeBlanc. In its conclusion, the author acknowledges the inherent difficulty in understanding
scalar type conversions in C, by showing an early buggy version of the code to produce the
minimum signed integer:

return (T)(1 << (BitCount()-1));

The issue here is that the literal 1 on the left-hand side of the shift is an int, so on a 64-bit
machine with 32-bit int and 64-bit type T, the above is shifting 32-bit value 1 by 63 bits.
This is a case of undefined behavior, producing an unexpected output with the Microsoft
compiler. The correction is to convert the first literal 1 to T before the shift:

return (T)((T)1 << (BitCount()-1));

Although he'd asked some expert programmers to review the code, no one found this prob-
lem.
To avoid these issues as much as possible, MISRA C defines its own type system on top of
C types, in the section on "The essential type model" (eight rules). These can be seen as
additional typing rules, since all rules in this section are decidable, and can be enforced at
the level of a single translation unit. These rules forbid in particular the confusing cases
mentioned above. They can be divided into three sets of rules:
• restricting operations on types
• restricting explicit conversions
• restricting implicit conversions

4.2.1 Restricting Operations on Types

Apart from the application of some operations to floating-point arguments (the bitwise,
mod and array access operations) which are invalid and reported by the compiler, all oper-
ations apply to all scalar types in C. MISRA C Rule 10.1 constrains the types on which each
operation is possible as follows.

9 https://msdn.microsoft.com/en-us/library/ms972705.aspx

4.2. Enforcing Strong Typing for Scalars 33

https://msdn.microsoft.com/en-us/library/ms972705.aspx

SPARK for the MISRA-C Developer

4.2.1.1 Arithmetic Operations on Arithmetic Types

Adding two Boolean values, or an Apple and an Orange, might sound like a bad idea, but it
is easily done in C:

Listing 18: main.c
1 #include <stdbool.h>
2 #include <stdio.h>
3

4 int main() {
5 bool b1 = true;
6 bool b2 = false;
7 bool b3 = b1 + b2;
8

9 typedef enum {Apple, Orange} fruit;
10 fruit f1 = Apple;
11 fruit f2 = Orange;
12 fruit f3 = f1 + f2;
13

14 printf("b3 = %d; f3 = %d\n", b3, f3);
15

16 return 0;
17 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointer_Arith_C
MD5: 30e28b34f616f8e6d35233a4ce698c23

Runtime output

b3 = 1; f3 = 1

No error from the compiler here. In fact, there is no undefined behavior in the above code.
Variables b3 and f3 both end up with value 1. Of course it makes no sense to add Boolean or
enumerated values, and thus MISRA C Rule 18.1 forbids the use of all arithmetic operations
on Boolean and enumerated values, while also forbidding most arithmetic operations on
characters. That leaves the use of arithmetic operations for signed or unsigned integers
as well as floating-point types and the use of modulo operation % for signed or unsigned
integers.
Here's an attempt to simulate the above C code in SPARK (and Ada):

Listing 19: bad_arith.ads
1 package Bad_Arith is
2

3 B1 : constant Boolean := True;
4 B2 : constant Boolean := False;
5 B3 : constant Boolean := B1 + B2;
6

7 type Fruit is (Apple, Orange);
8 F1 : constant Fruit := Apple;
9 F2 : constant Fruit := Orange;
10 F3 : constant Fruit := F1 + F2;
11

12 end Bad_Arith;

Code block metadata

34 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointer_Arith_Ada
MD5: 984381fdcf1a682e1998f7881c0532f9

Build output

bad_arith.ads:5:32: error: there is no applicable operator "+" for type "Standard.
↪Boolean"

bad_arith.ads:10:30: error: there is no applicable operator "+" for type "Fruit"␣
↪defined at line 7

gprbuild: *** compilation phase failed

It is possible, however, to get the predecessor of a Boolean or enumerated value with
Value'Pred and its successor with Value'Succ, as well as to iterate over all values of the
type:

Listing 20: ok_arith.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Ok_Arith is
4

5 B1 : constant Boolean := False;
6 B2 : constant Boolean := Boolean'Succ (B1);
7 B3 : constant Boolean := Boolean'Pred (B2);
8

9 type Fruit is (Apple, Orange);
10 F1 : constant Fruit := Apple;
11 F2 : constant Fruit := Fruit'Succ (F1);
12 F3 : constant Fruit := Fruit'Pred (F2);
13

14 begin
15 pragma Assert (B1 = B3);
16 pragma Assert (F1 = F3);
17

18 for B in Boolean loop
19 Put_Line (B'Img);
20 end loop;
21

22 for F in Fruit loop
23 Put_Line (F'Img);
24 end loop;
25 end Ok_Arith;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Pointer_Arith_Ada
MD5: 6ad400913a48fd815845b6a99d90ec2d

Runtime output

FALSE
TRUE
APPLE
ORANGE

4.2. Enforcing Strong Typing for Scalars 35

SPARK for the MISRA-C Developer

4.2.1.2 Boolean Operations on Boolean

"Two bee or not two bee? Let's C":

Listing 21: main.c
1 #include <stdbool.h>
2 #include <stdio.h>
3

4 int main() {
5 typedef enum {Ape, Bee, Cat} Animal;
6 bool answer = (2 * Bee) || ! (2 * Bee);
7 printf("two bee or not two bee? %d\n", answer);
8 return 0;
9 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Boolean_C
MD5: a9d4886827c983df51c9285fe3fd6c77

Runtime output

two bee or not two bee? 1

The answer to the question posed by Shakespeare's Hamlet is 1, since it reduces to A or
not A and this is true in classical logic.
As previously noted, MISRA C forbids the use of the multiplication operator with an operand
of an enumerated type. Rule 18.1 also forbids the use of Boolean operations "and", "or",
and "not" (&&, ||, !, respectively, in C) on anything other than Boolean operands. It would
thus prohibit the Shakespearian code above.
Below is an attempt to express the same code in SPARK (and Ada), where the Boolean
operators are and, or, and not. The and and or operators evaluate both operands, and the
language also supplies short-circuit forms that evaluate the left operand and only evaluate
the right operand when its value may affect the result.

Listing 22: bad_hamlet.ads
1 package Bad_Hamlet is
2 type Animal is (Ape, Bee, Cat);
3 Answer : Boolean := 2 * Bee or not 2 * Bee; -- Illegal
4 end Bad_Hamlet;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Boolean_Ada
MD5: 9089114f9cc6495dabd6957b54b33bd2

Build output

bad_hamlet.ads:3:28: error: expected type universal integer
bad_hamlet.ads:3:28: error: found type "Animal" defined at line 2
bad_hamlet.ads:3:43: error: expected a modular type
bad_hamlet.ads:3:43: error: found type "Animal" defined at line 2
gprbuild: *** compilation phase failed

As expected, the compiler rejects this code. There is no available * operation that works
on an enumeration type, and likewise no available or or not operation.

36 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer

4.2.1.3 Bitwise Operations on Unsigned Integers

Here's a genetic engineering example that combines a Bee with a Dog to produce a Cat,
by manipulating the atomic structure (the bits in its representation):

Listing 23: main.c
1 #include <stdbool.h>
2 #include <assert.h>
3

4 int main() {
5 typedef enum {Ape, Bee, Cat, Dog} Animal;
6 Animal mutant = Bee ^ Dog;
7 assert (mutant == Cat);
8 return 0;
9 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Bitwise_C
MD5: 645b0b6155f1cb17d02c7bcbb976993c

This algorithm works by accessing the underlying bitwise representation of Bee and Dog
(0x01 and 0x03, respectively) and, by applying the exclusive-or operator ^, transforming it
into the underlying bitwise representation of a Cat (0x02). While powerful, manipulating the
bits in the representation of values is best reserved for unsigned integers as illustrated in
the book Hacker's Delight10. MISRA C Rule 18.1 thus forbids the use of all bitwise operations
on anything but unsigned integers.
Below is an attempt to do the same in SPARK (and Ada). The bitwise operators are
and, or, xor, and not, and the related bitwise functions are Shift_Left, Shift_Right,
Shift_Right_Arithmetic, Rotate_Left and Rotate_Right:

