
Journey With

A Flight in Progress

Advanced Journey With Ada: A
Flight In Progress

Release 2024-07

Gustavo A. Hoffmann
and Robert A. Duff

Jul 20, 2024

CONTENTS

I Data types 3
1 Types 5
1.1 Scalar Types . 5

1.1.1 Ranges . 6
1.1.2 Predecessor and Successor . 6
1.1.3 Scalar To String Conversion . 9
1.1.4 Width attribute . 10
1.1.5 Base . 11

1.2 Enumerations . 15
1.2.1 Enumerations as functions . 15
1.2.2 Enumeration overloading . 18
1.2.3 Position and Internal Code . 22

1.3 Definite and Indefinite Subtypes . 23
1.3.1 Constrained Attribute . 31

1.4 Incomplete types . 34
1.5 Type view . 35

1.5.1 Non-Record Private Types . 38
1.6 Type conversion . 42

1.6.1 Value conversion . 43
1.6.2 View conversion . 52
1.6.3 Implicit conversions . 56
1.6.4 Conversion of other types . 57

1.7 Qualified Expressions . 61
1.7.1 Verifying subtypes . 62

1.8 Default initial values . 63
1.9 Deferred Constants . 66
1.10 User-defined literals . 68

2 Types and Representation 77
2.1 Enumeration Representation Clauses . 77
2.2 Data Representation . 79

2.2.1 Sizes . 79
2.2.2 Alignment . 87
2.2.3 Overlapping Storage . 90
2.2.4 Packed Representation . 93

2.3 Record Representation and storage clauses . 97
2.3.1 Storage Place Attributes . 99
2.3.2 Using Representation Clauses . 101
2.3.3 Derived Types And Representation Clauses 103
2.3.4 Representation on Bit Level . 104

2.4 Changing Data Representation . 106
2.4.1 Restrictions . 110

2.5 Valid Attribute . 113
2.6 Unchecked Union . 116

i

2.7 Shared variable control . 122
2.7.1 Volatile . 122
2.7.2 Independent . 124
2.7.3 Atomic . 129

2.8 Addresses . 131
2.8.1 Address attribute . 132
2.8.2 Address aspect . 133
2.8.3 Address comparison . 135
2.8.4 Address to integer conversion . 136
2.8.5 Address arithmetic . 137

2.9 Discarding names . 140

3 Records 143
3.1 Default Initialization . 143

3.1.1 Dependencies . 144
3.1.2 Initialization Order . 144
3.1.3 Evaluation . 146
3.1.4 Defaults and object declaration . 147
3.1.5 Advanced Usages . 149

3.2 Mutually dependent types . 149
3.3 Null records . 151

3.3.1 Simple Prototyping . 153
3.3.2 Extending the prototype . 154
3.3.3 More complex applications . 156
3.3.4 Implementing the API . 157
3.3.5 Tagged null records . 159

3.4 Per-Object Expressions . 160
3.4.1 Default value . 163
3.4.2 Restrictions . 164

4 Aggregates 167
4.1 Container Aggregates . 167
4.2 Record aggregates . 170

4.2.1 <> . 172
4.2.2 others . 176
4.2.3 Record discriminants . 178

4.3 Full coverage rules for Aggregates . 180
4.4 Array aggregates . 182

4.4.1 Positional and named array aggregates 182
4.4.2 Null array aggregate . 185
4.4.3 |, <>, others . 187
4.4.4 .. 188
4.4.5 Missing components . 189
4.4.6 Iterated component association . 190
4.4.7 Multidimensional array aggregates . 192
4.4.8 <> and default values . 197

4.5 Extension Aggregates . 202
4.5.1 Assignments to objects of derived types 202
4.5.2 Example: Points . 203
4.5.3 Using extension aggregates . 205
4.5.4 More extension aggregates . 206
4.5.5 with others . 206
4.5.6 with null record . 207
4.5.7 Extension aggregates and descendent types 208