Listing 24: bad_genetics.ads
1 package Bad_Genetics is
2 type Animal is (Ape, Bee, Cat, Dog);
3 Mutant : Animal := Bee xor Dog; -- ERROR
4 pragma Assert (Mutant = Cat);
5 end Bad_Genetics;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Bitwise_Ada
MD5: 3f7c3dd616f065016590d574200cf1db

Build output

bad_genetics.ads:3:27: error: there is no applicable operator "Xor" for type
↪"Animal" defined at line 2

gprbuild: *** compilation phase failed

The declaration of Mutant is illegal, since the xor operator is only available for Boolean
and unsigned integer (modular) values; it is not available for Animal. The same restriction
applies to the other bitwise operators listed above. If we really wanted to achieve the effect
of the above code in legal SPARK (or Ada), then the following approach will work (the type
Unsigned_8 is an 8-bit modular type declared in the predefined package Interfaces).
10 http://www.hackersdelight.org/

4.2. Enforcing Strong Typing for Scalars 37

http://www.hackersdelight.org/

SPARK for the MISRA-C Developer

Listing 25: unethical_genetics.ads
1 with Interfaces; use Interfaces;
2 package Unethical_Genetics is
3 type Animal is (Ape, Bee, Cat, Dog);
4 A : constant array (Animal) of Unsigned_8 :=
5 (Animal'Pos (Ape), Animal'Pos (Bee),
6 Animal'Pos (Cat), Animal'Pos (Dog));
7 Mutant : Animal := Animal'Val (A (Bee) xor A (Dog));
8 pragma Assert (Mutant = Cat);
9 end Unethical_Genetics;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Bitwise_Ada_2
MD5: 359439d40740fe2d99e6f334ed3500f9

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...

Note that and, or, not and xor are used both as logical operators and as bitwise operators,
but there is no possible confusion between these two uses. Indeed the use of such operators
on values from modular types is a natural generalization of their uses on Boolean, since
values from modular types are often interpreted as arrays of Booleans.

4.2.2 Restricting Explicit Conversions

A simple way to bypass the restrictions of Rule 10.1 is to explicitly convert the arguments
of an operation to a type that the rule allows. While it can often be useful to cast a value
from one type to another, many casts that are allowed in C are either downright errors or
poor replacements for clearer syntax.
One example is to cast from a scalar type to Boolean. A better way to express (bool)x is
to compare x to the zero value of its type: x != 0 for integers, x != 0.0 for floats, x !=
'0' for characters, x != Enum where Enum is the first enumerated value of the type. Thus,
MISRA C Rule 10.5 advises avoiding casting non-Boolean values to Boolean.
Rule 10.5 also advises avoiding other casts that are, at best, obscure:
• from a Boolean to any other scalar type
• from a floating-point value to an enumeration or a character
• from any scalar type to an enumeration

The rules are not symmetric, so although a float should not be cast to an enum, casting an
enum to a float is allowed. Similarly, although it is advised to not cast a character to an
enum, casting an enum to a character is allowed.
The rules in SPARK are simpler. There are no conversions between numeric types (integers,
fixed-point and floating-point) and non-numeric types (such as Boolean, Character, and
other enumeration types). Conversions between different non-numeric types are limited
to those that make semantic sense, for example between a derived type and its parent
type. Any numeric type can be converted to any other numeric type, with precise rules for
rounding/truncating values when needed and run-time checking that the converted value
is in the range associated with the target type.

38 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer

4.2.3 Restricting Implicit Conversions

Rules 10.1 and 10.5 restrict operations on types and explicit conversions. That's not enough
to avoid problematic C programs; a program violating one of these rules can be expressed
using only implicit type conversions. For example, the Shakespearian code in section
Boolean Operations on Boolean (page 36) can be reformulated to satisfy both Rules 10.1
and 10.5:

Listing 26: main.c
1 #include <stdbool.h>
2 #include <stdio.h>
3

4 int main() {
5 typedef enum {Ape, Bee, Cat} Animal;
6 int b = Bee;
7 bool t = 2 * b;
8 bool answer = t || ! t;
9 printf("two bee or not two bee? %d\n", answer);
10 return 0;
11 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Implicit_Conversion_C
MD5: a157dd05c5fe8926886361b533305e14

Runtime output

two bee or not two bee? 1

Here, we're implicitly converting the enumerated value Bee to an int, and then implicitly
converting the integer value 2 * b to a Boolean. This does not violate 10.1 or 10.5, but it
is prohibited by MISRA C Rule 10.3: "The value of an expression shall not be assigned to an
object with a narrower essential type or of a different essential type category".
Rule 10.1 also does not prevent arguments of an operation from being inconsistent, for
example comparing a floating-point value and an enumerated value. But MISRA C Rule
10.4 handles this situation: "Both operands of an operator in which the usual arithmetic
conversions are performed shall have the same essential type category".
In addition, three rules in the "Composite operators and expressions" section avoid common
mistakes related to the combination of explicit/implicit conversions and operations.
The rules in SPARK (and Ada) are far simpler: there are no implicit conversions! This applies
both between types of a different essential type category as MISRA C puts it, as well as
between types that are structurally the same but declared as different types.

Listing 27: bad_conversions.adb
1 procedure Bad_Conversions is
2 pragma Warnings (Off);
3 F : Float := 0.0;
4 I : Integer := 0;
5 type Animal is (Ape, Bee, Cat);
6 type My_Animal is new Animal; -- derived type
7 A : Animal := Cat;
8 M : My_Animal := Bee;
9 B : Boolean := True;
10 C : Character := 'a';
11 begin
12 F := I; -- ERROR

(continues on next page)

4.2. Enforcing Strong Typing for Scalars 39

SPARK for the MISRA-C Developer

(continued from previous page)
13 I := A; -- ERROR
14 A := B; -- ERROR
15 M := A; -- ERROR
16 B := C; -- ERROR
17 C := F; -- ERROR
18 end Bad_Conversions;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Implicit_Conversion_Bad_
↪Ada

MD5: f10b50048595df0b4ed77c06a7508412

Build output

bad_conversions.adb:12:09: error: expected type "Standard.Float"
bad_conversions.adb:12:09: error: found type "Standard.Integer"
bad_conversions.adb:13:09: error: expected type "Standard.Integer"
bad_conversions.adb:13:09: error: found type "Animal" defined at line 5
bad_conversions.adb:14:09: error: expected type "Animal" defined at line 5
bad_conversions.adb:14:09: error: found type "Standard.Boolean"
bad_conversions.adb:15:09: error: expected type "My_Animal" defined at line 6
bad_conversions.adb:15:09: error: found type "Animal" defined at line 5
bad_conversions.adb:16:09: error: expected type "Standard.Boolean"
bad_conversions.adb:16:09: error: found type "Standard.Character"
bad_conversions.adb:17:09: error: expected type "Standard.Character"
bad_conversions.adb:17:09: error: found type "Standard.Float"
gprbuild: *** compilation phase failed

The compiler reports a mismatch on every statement in the above procedure (the declara-
tions are all legal).
Adding explicit conversions makes the assignments to F and M valid, since SPARK (and Ada)
allow conversions between numeric types and between a derived type and its parent type,
but all other conversions are illegal:

Listing 28: bad_conversions.adb
1 procedure Bad_Conversions is
2 pragma Warnings (Off);
3 F : Float := 0.0;
4 I : Integer := 0;
5 type Animal is (Ape, Bee, Cat);
6 type My_Animal is new Animal; -- derived type
7 A : Animal := Cat;
8 M : My_Animal := Bee;
9 B : Boolean := True;
10 C : Character := 'a';
11 begin
12 F := Float (I); -- OK
13 I := Integer (A); -- ERROR
14 A := Animal (B); -- ERROR
15 M := My_Animal (A); -- OK
16 B := Boolean (C); -- ERROR
17 C := Character (F); -- ERROR
18 end Bad_Conversions;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Strong_Typing.Implicit_Conversion_Bad_
↪Ada

MD5: 4d3f6a8629d51f27b6628dae5fc7b680

40 Chapter 4. Enforcing Strong Typing

SPARK for the MISRA-C Developer

Build output

bad_conversions.adb:13:18: error: illegal operand for numeric conversion
bad_conversions.adb:14:09: error: invalid conversion, not compatible with type

↪"Standard.Boolean"
bad_conversions.adb:16:09: error: invalid conversion, not compatible with type

↪"Standard.Character"
bad_conversions.adb:17:09: error: invalid conversion, not compatible with type

↪"Standard.Float"
gprbuild: *** compilation phase failed

Although an enumeration value cannot be converted to an integer (or vice versa) either
implicitly or explicitly, SPARK (and Ada) provide functions to obtain the effect of a type
conversion. For any enumeration type T, the function T'Pos(e) takes an enumeration
value from type T and returns its relative position as an integer, starting at 0. For example,
Animal'Pos(Bee) is 1, and Boolean'Pos(False) is 0. In the other direction, T'Val(n),
where n is an integer, returns the enumeration value in type T at relative position n. If n is
negative or greater then T'Pos(T'Last) then a run-time exception is raised.
Hence, the following is valid SPARK (and Ada) code; Character is defined as an enumeration
type:

Listing 29: ok_conversions.adb
1 procedure Ok_Conversions is
2 pragma Warnings (Off);
3 F : Float := 0.0;
4 I : Integer := 0;
5 type Animal is (Ape, Bee, Cat);
6 type My_Animal is new Animal;
7 A : Animal := Cat;
8 M : My_Animal := Bee;
9 B : Boolean := True;
10 C : Character := 'a';
11 begin
12 F := Float (I);
13 I := Animal'Pos (A);
14 I := My_Animal'Pos (M);
15 I := Boolean'Pos (B);
16 I := Character'Pos (C);
17 I := Integer (F);
18 A := Animal'Val (2);
19 end Ok_Conversions;

4.2. Enforcing Strong Typing for Scalars 41

SPARK for the MISRA-C Developer

42 Chapter 4. Enforcing Strong Typing

CHAPTER

FIVE

INITIALIZING DATA BEFORE USE

As with most programming languages, C does not require that variables be initialized at
their declaration, which makes it possible to unintentionally read uninitialized data. This is
a case of undefined behavior, which can sometimes be used to attack the program.

5.1 Detecting Reads of Uninitialized Data

MISRA C attempts to prevent reads of uninitialized data in a specific section on "Initializa-
tion", containing five rules. The most important is Rule 9.1: "The value of an object with
automatic storage duration shall not be read before it has been set". The first example in
the rule is interesting, as it shows a non-trivial (and common) case of conditional initializa-
tion, where a function f initializes an output parameter p only in some cases, and the caller
g of f ends up reading the value of the variable u passed in argument to f in cases where
it has not been initialized:

Listing 1: f.h
1 #include <stdint.h>
2

3 void f (int b, uint16_t *p);

Listing 2: f.c
1 #include "f.h"
2

3 void f (int b, uint16_t *p)
4 {
5 if (b)
6 {
7 *p = 3U;
8 }
9 }

Listing 3: g.c
1 #include <stdint.h>
2 #include "f.h"
3

4 static void g (void)
5 {
6 uint16_t u;
7

8 f (0, &u);
9

10 if (u == 3U)
(continues on next page)

43

SPARK for the MISRA-C Developer

(continued from previous page)
11 {
12 /* Non-compliant use - "u" has not been assigned a value. */
13 }
14 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_C
MD5: f36430141f48b34810d53a43294c7d74

Detecting the violation of Rule 9.1 can be arbitrarily complex, as the program points corre-
sponding to a variable's initialization and read can be separated by many calls and condi-
tions. This is one of the undecidable rules, for which most MISRA C checkers won't detect
all violations.
In SPARK, the guarantee that all reads are to initialized data is enforced by the SPARK
analysis tool, GNATprove, through what is referred to as flow analysis. Every subprogram
is analyzed separately to check that it cannot read uninitialized data. To make this modular
analysis possible, SPARK programs need to respect the following constraints:
• all inputs of a subprogram should be initialized on subprogram entry
• all outputs of a subprogram should be initialized on subprogram return

Hence, given the following code translated from C, GNATprove reports that function Fmight
not always initialize output parameter P:

Listing 4: init.ads
1 with Interfaces; use Interfaces;
2

3 package Init is
4 procedure F (B : Boolean; P : out Unsigned_16);
5 procedure G;
6 end Init;

Listing 5: init.adb
1 package body Init is
2

3 procedure F (B : Boolean; P : out Unsigned_16) is
4 begin
5 if B then
6 P := 3;
7 end if;
8 end F;
9

10 procedure G is
11 U : Unsigned_16;
12 begin
13 F (False, U);
14

15 if U = 3 then
16 null;
17 end if;
18 end G;
19

20 end Init;

Code block metadata

44 Chapter 5. Initializing Data Before Use

SPARK for the MISRA-C Developer

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_
↪Ada

MD5: d54bc9901b3bff4f0cfea9942a795156

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init.ads:4:30: medium: "P" might not be initialized in "F" [reason for check: OUT␣

↪parameter should be initialized on return] [possible fix: initialize "P" on all␣
↪paths or make "P" an IN OUT parameter]

gnatprove: unproved check messages considered as errors

We can correct the program by initializing P to value 0 when condition B is not satisfied:

Listing 6: init.ads
1 with Interfaces; use Interfaces;
2

3 package Init is
4 procedure F (B : Boolean; P : out Unsigned_16);
5 procedure G;
6 end Init;

Listing 7: init.adb
1 package body Init is
2

3 procedure F (B : Boolean; P : out Unsigned_16) is
4 begin
5 if B then
6 P := 3;
7 else
8 P := 0;
9 end if;
10 end F;
11

12 procedure G is
13 U : Unsigned_16;
14 begin
15 F (False, U);
16

17 if U = 3 then
18 null;
19 end if;
20 end G;
21

22 end Init;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_
↪Ada

MD5: 481787c333014d56814a7205720f72bc

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init.adb:13:07: info: initialization of "U" proved
init.ads:4:30: info: initialization of "P" proved

5.1. Detecting Reads of Uninitialized Data 45

SPARK for the MISRA-C Developer

GNATprove now does not report any possible reads of uninitialized data. On the contrary,
it confirms that all reads are made from initialized data.
In contrast with C, SPARK does not guarantee that global data (called library-level data in
SPARK and Ada) is zero-initialized at program startup. Instead, GNATprove checks that all
global data is explicitly initialized (at declaration or elsewhere) before it is read. Hence it
goes beyond the MISRA C Rule 9.1, which considers global data as always initialized even if
the default value of all-zeros might not be valid data for the application. Here's a variation
of the above code where variable U is now global:

Listing 8: init.ads
1 with Interfaces; use Interfaces;
2

3 package Init is
4 U : Unsigned_16;
5 procedure F (B : Boolean);
6 procedure G;
7 end Init;

Listing 9: init.adb
1 package body Init is
2

3 procedure F (B : Boolean) is
4 begin
5 if B then
6 U := 3;
7 end if;
8 end F;
9

10 procedure G is
11 begin
12 F (False);
13

14 if U = 3 then
15 null;
16 end if;
17 end G;
18

19 end Init;

Listing 10: call_init.adb
1 with Init;
2

3 procedure Call_Init is
4 begin
5 Init.G;
6 end Call_Init;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_
↪Ada

MD5: a85cde45a658727975367b041a1a5dc3

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
call_init.adb:5:08: medium: "U" might not be initialized after elaboration of main␣

(continues on next page)

46 Chapter 5. Initializing Data Before Use

SPARK for the MISRA-C Developer

(continued from previous page)
↪program "Call_Init"

init.adb:14:07: warning: statement has no effect
gnatprove: unproved check messages considered as errors

GNATprove reports here that variable U might not be initialized at program startup, which
is indeed the case here. It reports this issue on the main program Call_Init because its
analysis showed that F needs to take U as an initialized input (since F is not initializing U on
all paths, U keeps its value on the other path, which needs to be an initialized value), which
means that G which calls F also needs to take U as an initialized input, which in turn means
that Call_Init which calls G also needs to take U as an initialized input. At this point,
we've reached the main program, so the initialization phase (referred to as elaboration in
SPARK and Ada) should have taken care of initializing U. This is not the case here, hence
the message from GNATprove.
It is possible in SPARK to specify that G should initialize variable U; this is done with a data
dependency contract introduced with aspect Global following the declaration of procedure
G:

Listing 11: init.ads
1 with Interfaces; use Interfaces;
2

3 package Init is
4 U : Unsigned_16;
5 procedure F (B : Boolean);
6 procedure G with Global => (Output => U);
7 end Init;

Listing 12: init.adb
1 package body Init is
2

3 procedure F (B : Boolean) is
4 begin
5 if B then
6 U := 3;
7 end if;
8 end F;
9

10 procedure G is
11 begin
12 F (False);
13

14 if U = 3 then
15 null;
16 end if;
17 end G;
18

19 end Init;

Listing 13: call_init.adb
1 with Init;
2

3 procedure Call_Init is
4 begin
5 Init.G;
6 end Call_Init;

Code block metadata

5.1. Detecting Reads of Uninitialized Data 47

SPARK for the MISRA-C Developer

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Read_Uninitialized_Data_
↪Ada

MD5: 100122ca3c8c60c134822a85d564a60a

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init.adb:12:07: high: "U" is not initialized
init.adb:12:07: high: "U" is not an input in the Global contract of subprogram "G"␣

↪at init.ads:6
init.adb:12:07: high: either make "U" an input in the Global contract or␣

↪initialize it before use
init.adb:14:07: warning: statement has no effect
gnatprove: unproved check messages considered as errors

GNATprove reports the error on the call to F in G, as it knows at this point that F needs U
to be initialized but the calling context in G cannot provide that guarantee. If we provide
the same data dependency contract for F, then GNATprove reports the error on F itself,
similarly to what we saw for an output parameter U.

5.2 Detecting Partial or Redundant Initialization of Ar-
rays and Structures

The other rules in the section on "Initialization" deal with common errors in initializing ag-
gregates and designated initializers in C99 to initialize a structure or array at declaration.
These rules attempt to patch holes created by the lax syntax and rules in C standard. For
example, here are five valid initializations of an array of 10 elements in C:

Listing 14: main.c
1 int main() {
2 int a[10] = {0};
3 int b[10] = {0, 0};
4 int c[10] = {0, [8] = 0};
5 int d[10] = {0, [8] = 0, 0};
6 int e[10] = {0, [8] = 0, 0, [8] = 1};
7 return 0;
8 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Redundant_Init
MD5: 1212a5565fc3a382e7f967d1cf0b48f9

Only a is fully initialized to all-zeros in the above code snippet. MISRA C Rule 9.3 thus forbids
all other declarations by stating that "Arrays shall not be partially initialized". In addition,
MISRA C Rule 9.4 forbids the declaration of e by stating that "An element of an object shall
not be initialised more than once" (in e's declaration, the element at index 8 is initialized
twice).
The same holds for initialization of structures. Here is an equivalent set of declarations with
the same potential issues:

Listing 15: main.c
1 int main() {
2 typedef struct { int x; int y; int z; } rec;

(continues on next page)

48 Chapter 5. Initializing Data Before Use

SPARK for the MISRA-C Developer

(continued from previous page)
3 rec a = {0};
4 rec b = {0, 0};
5 rec c = {0, .y = 0};
6 rec d = {0, .y = 0, 0};
7 rec e = {0, .y = 0, 0, .y = 1};
8 return 0;
9 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Redundant_Init
MD5: e562ef70b8c8a170d2bd09281cf2a075

Here only a, d and e are fully initialized. MISRA C Rule 9.3 thus forbids the declarations of
b and c. In addition, MISRA C Rule 9.4 forbids the declaration of e.
In SPARK and Ada, the aggregate used to initialize an array or a record must fully cover the
components of the array or record. Violations lead to compilation errors, both for records:

Listing 16: init_record.ads
1 package Init_Record is
2 type Rec is record
3 X, Y, Z : Integer;
4 end record;
5 R : Rec := (X => 1); -- ERROR, Y and Z not specified
6 end Init_Record;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Record_1
MD5: 6b28bffe6270c5ea5055123c5b89c508

Build output

init_record.ads:5:15: error: no value supplied for component "Y"
init_record.ads:5:15: error: no value supplied for component "Z"
gprbuild: *** compilation phase failed

and for arrays:

Listing 17: init_array.ads
1 package Init_Array is
2 type Arr is array (1 .. 10) of Integer;
3 A : Arr := (1 => 1); -- ERROR, elements 2..10 not specified
4 end Init_Array;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Array_1
MD5: 81aa6363ba770ded10bef8d3d8776914

Build output

init_array.ads:3:15: warning: too few elements for type "Arr" defined at line 2␣
↪[enabled by default]

init_array.ads:3:15: warning: expected 10 elements; found 1 element [enabled by␣
↪default]

init_array.ads:3:15: warning: Constraint_Error will be raised at run time [enabled␣
↪by default]

5.2. Detecting Partial or Redundant Initialization of Arrays and Structures 49

SPARK for the MISRA-C Developer

Similarly, redundant initialization leads to compilation errors for records:

Listing 18: init_record.ads
1 package Init_Record is
2 type Rec is record
3 X, Y, Z : Integer;
4 end record;
5 R : Rec := (X => 1, Y => 1, Z => 1, X => 2); -- ERROR, X duplicated
6 end Init_Record;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Record_2
MD5: 07d3f790009be97cef2daaf08b2f7afd

Build output

init_record.ads:5:40: error: more than one value supplied for "X"
gprbuild: *** compilation phase failed

and for arrays:

Listing 19: init_array.ads
1 package Init_Array is
2 type Arr is array (1 .. 10) of Integer;
3 A : Arr := (1 .. 8 => 1, 9 .. 10 => 2, 7 => 3); -- ERROR, A(7) duplicated
4 end Init_Array;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Array_2
MD5: 12f5fa4615abccde43f63f72340fd4a0

Build output

init_array.ads:3:43: error: index value in array aggregate duplicates the one␣
↪given at line 3

init_array.ads:3:43: error: 7
gprbuild: *** compilation phase failed

Finally, while it is legal in Ada to leave uninitialized parts in a record or array aggregate
by using the box notation (meaning that the default initialization of the type is used, which
may be no initialization at all), SPARK analysis rejects such use when it leads to components
not being initialized, both for records:

Listing 20: init_record.ads
1 package Init_Record is
2 type Rec is record
3 X, Y, Z : Integer;
4 end record;
5 R : Rec := (X => 1, others => <>); -- ERROR, Y and Z not specified
6 end Init_Record;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Initialization.Init_Record_3
MD5: a7736f2b563c39fb4ab10007e927ad97

Prover output

50 Chapter 5. Initializing Data Before Use

SPARK for the MISRA-C Developer

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
init_record.ads:5:04: error: "R" is not allowed in SPARK (due to box notation␣

↪without default initialization)
init_record.ads:5:04: error: violation of pragma SPARK_Mode at /vagrant/frontend/

↪dist/test_output/projects/Courses/SPARK_For_The_MISRA_C_Dev/Initialization/Init_
↪Record_3/a7736f2b563c39fb4ab10007e927ad97/main_spark.adc:12

init_record.ads:5:15: error: box notation without default initialization is not␣
↪allowed in SPARK (SPARK RM 4.3(1))

init_record.ads:5:15: error: violation of pragma SPARK_Mode at /vagrant/frontend/
↪dist/test_output/projects/Courses/SPARK_For_The_MISRA_C_Dev/Initialization/Init_
↪Record_3/a7736f2b563c39fb4ab10007e927ad97/main_spark.adc:12

gnatprove: error during analysis of data and information flow

and for arrays:

Listing 21: init_array.ads
1 package Init_Array is
2 type Arr is array (1 .. 10) of Integer;
3 A : Arr := (1 .. 8 => 1, 9 .. 10 => <>); -- ERROR, A(9..10) not specified
4 end Init_Array;

5.2. Detecting Partial or Redundant Initialization of Arrays and Structures 51

SPARK for the MISRA-C Developer

52 Chapter 5. Initializing Data Before Use

CHAPTER

SIX

CONTROLLING SIDE EFFECTS

As with most programming languages, C allows side effects in expressions. This leads to
subtle issues about conflicting side effects, when subexpressions of the same expression
read/write the same variable.