4.6 Delta Aggregates . 209
4.6.1 Delta Aggregates for Tagged Records . 209
4.6.2 Delta Aggregates for Non-Tagged Records 212
4.6.3 Delta Aggregates for Arrays . 213

ii

5 Arrays 217
5.1 Unconstrained Arrays . 217

5.1.1 Unconstrained Arrays vs. Vectors . 218
5.2 Multidimensional Arrays . 219

5.2.1 Unconstrained Multidimensional Arrays 224
5.2.2 Arrays of arrays . 225

6 Strings 229
6.1 Wide and Wide-Wide Strings . 229

6.1.1 Text I/O . 231
6.1.2 Wide and Wide-Wide String Handling . 233
6.1.3 Bounded and Unbounded Wide and Wide-Wide Strings 235

6.2 String Encoding . 236
6.2.1 UTF-8 encoding and decoding . 236
6.2.2 UTF-8 size and length . 238
6.2.3 UTF-8 encoding in source-code files . 240
6.2.4 UTF-16 encoding and decoding . 244

6.3 Image attribute . 246
6.3.1 Overview . 246
6.3.2 Type'Image and Obj'Image . 247
6.3.3 Wider versions of Image . 248
6.3.4 Image attribute for non-scalar types . 249
6.3.5 Image attribute for tagged types . 251
6.3.6 Image attribute for task and protected types 252

6.4 Put_Image aspect . 253
6.4.1 Overview . 254
6.4.2 Complete Example of Put_Image . 255
6.4.3 Relation to the Image attribute . 256
6.4.4 Put_Image and derived types . 257
6.4.5 Put_Image and tagged types . 259

6.5 Universal text buffer . 261
6.5.1 Overview . 261
6.5.2 Additional procedures . 262

7 Numerics 265
7.1 Modular Types . 265

7.1.1 Modulus Attribute . 265
7.1.2 Mod Attribute . 266
7.1.3 Operations on modular types . 268

7.2 Numeric Literals . 270
7.2.1 Classification . 270
7.2.2 Features and Flexibility . 272

7.3 Floating-Point Types . 277
7.3.1 Representation-oriented attributes . 277
7.3.2 Primitive function attributes . 283

7.4 Fixed-Point Types . 291
7.4.1 Attributes of fixed-point types . 291
7.4.2 Attributes of decimal fixed-point types . 297

7.5 Big Numbers . 299
7.5.1 Overview . 300
7.5.2 Factorial . 302
7.5.3 Conversions . 305
7.5.4 Other features of big integers . 312
7.5.5 Other operators for big integers . 313
7.5.6 Big real and quotients . 314
7.5.7 Range checks . 315

iii

II Control Flow 317
8 Expressions 319
8.1 Expressions: Definition . 319

8.1.1 Relations and simple expressions . 319
8.1.2 Numeric expressions . 322
8.1.3 Other expressions . 323
8.1.4 Parenthesized expression . 323

8.2 Conditional Expressions . 326
8.3 Quantified Expressions . 328
8.4 Declare Expressions . 332

8.4.1 Restrictions in the declarative part . 334
8.5 Reduction Expressions . 336

8.5.1 Value sequences . 338
8.5.2 Custom reducers . 339
8.5.3 Other accumulator types . 341

9 Statements 343
9.1 Simple and Compound Statements . 343
9.2 Labels . 343

9.2.1 Labels and goto statements . 344
9.2.2 Use-case: Continue . 345
9.2.3 Labels and compound statements . 346

9.3 Exit loop statement . 348
9.4 If, case and loop statements . 349

9.4.1 Case statements and expressions . 351
9.5 Block Statements . 353
9.6 Extended return statement . 354

9.6.1 Other usages of extended return statements 355

10Subprograms 357
10.1 Parameter Modes and Associations . 357

10.1.1 Formal Parameter Modes . 357
10.1.2 By-copy and by-reference . 358
10.1.3 Bounded errors . 363
10.1.4 Aliased parameters . 365
10.1.5 Parameter Associations . 366