6.1 Preventing Undefined Behavior

Conflicting side effects are a kind of undefined behavior; the C Standard (section 6.5) de-
fines the concept as follows:

"Between two sequence points, an object is modified more than once, or is mod-
ified and the prior value is read other than to determine the value to be stored"

This legalistic wording is somewhat opaque, but the notion of sequence points is summa-
rized in Annex C of the C90 and C99 standards. MISRA C repeats these conditions in the
Amplification of Rule 13.2, including the read of a volatile variable as a side effect similar
to writing a variable.
This rule is undecidable, so MISRA C completes it with two rules that provide simpler restric-
tions preventing some side effects in expressions, thus reducing the potential for undefined
behavior:
• Rule 13.3: "A full expression containing an increment (++) or decrement (--) operator
should have no other potential side effects other than that caused by the increment
or decrement operator".

• Rule 13.4: "The result of an assignment operator should not be used".
In practice, conflicting side effects usually manifest themselves as portability issues, since
the result of the evaluation of an expression depends on the order in which a compiler
decides to evaluate its subexpressions. So changing the compiler version or the target
platform might lead to a different behavior of the application.
To reduce the dependency on evaluation order, MISRA C Rule 13.1 states: "Initializer lists
shall not contain persistent side effects". This case is theoretically different from the previ-
ously mentioned conflicting side effects, because initializers that comprise an initializer list
are separated by sequence points, so there is no risk of undefined behavior if two initializ-
ers have conflicting side effects. But given that initializers are executed in an unspecified
order, the result of a conflict is potentially as damaging for the application.

53

SPARK for the MISRA-C Developer

6.2 Reducing Programmer Confusion

Even in cases with no undefined or unspecified behavior, expressions with multiple side
effects can be confusing to programmers reading or maintaining the code. This problem
arises in particular with C's increment and decrement operators that can be applied prior
to or after the expression evaluation, and with the assignment operator = in C since it can
easily be mistaken for equality. Thus MISRA C forbids the use of the increment / decrement
(Rule 13.3) and assignment (Rule 13.4) operators in expressions that have other potential
side effects.
In other cases, the presence of expressions with side effects might be confusing, if the
programmer wrongly thinks that the side effects are guaranteed to occur. Consider the
function decrease_until_one_is_null below, which decreases both arguments until one
is null:

Listing 1: main.c
1 #include <stdio.h>
2

3 void decrease_until_one_is_null (int *x, int *y) {
4 if (x == 0 || y == 0) {
5 return;
6 }
7 while (--*x != 0 && --*y != 0) {
8 // nothing
9 }
10 }
11

12 int main() {
13 int x = 42, y = 42;
14 decrease_until_one_is_null (&x, &y);
15 printf("x = %d, y = %d\n", x, y);
16 return 0;
17 }

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Side_Effect_C
MD5: a3e991881894bc3fb25a5f49a083fd2e

Runtime output

x = 0, y = 1

The program produces the following output:

x = 0, y = 1

I.e., starting from the same value 42 for both x and y, only x has reached the value zero
after decrease_until_one_is_null returns. The reason is that the side effect on y is
performed only conditionally. To avoid such surprises, MISRA C Rule 13.5 states: "The right
hand operand of a logical && or || operator shall not contain persistent side effects"; this
rule forbids the code above.
MISRA C Rule 13.6 similarly states: "The operand of the sizeof operator shall not contain any
expression which has potential side effects". Indeed, the operand of sizeof is evaluated
only in rare situations, and only according to C99 rules, which makes any side effect in such
an operand a likely mistake.

54 Chapter 6. Controlling Side Effects

SPARK for the MISRA-C Developer

6.3 Side Effects and SPARK

In SPARK, expressions cannot have side effects; only statements can. In particular, there
are no increment/decrement operators, and no assignment operator. There is instead an
assignment statement, whose syntax using := clearly distinguishes it from equality (using
=). And in any event an expression is not allowed as a statement and this a construct such
as X = Y; would be illegal. Here is how a variable X can be assigned, incremented and
decremented:

X := 1;
X := X + 1;
X := X - 1;

There are two possible side effects when evaluating an expression:
• a read of a volatile variable
• a side effect occurring inside a function that the expression calls

Reads of volatile variables in SPARK are restricted to appear immediately at statement level,
so the following is not allowed:

Listing 2: volatile_read.ads
1 package Volatile_Read is
2 X : Integer with Volatile;
3 procedure P (Y : out Integer);
4 end Volatile_Read;

Listing 3: volatile_read.adb
1 package body Volatile_Read is
2 procedure P (Y : out Integer) is
3 begin
4 Y := X - X; -- ERROR
5 end P;
6 end Volatile_Read;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Volatile_Read_1
MD5: 7ec58b4d1432d03d60b5ea6019cc031e

Prover output

Phase 1 of 2: generation of Global contracts ...
volatile_read.adb:4:12: error: volatile object cannot appear in this context␣

↪(SPARK RM 7.1.3(10))
volatile_read.adb:4:16: error: volatile object cannot appear in this context␣

↪(SPARK RM 7.1.3(10))
gnatprove: error during generation of Global contracts

Instead, every read of a volatile variable must occur immediately before being assigned to
another variable, as follows:

Listing 4: volatile_read.ads
1 package Volatile_Read is
2 X : Integer with Volatile;
3 procedure P (Y : out Integer);
4 end Volatile_Read;

6.3. Side Effects and SPARK 55

SPARK for the MISRA-C Developer

Listing 5: volatile_read.adb
1 package body Volatile_Read is
2 procedure P (Y : out Integer) is
3 X1 : constant Integer := X;
4 X2 : constant Integer := X;
5 begin
6 Y := X1 - X2;
7 end P;
8 end Volatile_Read;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Volatile_Read_2
MD5: 1224af597a12a8ca77b96976c76b422f

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
volatile_read.ads:3:17: info: initialization of "Y" proved

Note here that the order of capture of the volatile value of X might be significant. For
example, Xmight denote a quantity which only increases, like clock time, so that the above
expression X1 - X2 would always be negative or zero.
Even more significantly, functions in SPARK cannot have side effects; only procedures can.
The only effect of a SPARK function is the computation of a result from its inputs, which
may be passed as parameters or as global variables. In particular, SPARK functions cannot
have out or in out parameters:

Listing 6: bad_function.ads
1 function Bad_Function (X, Y : Integer; Sum, Max : out Integer) return Boolean;
2 -- ERROR, since "out" parameters are not allowed

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Function_With_Out_Param
MD5: 204dd22df61fe15208ae34ebc3828974

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
bad_function.ads:1:10: error: function with "out" parameter is not allowed in SPARK
bad_function.ads:1:10: error: violation of pragma SPARK_Mode at /vagrant/frontend/

↪dist/test_output/projects/Courses/SPARK_For_The_MISRA_C_Dev/Side_Effect/Function_
↪With_Out_Param/204dd22df61fe15208ae34ebc3828974/main_spark.adc:12

gnatprove: error during analysis of data and information flow

More generally, SPARK does not allow functions that have a side effect in addition to return-
ing their result, as is typical of many idioms in other languages, for example when setting
a new value and returning the previous one:

Listing 7: bad_functions.ads
1 package Bad_Functions is
2 function Set (V : Integer) return Integer;
3 function Get return Integer;
4 end Bad_Functions;

56 Chapter 6. Controlling Side Effects

SPARK for the MISRA-C Developer

Listing 8: bad_functions.adb
1 package body Bad_Functions is
2

3 Value : Integer := 0;
4

5 function Set (V : Integer) return Integer is
6 Previous : constant Integer := Value;
7 begin
8 Value := V; -- ERROR
9 return Previous;
10 end Set;
11

12 function Get return Integer is (Value);
13

14 end Bad_Functions;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.Side_Effect_Ada
MD5: 3337b6025c4996e7fa8c7e27b4df42c1

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
bad_functions.ads:2:13: error: function with output global "Value" is not allowed␣

↪in SPARK
gnatprove: error during analysis of data and information flow

GNATprove detects that function Set has a side effect on global variable Value and issues
an error. The correct idiom in SPARK for such a case is to use a procedure with an out
parameter to return the desired result:

Listing 9: ok_subprograms.ads
1 package Ok_Subprograms is
2 procedure Set (V : Integer; Prev : out Integer);
3 function Get return Integer;
4 end Ok_Subprograms;

Listing 10: ok_subprograms.adb
1 package body Ok_Subprograms is
2

3 Value : Integer := 0;
4

5 procedure Set (V : Integer; Prev : out Integer) is
6 begin
7 Prev := Value;
8 Value := V;
9 end Set;
10

11 function Get return Integer is (Value);
12

13 end Ok_Subprograms;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Side_Effect.No_Side_Effect_Ada
MD5: 04e2235b8b6a01706434d35f6636674c

6.3. Side Effects and SPARK 57

SPARK for the MISRA-C Developer

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
ok_subprograms.ads:2:32: info: initialization of "Prev" proved

With the above restrictions in SPARK, none of the conflicts of side effects that can occur in
C can occur in SPARK, and this is guaranteed by flow analysis.