10.2 Operators . 370
10.2.1 User-defined operators . 370

10.3 Expression functions . 376
10.4 Overloading . 379
10.5 Operator Overloading . 384
10.6 Operator Overriding . 384
10.7 Nonreturning procedures . 387
10.8 Inline subprograms . 390
10.9 Null Procedures . 392

10.9.1 Null procedures and overriding . 393

11Exceptions 397
11.1 Asserts . 397
11.2 Assertion policies . 399
11.3 Checks and exceptions . 402

11.3.1 Access Check . 402
11.3.2 Discriminant Check . 404
11.3.3 Division Check . 405
11.3.4 Index Check . 406
11.3.5 Length Check . 407
11.3.6 Overflow Check . 407
11.3.7 Range Check . 408

iv

11.3.8 Tag Check . 409
11.3.9 Accessibility Check . 410
11.3.10Allocation Check . 411
11.3.11Elaboration Check . 413
11.3.12Storage Check . 414

11.4 Ada.Exceptions package . 415
11.4.1 Retrieving exception information . 415
11.4.2 Collecting exceptions . 416
11.4.3 Debugging exceptions in the GNAT toolchain 420

11.5 Exception renaming . 423
11.6 Out and Uninitialized . 424
11.7 Suppressing checks . 428

11.7.1 pragma Suppress . 428
11.7.2 pragma Unsuppress . 430

III Modular programming 433
12Packages 435
12.1 Package renaming . 435

12.1.1 Grouping packages . 435
12.1.2 Child of renamed package . 437
12.1.3 Backwards-compatibility via renaming . 437

12.2 Private packages . 438
12.2.1 Declaration and usage . 439
12.2.2 Private sibling packages . 441
12.2.3 Outside the package tree . 443

12.3 Private with clauses . 446
12.3.1 Definition and usage . 446
12.3.2 Referring to private child package . 448

12.4 Limited Visibility . 450
12.4.1 Limited visibility and private with clauses 452
12.4.2 Limited visibility and other elements . 453

12.5 Visibility . 454
12.5.1 Automatic visibility . 454
12.5.2 With clauses and visibility . 455
12.5.3 Circular dependency . 458
12.5.4 Private packages . 460

12.6 Use type clause . 462
12.6.1 Another use clause example . 463
12.6.2 Visibility and Readability . 464
12.6.3 use type . 465
12.6.4 use all type . 465

12.7 Use clauses and naming conflicts . 466
12.7.1 Code example . 466
12.7.2 Naming conflict . 467
12.7.3 Circumventing naming conflicts . 468

13Subprograms and Modularity 473
13.1 Private subprograms . 473

13.1.1 Private subprograms of a package . 474
13.1.2 Private subprograms and private packages 475

IV Resource Management 479
14Access Types 481
14.1 Access types: Terminology . 481

14.1.1 Access type, designated subtype and profile 481

v

14.1.2 Access object and designated object . 482
14.1.3 Access value and designated value . 483

14.2 Access types: Allocation . 483
14.2.1 Pool-specific access types . 486
14.2.2 Multiple allocation . 488

14.3 Discriminants as Access Values . 492
14.3.1 Unconstrained type as designated subtype 494
14.3.2 Whole object assignments . 497

14.4 Parameters as Access Values . 498
14.4.1 Changing the referenced object . 500
14.4.2 Replace the access value . 502
14.4.3 Side-effects on designated objects . 503