58 Chapter 6. Controlling Side Effects

CHAPTER

SEVEN

DETECTING UNDEFINED BEHAVIOR

Undefined behavior (and critical unspecified behavior, which we'll treat as undefined behav-
ior) are the plague of C programs. Many rules in MISRA C are designed to avoid undefined
behavior, as evidenced by the twenty occurrences of "undefined" in the MISRA C:2012 doc-
ument.
MISRA C Rule 1.3 is the overarching rule, stating very simply:

"There shall be no occurrence of undefined or critical unspecified behaviour."

The deceptive simplicity of this rule rests on the definition of undefined or critical unspec-
ified behaviour. Appendix H of MISRA:C 2012 lists hundreds of cases of undefined and
critical unspecified behavior in the C programming language standard, a majority of which
are not individually decidable.
It is therefore not surprising that a majority of MISRA C checkers do not make a serious
attempt to verify compliance with MISRA C Rule 1.3.

7.1 Preventing Undefined Behavior in SPARK

Since SPARK is a subset of the Ada programming language, SPARK programs may exhibit
two types of undefined behaviors that can occur in Ada:
• bounded error: when the program enters a state not defined by the language seman-
tics, but the consequences are bounded in various ways. For example, reading unini-
tialized data can lead to a bounded error, when the value read does not correspond to
a valid value for the type of the object. In this specific case, the Ada Reference Manual
states that either a predefined exception is raised or execution continues using the
invalid representation.

• erroneous execution: when when the program enters a state not defined by the lan-
guage semantics, but the consequences are not bounded by the Ada Reference Man-
ual. This is the closest to an undefined behavior in C. For example, concurrently writing
through different tasks to the same unprotected variable is a case of erroneous exe-
cution.

Many cases of undefined behavior in C would in fact raise exceptions in SPARK. For example,
accessing an array beyond its bounds raises the exception Constraint_Error while reach-
ing the end of a function without returning a value raises the exception Program_Error.
The SPARK Reference Manual defines the SPARK subset through a combination of legality
rules (checked by the compiler, or the compiler-like phase preceding analysis) and verifica-
tion rules (checked by the formal analysis tool GNATprove). Bounded errors and erroneous
execution are prevented by a combination of legality rules and the flow analysis part of
GNATprove, which in particular detects potential reads of uninitialized data, as described in
Detecting Reads of Uninitialized Data (page 43). The following discussion focuses on how
SPARK can verify that no exceptions can be raised.

59

SPARK for the MISRA-C Developer

7.2 Proof of Absence of Run-Time Errors in SPARK

Themost common run-time errors are related tomisuse of arithmetic (division by zero, over-
flows, exceeding the range of allowed values), arrays (accessing beyond an array bounds,
assigning between arrays of different lengths), and structures (accessing components that
are not defined for a given variant).
Arithmetic run-time errors can occur with signed integers, unsigned integers, fixed-point
and floating-point (although with IEEE 754 floating-point arithmetic, errors are manifest as
special run-time values such as NaN and infinities rather than as exceptions that are raised).
These errors can occur when applying arithmetic operations or when converting between
numeric types (if the value of the expression being converted is outside the range of the
type to which it is being converted).
Operations on enumeration values can also lead to run-time errors; e.g., T'Pred(T'First)
or T'Succ(T'Last) for an enumeration type T, or T'Val(N) where N is an integer value
that is outside the range 0 .. T'Pos(T'Last).
The Update procedure below contains what appears to be a simple assignment statement,
which sets the value of array element A(I+J) to P/Q.

Listing 1: show_runtime_errors.ads
1 package Show_Runtime_Errors is
2

3 type Nat_Array is array (Integer range <>) of Natural;
4 -- The values in subtype Natural are 0 , 1, ... Integer'Last
5

6 procedure Update (A : in out Nat_Array; I, J, P, Q : Integer);
7

8 end Show_Runtime_Errors;

Listing 2: show_runtime_errors.adb
1 package body Show_Runtime_Errors is
2

3 procedure Update (A : in out Nat_Array; I, J, P, Q : Integer) is
4 begin
5 A (I + J) := P / Q;
6 end Update;
7

8 end Show_Runtime_Errors;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Undefined_Behavior.Runtime_Errors
MD5: 8ad4488974ab9e49ac17bf094ae33eac

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
show_runtime_errors.adb:5:12: medium: overflow check might fail, cannot prove␣

↪lower bound for I + J [reason for check: result of addition must fit in a 32-
↪bits machine integer] [possible fix: add precondition (if J >= 0 then I <=␣
↪Integer'Last - J else I >= Integer'First - J) to subprogram at show_runtime_
↪errors.ads:6]

show_runtime_errors.adb:5:12: medium: array index check might fail [reason for␣
↪check: result of addition must be a valid index into the array] [possible fix:␣
↪add precondition (if J >= 0 then I <= A'Last - J else I >= A'First - J) to␣
↪subprogram at show_runtime_errors.ads:6]

(continues on next page)

60 Chapter 7. Detecting Undefined Behavior

SPARK for the MISRA-C Developer

(continued from previous page)
show_runtime_errors.adb:5:22: medium: divide by zero might fail [possible fix: add␣

↪precondition (Q /= 0) to subprogram at show_runtime_errors.ads:6]
show_runtime_errors.adb:5:22: medium: overflow check might fail, cannot prove␣

↪lower bound for P / Q [reason for check: result of division must fit in a 32-
↪bits machine integer] [possible fix: add precondition (P / Q in Integer) to␣
↪subprogram at show_runtime_errors.ads:6]

show_runtime_errors.adb:5:22: medium: range check might fail, cannot prove lower␣
↪bound for P / Q [reason for check: result of division must fit in the target␣
↪type of the assignment] [possible fix: add precondition (P / Q in Natural) to␣
↪subprogram at show_runtime_errors.ads:6]

gnatprove: unproved check messages considered as errors

However, for an arbitrary invocation of this procedure, say Update(A, I, J, P, Q), an
exception can be raised in a variety of circumstances:
• The computation I+Jmay overflow, for example if I is Integer'Last and J is positive.

A (Integer'Last + 1) := P / Q;

• The value of I+J may be outside the range of the array A.

A (A'Last + 1) := P / Q;

• The division P / Q may overflow in the special case where P is Integer'First and Q
is -1, because of the asymmetric range of signed integer types.

A (I + J) := Integer'First / -1;

• Since the array can only contain non-negative numbers (the element subtype is Nat-
ural), it is also an error to store a negative value in it.

A (I + J) := 1 / -1;

• Finally, if Q is 0 then a divide by zero error will occur.

A (I + J) := P / 0;

For each of these potential run-time errors, the compiler will generate checks in the exe-
cutable code, raising an exception if any of the checks fail:

A (Integer'Last + 1) := P / Q;
-- raised CONSTRAINT_ERROR : overflow check failed

A (A'Last + 1) := P / Q;
-- raised CONSTRAINT_ERROR : index check failed

A (I + J) := Integer'First / (-1);
-- raised CONSTRAINT_ERROR : overflow check failed

A (I + J) := 1 / (-1);
-- raised CONSTRAINT_ERROR : range check failed

A (I + J) := P / 0;
-- raised CONSTRAINT_ERROR : divide by zero

These run-time checks incur an overhead in program size and execution time. Therefore it
may be appropriate to remove them if we are confident that they are not needed.
The traditional way to obtain the needed confidence is through testing, but it is well known
that this can never be complete, at least for non-trivial programs. Much better is to guaran-
tee the absence of run-time errors through sound static analysis, and that's where SPARK
and GNATprove can help.