14.5 Self-reference . 509
14.6 Mutually dependent types using access types . 512
14.7 Dereferencing . 512

14.7.1 Implicit Dereferencing . 514
14.8 Ragged arrays . 519

14.8.1 Uniform multidimensional arrays . 519
14.8.2 Non-uniform multidimensional array . 521

14.9 Aliasing . 523
14.9.1 Aliased objects . 525
14.9.2 Aliased components . 530
14.9.3 Aliased parameters . 532

14.10Accessibility Levels and Rules: An Introduction 534
14.10.1Lifetime of objects . 534
14.10.2Accessibility Levels . 535
14.10.3Accessibility Rules . 536
14.10.4Accessibility rules on parameters . 540
14.10.5Dangling References . 541

14.11Unchecked Access . 544
14.12Unchecked Deallocation . 546

14.12.1Unchecked Deallocation and Dangling References 549
14.12.2Dereferencing dangling references . 551
14.12.3Restrictions for Ada.Unchecked_Deallocation 552

14.13Null & Not Null Access . 554
14.14Design strategies for access types . 558

14.14.1Abstract data type for access types . 558
14.14.2Controlled type for access types . 561

14.15Access to subprograms . 566
14.15.1Static vs. dynamic calls . 566
14.15.2Access to subprogram declaration . 567
14.15.3Objects of access-to-subprogram type . 569
14.15.4Components of access-to-subprogram type 570
14.15.5Access-to-subprogram as discriminant types 573
14.15.6Access-to-subprograms as formal parameters 575
14.15.7Selecting subprograms . 578
14.15.8Null exclusion . 580
14.15.9Access to protected subprograms . 585

14.16Accessibility Rules and Access-To-Subprograms 591
14.16.1Unchecked Access . 593

14.17Access and Address . 595
14.17.1Address and access conversion . 596

15Anonymous Access Types 601
15.1 Named and Anonymous Access Types . 601

15.1.1 Relation to named types . 602
15.1.2 Benefits of anonymous access types . 602

15.2 Anonymous Access-To-Object Types . 605

vi

15.2.1 Not Null Anonymous Access-To-Object Types 607
15.2.2 Drawbacks of Anonymous Access-To-Object Types 608

15.3 Access discriminants . 615
15.3.1 Default Value of Access Discriminants . 617
15.3.2 Benefits of Access Discriminants . 619
15.3.3 Preventing dangling pointers . 621

15.4 Self-reference . 622
15.5 Mutually dependent types using anonymous access types 624
15.6 Access parameters . 625

15.6.1 Interfacing To Other Languages . 628
15.6.2 Inherited Primitive Operations For Tagged Types 631

15.7 User-Defined References . 634
15.7.1 Dereferencing of tagged types . 636
15.7.2 Simple container . 637

15.8 Anonymous Access Types and Accessibility Rules 643
15.8.1 Conversions between Anonymous and Named Access Types 645
15.8.2 Accessibility rules on access parameters 647

15.9 Anonymous Access-To-Subprograms . 648
15.9.1 Examples of anonymous access-to-subprogram usage 650
15.9.2 Application of anonymous access-to-subprogram types 656
15.9.3 Readability . 656

15.10Accessibility Rules and Anonymous Access-To-Subprograms 658
15.10.1Named vs. anonymous access-to-subprograms 658
15.10.2Named vs. anonymous access-to-subprograms as parameters 659
15.10.3Iterator . 663

16Limited Types 669
16.1 Assignment and equality . 669

16.1.1 Assignments . 672
16.1.2 Equality . 674

16.2 Limited private types . 677
16.2.1 Non-Record Limited Types . 678
16.2.2 Partial and full view of limited types . 679
16.2.3 Limited and nonlimited in full view . 682
16.2.4 Limited private component . 683
16.2.5 Tagged limited private types . 685

16.3 Explicitly limited types . 685
16.4 Subtypes of Limited Types . 687
16.5 Deriving from limited types . 688

16.5.1 Deriving from limited private types . 689
16.5.2 Deriving from non-explicitly limited private types 690

16.6 Immutably Limited Types . 695
16.6.1 Non immutably limited types . 698

16.7 Record components of limited type . 698
16.8 Limited types and aggregates . 699

16.8.1 Full coverage rules for limited types . 700
16.9 Constructor functions for limited types . 703
16.10Return objects . 707

16.10.1Extended return statements for limited types 707
16.10.2Initialization and function return . 709

16.11Building objects from constructors . 713
16.12Limited types as parameter . 716

vii

viii

Advanced Journey With Ada: A Flight In Progress

Warning: This version of the website contains UNPUBLISHED contents. Please do not
share it externally!

Copyright © 2019 – 2023, AdaCore
This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this
page1

Warning: This is work in progress!
Information in this document is subject to change at any time without prior notification.

Note: The code examples in this course use a 50-column limit, which greatly improves
the readability of the code on devices with a small screen size. This constraint, however,
leads to an unusual coding style. For instance, instead of calling Put_Line in a single line,
we have this:

Put_Line
(" is in the northeast quadrant");

or this:

Put_Line (" (X => "
& Integer'Image (P.X)
& ")");

Note that typical Ada code uses a limit of at least 79 columns. Therefore, please don't take
the coding style from this course as a reference!

Note: Each code example from this book has an associated "code block metadata", which
contains the name of the "project" and an MD5 hash value. This information is used to
identify a single code example.
You can find all code examples in a zip file, which you can download from the learn website2.
The directory structure in the zip file is based on the code block metadata. For example, if
you're searching for a code example with this metadata:
• Project: Courses.Intro_To_Ada.Imperative_Language.Greet
• MD5: cba89a34b87c9dfa71533d982d05e6ab
1 http://creativecommons.org/licenses/by-sa/4.0
2 https://learn.adacore.com/zip/learning-ada_code.zip

CONTENTS 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0
https://learn.adacore.com/zip/learning-ada_code.zip

Advanced Journey With Ada: A Flight In Progress

you will find it in this directory:
projects/Courses/Intro_To_Ada/Imperative_Language/Greet/
cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:
1. Unpack the zip file;
2. Go to target directory;
3. Start GNAT Studio on this directory;
4. Build (or compile) the project;
5. Run the application (if a main procedure is available in the project).

This course will teach you advanced topics of the Ada programming language. The Intro-
duction to Ada3 course is a prerequisite for this course.
This document was written by Gustavo A. Hoffmann, with major contributions from Robert
A. Duff. The document also includes contributions from Arnaud Charlet, Emmanuel Briot,
Franco Gasperoni, Gary Dismukes, Javier Miranda, Patrick Rogers, Quentin Ochem, Robert
Dewar, and Yannick Moy.
These contributions are clearly indicated in the document, together with the original publi-
cation source.
Special thanks to Patrick Rogers for all comments and suggestions. In particular, thanks for
sharing the training slides on access types: many ideas from those slides were integrated
into this course.
This document was reviewed by Patrick Rogers and Tucker Taft.

CHANGELOG
Changes are being tracked on the CHANGELOG page.

3 https://learn.adacore.com/courses/intro-to-ada/index.html#intro-ada-course-index

2 CONTENTS

https://learn.adacore.com/courses/intro-to-ada/index.html#intro-ada-course-index
https://learn.adacore.com/courses/intro-to-ada/index.html#intro-ada-course-index

Part I

Data types

3

CHAPTER

ONE

TYPES

1.1 Scalar Types

In general terms, scalar types are the most basic types that we can get. As we know, we
can classify them as follows:

Category Discrete Numeric
Enumeration Yes No
Integer Yes Yes
Real No Yes

Many attributes exist for scalar types. For example, we can use the Image and Value at-
tributes to convert between a given type and a string type. The following table presents
the main attributes for scalar types:

Category At-
tribute

Returned value

Ranges First First value of the discrete subtype's range.
Last Last value of the discrete subtype's range.
Range Range of the discrete subtype (corresponds to Subtype'First

.. Subtype'Last).
Iterators Pred Predecessor of the input value.