7.2. Proof of Absence of Run-Time Errors in SPARK 61

SPARK for the MISRA-C Developer

More precisely, GNATprove logically interprets the meaning of every instruction in the pro-
gram, taking into account both control flow and data/information dependencies. It uses
this analysis to generate a logical formula called a verification condition for each possible
check.

A (Integer'Last + 1) := P / Q;
-- medium: overflow check might fail

A (A'Last + 1) := P / Q;
-- medium: array index check might fail

A (I + J) := Integer'First / (-1);
-- medium: overflow check might fail

A (I + J) := 1 / (-1);
-- medium: range check might fail

A (I + J) := P / 0;
-- medium: divide by zero might fail

The verification conditions are then given to an automatic prover. If every verification con-
dition can be proved, then no run-time errors will occur.
GNATprove's analysis is sound — it will detect all possible instances of run-time exceptions
being raised — while also having high precision (i.e., not producing a cascade of "false
alarms").
The way to program in SPARK so that GNATprove can guarantee the absence of run-time
errors entails:
• declaring variables with precise constraints, and in particular to specify precise ranges
for scalars; and

• defining preconditions and postconditions on subprograms, to specify respectively the
constraints that callers should respect and the guarantees that the subprogram should
provide on exit.

For example, here is a revised version of the previous example, which can guarantee
through proof that no possible run-time error can be raised:

Listing 3: no_runtime_errors.ads
1 package No_Runtime_Errors is
2

3 subtype Index_Range is Integer range 0 .. 100;
4

5 type Nat_Array is array (Index_Range range <>) of Natural;
6

7 procedure Update (A : in out Nat_Array;
8 I, J : Index_Range;
9 P, Q : Positive)
10 with
11 Pre => I + J in A'Range;
12

13 end No_Runtime_Errors;

Listing 4: no_runtime_errors.adb
1 package body No_Runtime_Errors is
2

3 procedure Update (A : in out Nat_Array;
4 I, J : Index_Range;
5 P, Q : Positive) is

(continues on next page)

62 Chapter 7. Detecting Undefined Behavior

SPARK for the MISRA-C Developer

(continued from previous page)
6 begin
7 A (I + J) := P / Q;
8 end Update;
9

10 end No_Runtime_Errors;

7.2. Proof of Absence of Run-Time Errors in SPARK 63

SPARK for the MISRA-C Developer

64 Chapter 7. Detecting Undefined Behavior

CHAPTER

EIGHT

DETECTING UNREACHABLE CODE AND DEAD CODE

MISRA C defines unreachable code as code that cannot be executed, and it defines dead
code as code that can be executed but has no effect on the functional behavior of the
program. (These definitions differ from traditional terminology, which refers to the first
category as "dead code" and the second category as "useless code".) Regardless of the
terminology, however, both types are actively harmful, as theymight confuse programmers
and lead to errors during maintenance.
The "Unused code" section of MISRA C contains seven rules that deal with detecting both
unreachable code and dead code. The two most important rules are:
• Rule 2.1: "A project shall not contain unreachable code", and
• Rule 2.2: "There shall not be dead code".

Other rules in the same section prohibit unused entities of various kinds (type declarations,
tag declarations, macro declarations, label declarations, function parameters).
While some simple cases of unreachable code can be detected by static analysis (typically
if a condition in an if statement can be determined to be always true or false), most cases
of unreachable code can only be detected by performing coverage analysis in testing, with
the caveat that code reported as not being executed is not necessarily unreachable (it
could simply reflect gaps in the test suite). Note that statement coverage, rather than the
more comprehensive decision coverage or modified condition / decision coverage (MC/DC)
as defined in the DO-178C standard for airborne software, is sufficient to detect poten-
tial unreachable statements, corresponding to code that is not covered during the testing
campaign.
The presence of dead code is much harder to detect, both statically and dynamically, as it
requires creating a complete dependency graph linking statements in the code and their
effect on visible behavior of the program.
SPARK can detect some cases of both unreachable and dead code through its precise con-
struction of a dependency graph linking a subprogram's statements to all its inputs and
outputs. This analysis might not be able to detect complex cases, but it goes well beyond
what other analyses do in general.

Listing 1: much_ado_about_little.ads
1 procedure Much_Ado_About_Little (X, Y, Z : Integer; Success : out Boolean);

Listing 2: much_ado_about_little.adb
1 procedure Much_Ado_About_Little (X, Y, Z : Integer; Success : out Boolean) is
2

3 procedure Ok is
4 begin
5 Success := True;
6 end Ok;
7

(continues on next page)

65

SPARK for the MISRA-C Developer

(continued from previous page)
8 procedure NOk is
9 begin
10 Success := False;
11 end NOk;
12

13 begin
14 Success := False;
15

16 for K in Y .. Z loop
17 if K < X and not Success then
18 Ok;
19 end if;
20 end loop;
21

22 if X > Y then
23 Ok;
24 else
25 NOk;
26 end if;
27

28 if Z > Y then
29 NOk;
30 return;
31 else
32 Ok;
33 return;
34 end if;
35

36 if Success then
37 Success := not Success;
38 end if;
39 end Much_Ado_About_Little;

Code block metadata

Project: Courses.SPARK_For_The_MISRA_C_Dev.Unreachable_And_Dead_Code.Much_Ado_
↪About_Little

MD5: ccccb112fbab169ba964b3f8ef36ec2d

Build output

much_ado_about_little.adb:36:04: warning: unreachable code [enabled by default]

Prover output

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: analysis of data and information flow ...
much_ado_about_little.adb:5:15: warning: unused assignment, in call inlined at␣

↪much_ado_about_little.adb:18
much_ado_about_little.adb:5:15: warning: unused assignment, in call inlined at␣

↪much_ado_about_little.adb:23
much_ado_about_little.adb:10:15: warning: unused assignment, in call inlined at␣

↪much_ado_about_little.adb:25
much_ado_about_little.adb:14:12: warning: unused assignment
much_ado_about_little.adb:16:20: warning: statement has no effect
much_ado_about_little.adb:17:07: warning: statement has no effect
much_ado_about_little.adb:22:04: warning: statement has no effect
much_ado_about_little.adb:36:04: warning: unreachable code [enabled by default]
much_ado_about_little.adb:36:04: warning: this statement is never reached
much_ado_about_little.adb:37:15: warning: this statement is never reached
much_ado_about_little.ads:1:34: warning: unused initial value of "X"

66 Chapter 8. Detecting Unreachable Code and Dead Code

SPARK for the MISRA-C Developer

The only code in the body of Much_Ado_About_Little that affects the result of the pro-
cedure's execution is the if Z > Y... statement, since this statement sets Success to
either True or False regardless of what the previous statements did. I.e., the statements
preceding this if are dead code in the MISRA C sense. Since both branches of the if Z
> Y... statement return from the procedure, the subsequent if Success... statement is
unreachable. GNATprove detects and issues warnings about both the dead code and the
unreachable code.

67

SPARK for the MISRA-C Developer

68 Chapter 8. Detecting Unreachable Code and Dead Code

CHAPTER

NINE

CONCLUSION

The C programming language is "close to the metal" and has emerged as a lingua franca
for the majority of embedded platforms of all sizes. However, its software engineering
deficiencies (such as the absence of data encapsulation) and its many traps and pitfalls
present major obstacles to those developing critical applications. To some extent, it is
possible to put the blame for programming errors on programmers themselves, as Linus
Torvalds admonished:

"Learn C, instead of just stringing random characters together until it compiles
(with warnings)."