Succ Successor of the input value.
Comparison Min Minimum of two values.

Max Maximum of two values.
String con-
version

Image String representation of the input value.
Value Value of a subtype based on input string.

We already discussed some of these attributes in the Introduction to Ada course (in the
sections about range and related attributes4 and image attribute5). In this section, we'll
discuss some aspects that have been left out of the previous course.

In the Ada Reference Manual
• 3.5 Scalar types6

4 https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-range-attribute
5 https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#

intro-ada-image-attribute
6 http://www.ada-auth.org/standards/22rm/html/RM-3-5.html

5

https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-range-attribute
https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-image-attribute
http://www.ada-auth.org/standards/22rm/html/RM-3-5.html

Advanced Journey With Ada: A Flight In Progress

1.1.1 Ranges

We've seen that the First and Last attributes can be used with discrete types. Those
attributes are also available for real types. Here's an example using the Float type and a
subtype of it:

Listing 1: show_first_last_real.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_First_Last_Real is
4 subtype Norm is Float range 0.0 .. 1.0;
5 begin
6 Put_Line ("Float'First: " & Float'First'Image);
7 Put_Line ("Float'Last: " & Float'Last'Image);
8 Put_Line ("Norm'First: " & Norm'First'Image);
9 Put_Line ("Norm'Last: " & Norm'Last'Image);
10 end Show_First_Last_Real;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Ranges_Real_Types
MD5: 89745a94fbdc41a2880ba14e50401acb

Runtime output

Float'First: -3.40282E+38
Float'Last: 3.40282E+38
Norm'First: 0.00000E+00
Norm'Last: 1.00000E+00

This program displays the first and last values of both the Float type and the Norm subtype.
In the case of the Float type, we see the full range, while for the Norm subtype, we get the
values we used in the declaration of the subtype (i.e. 0.0 and 1.0).

1.1.2 Predecessor and Successor

We can use the Pred and Succ attributes to get the predecessor and successor of a specific
value. For discrete types, this is simply the next discrete value. For example, Pred (2) is
1 and Succ (2) is 3. Let's look at a complete source-code example:

Listing 2: show_succ_pred_discrete.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Succ_Pred_Discrete is
4 type State is (Idle, Started,
5 Processing, Stopped);
6

7 Machine_State : constant State := Started;
8

9 I : constant Integer := 2;
10 begin
11 Put_Line ("State : "
12 & Machine_State'Image);
13 Put_Line ("State'Pred (Machine_State): "
14 & State'Pred (Machine_State)'Image);
15 Put_Line ("State'Succ (Machine_State): "
16 & State'Succ (Machine_State)'Image);
17 Put_Line ("----------");

(continues on next page)

6 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
18

19 Put_Line ("I : "
20 & I'Image);
21 Put_Line ("Integer'Pred (I): "
22 & Integer'Pred (I)'Image);
23 Put_Line ("Integer'Succ (I): "
24 & Integer'Succ (I)'Image);
25 end Show_Succ_Pred_Discrete;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Show_Succ_Pred_Discrete
MD5: e11d0f50105864fdc1594b3bb72d927e

Runtime output

State : STARTED
State'Pred (Machine_State): IDLE
State'Succ (Machine_State): PROCESSING

I : 2
Integer'Pred (I): 1
Integer'Succ (I): 3

In this example, we use the Pred and Succ attributes for a variable of enumeration type
(State) and a variable of Integer type.
We can also use the Pred and Succ attributes with real types. In this case, however, the
value we get depends on the actual type we're using:
• for fixed-point types, the value is calculated using the smallest value (Small), which
is derived from the declaration of the fixed-point type;

• for floating-point types, the value used in the calculation depends on representation
constraints of the actual target machine.