But programmers are human, and even the best would be hard pressed to be 100% cor-
rect about the myriad of semantic details such as those discussed in this document. Pro-
gramming language abstractions have been invented precisely to help developers focus
on the "big picture" (thinking in terms of problem-oriented concepts) rather than low-level
machine-oriented details, but C lacks these abstractions. As Kees Cook from the Kernel Self
Protection Project puts it (during the Linux Security Summit North America 2018):

"Talking about C as a language, and how it's really just a fancy assembler"

Even experts sometimes have problems with the C programming language rules, as illus-
trated by Microsoft expert David LeBlanc (see Enforcing Strong Typing for Scalars (page 33))
or the MISRA C Committee itself (see the Preface (page 3)).
The rules in MISRA C represent an impressive collective effort to improve the reliability of
C code in critical applications, with a focus on avoiding error-prone features rather than
enforcing a particular programming style. The Rationale provided with each rule is a clear
and unobjectionable justification of the rule's benefit.
At a fundamental level, however, MISRA C is still built on a base language that was not
really designed with the goal of supporting large high-assurance applications. As shown
in this document, there are limits to what static analysis can enforce with respect to the
MISRA C rules. It's hard to retrofit reliability, safety and security into a language that did
not have these as goals from the start.
The SPARK language took a different approach, starting from a base language (Ada) that
was designed from the outset to support solid software engineering, and eliminating fea-
tures that were implementation dependent or otherwise hard to formally analyze. In this
document we have shown how the SPARK programming language and its associated formal
verification tools can contribute usefully to the goal of producing error-free software, going
beyond the guarantees that can be achieved in MISRA C.

69

SPARK for the MISRA-C Developer

70 Chapter 9. Conclusion

CHAPTER

TEN

REFERENCES

10.1 About MISRA C

The official website of the MISRA association https://www.misra.org.uk/ has many freely
available resources about MISRA C, some of which can be downloaded after registering on
the MISRA Bulletin Board at https://www.misra.org.uk/forum/ (such as the examples from
the MISRA C:2012 standard, which includes a one-line description of each guideline).
The following documents are freely available:
• MISRA Compliance 2016: Achieving compliance with MISRA coding guidelines, 2016,
which explains the rationale and process for compliance, including a thorough discus-
sions of acceptable deviations

• MISRA C:2012 - Amendment 1: Additional security guidelines for MISRA C:2012, 2016,
which contains 14 additional guidelines focusing on security. This is a minor addition
to MISRA C.

The main MISRA C:2012 document can be purchased from the MISRA webstore.
PRQA is the company that first developed MISRA C, and they have been heavily involved
in every version since then. Their webpage http://www.prqa.com/coding-standards/misra/
contains many resources about MISRA C: product datasheets, white papers, webinars, pro-
fessional courses.
The PRQA Resources Library at http://info.prqa.com/resources-library?filter=white_paper
has some freely available white papers on MISRA C and the use of static analyzers:
• An introduction to MISRA C:2012 at http://info.prqa.com/MISRA C-2012-whitepaper-
evaluation-lp

• The Myth of Perfect MISRA Compliance at http://info.prqa.com/myth-of-perfect-MISRA
Compliance-evaluation-lp, providing background information on the use and limita-
tions of static analyzers for checking MISRA C compliance

In 2013 ISO standardized a set of 45 rules focused on security, available in the C Secure
Coding Rules. A draft is freely available at http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1624.pdf
In 2018 MISRA published MISRA C:2012 - Addendum 2: Coverage of MISRA C:2012 against
ISO/IEC TS 17961:2013 "C Secure", mapping ISO rules to MISRA C:2012 guidelines. This
document is freely available from https://www.misra.org.uk/.

71

https://www.misra.org.uk/
https://www.misra.org.uk/forum/
http://www.prqa.com/coding-standards/misra/
http://info.prqa.com/resources-library?filter=white_paper
http://info.prqa.com/myth-of-perfect-MISRA
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1624.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1624.pdf

SPARK for the MISRA-C Developer

10.2 About SPARK

The e-learning website https://learn.adacore.com/ contains a freely available interactive
course on SPARK.
The SPARK User's Guide is available at http://docs.adacore.com/spark2014-docs/html/ug/.
The SPARK Reference Manual is available at http://docs.adacore.com/spark2014-docs/html/
lrm/.
A student-oriented textbook on SPARK is Building High Integrity Applications with SPARK by
John McCormick and Peter Chapin, published by Cambridge University Press. It covers the
latest version of the language, SPARK 2014.
A historical account of the evolution of SPARK technology and its use in industry is covered
in the article Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK by
Roderick Chapman and Florian Schanda, at http://proteancode.com/keynote.pdf
The website https://www.adacore.com/sparkpro is a portal for up-to-date information and
resources on SPARK. AdaCore blog's site https://blog.adacore.com/ contains a number of
SPARK-related posts.
The booklet AdaCore Technologies for Cyber Security shows how AdaCore's technology can
be used to prevent or mitigate the most common security vulnerabilities in software. See
https://www.adacore.com/books/adacore-tech-for-cyber-security/.
The booklet AdaCore Technologies for CENELEC EN 50128:2011 shows how AdaCore's tech-
nology can be used in conjunction with the CENELEC EN 50128:2011 software standard for
railway control and protection systems. It describes in particular where the SPARK technol-
ogy fits best and how it can be used to meet various requirements of the standard. See:
https://www.adacore.com/books/cenelec-en-50128-2011/.
The booklet AdaCore Technologies for DO-178C/ED-12C similarly shows how AdaCore's
technology can be used in conjunction with the DO-178C/ED-12C standard for airborne soft-
ware, and describes in particular how SPARK can be used in conjunction with the Formal
Methods supplement DO-333/ED-216. See https://www.adacore.com/books/do-178c-tech/.

10.3 About MISRA C and SPARK

The blog post at https://blog.adacore.com/MISRA-C-2012-vs-spark-2014-the-subset-matching-game
reviews the 27 undecidable rules in MISRA C:2012 and describes how SPARK addresses
them.
The white paper A Comparison of SPARK with MISRA C and Frama-C at https://www.adacore.
com/papers/compare-spark-MISRA-C-frama-c compares SPARK to MISRA C and to the for-
mal verification tool Frama-C for C programs.

72 Chapter 10. References

https://learn.adacore.com/
http://docs.adacore.com/spark2014-docs/html/ug/
http://docs.adacore.com/spark2014-docs/html/lrm/
http://docs.adacore.com/spark2014-docs/html/lrm/
http://proteancode.com/keynote.pdf
https://www.adacore.com/sparkpro
https://blog.adacore.com/
https://www.adacore.com/books/adacore-tech-for-cyber-security/
https://www.adacore.com/books/cenelec-en-50128-2011/
https://www.adacore.com/books/do-178c-tech/
https://blog.adacore.com/MISRA-C-2012-vs-spark-2014-the-subset-matching-game
https://www.adacore.com/papers/compare-spark-MISRA-C-frama-c
https://www.adacore.com/papers/compare-spark-MISRA-C-frama-c

	Preface
	Enforcing Basic Program Consistency
	Taming Text-Based Inclusion
	Hardening Link-Time Checking
	Going Towards Encapsulation

	Enforcing Basic Syntactic Guarantees
	Distinguishing Code and Comments
	Specially Handling Function Parameters and Result
	Handling the Result of Function Calls
	Handling Function Parameters

	Ensuring Control Structures Are Not Abused
	Preventing the Semicolon Mistake
	Avoiding Complex Switch Statements
	Avoiding Complex Loops
	Avoiding the Dangling Else Issue

	Enforcing Strong Typing
	Enforcing Strong Typing for Pointers
	Pointers Are Not Addresses
	Pointers Are Not References
	Pointers Are Not Arrays
	Pointers Should Be Typed

	Enforcing Strong Typing for Scalars
	Restricting Operations on Types
	Arithmetic Operations on Arithmetic Types
	Boolean Operations on Boolean
	Bitwise Operations on Unsigned Integers

	Restricting Explicit Conversions
	Restricting Implicit Conversions

	Initializing Data Before Use
	Detecting Reads of Uninitialized Data
	Detecting Partial or Redundant Initialization of Arrays and Structures

	Controlling Side Effects
	Preventing Undefined Behavior
	Reducing Programmer Confusion
	Side Effects and SPARK

	Detecting Undefined Behavior
	Preventing Undefined Behavior in SPARK
	Proof of Absence of Run-Time Errors in SPARK

	Detecting Unreachable Code and Dead Code
	Conclusion
	References
	About MISRA C
	About SPARK
	About MISRA C and SPARK