Let's look at this example with a decimal type (Decimal) and a floating-point type
(My_Float):

Listing 3: show_succ_pred_real.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Succ_Pred_Real is
4 subtype My_Float is
5 Float range 0.0 .. 0.5;
6

7 type Decimal is
8 delta 0.1 digits 2
9 range 0.0 .. 0.5;
10

11 D : Decimal;
12 N : My_Float;
13 begin
14 Put_Line ("---- DECIMAL -----");
15 Put_Line ("Small: " & Decimal'Small'Image);
16 Put_Line ("----- Succ -------");
17 D := Decimal'First;
18 loop
19 Put_Line (D'Image);
20 D := Decimal'Succ (D);
21

(continues on next page)

1.1. Scalar Types 7

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
22 exit when D = Decimal'Last;
23 end loop;
24 Put_Line ("----- Pred -------");
25

26 D := Decimal'Last;
27 loop
28 Put_Line (D'Image);
29 D := Decimal'Pred (D);
30

31 exit when D = Decimal'First;
32 end loop;
33 Put_Line ("==================");
34

35 Put_Line ("---- MY_FLOAT ----");
36 Put_Line ("----- Succ -------");
37 N := My_Float'First;
38 for I in 1 .. 5 loop
39 Put_Line (N'Image);
40 N := My_Float'Succ (N);
41 end loop;
42 Put_Line ("----- Pred -------");
43

44 for I in 1 .. 5 loop
45 Put_Line (N'Image);
46 N := My_Float'Pred (N);
47 end loop;
48 end Show_Succ_Pred_Real;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Show_Succ_Pred_Real
MD5: f426d6539c3ce863101f1e6afb21c08f

Runtime output

---- DECIMAL -----
Small: 1.00000000000000000E-01
----- Succ -------
0.0
0.1
0.2
0.3
0.4
----- Pred -------
0.5
0.4
0.3
0.2
0.1
==================
---- MY_FLOAT ----
----- Succ -------
0.00000E+00
1.40130E-45
2.80260E-45
4.20390E-45
5.60519E-45
----- Pred -------
7.00649E-45
5.60519E-45
4.20390E-45

(continues on next page)

8 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
2.80260E-45
1.40130E-45

As the output of the program indicates, the smallest value (see Decimal'Small in the ex-
ample) is used to calculate the previous and next values of Decimal type.
In the case of the My_Float type, the difference between the current and the previous or
next values is 1.40130E-45 (or 2-149) on a standard PC.

1.1.3 Scalar To String Conversion

We've seen that we can use the Image and Value attributes to perform conversions between
values of a given subtype and a string:

Listing 4: show_image_value_attr.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Image_Value_Attr is
4 I : constant Integer := Integer'Value ("42");
5 begin
6 Put_Line (I'Image);
7 end Show_Image_Value_Attr;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Image_Value_Attr
MD5: 9daa13b1f05511fac7e108eb9b8eefa7

Runtime output

42

The Image and Value attributes are used for the String type specifically. In addition
to them, there are also attributes for different string types — namely Wide_String and
Wide_Wide_String. This is the complete list of available attributes:

Conversion type Attribute String type
Conversion to string Image String

Wide_Image Wide_String
Wide_Wide_Image Wide_Wide_String

Conversion to subtype Value String
Wide_Value Wide_String
Wide_Wide_Value Wide_Wide_String

We discuss more about Wide_String and Wide_Wide_String in another section (page 229).

1.1. Scalar Types 9

Advanced Journey With Ada: A Flight In Progress

1.1.4 Width attribute

When converting a value to a string by using the Image attribute, we get a string with
variable width. We can assess the maximum width of that string for a specific subtype
by using the Width attribute. For example, Integer'Width gives us the maximum width
returned by the Image attribute when converting a value of Integer type to a string of
String type.
This attribute is useful when we're using bounded strings in our code to store the string
returned by the Image attribute. For example:

Listing 5: show_width_attr.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Strings; use Ada.Strings;
3 with Ada.Strings.Bounded;
4

5 procedure Show_Width_Attr is
6 package B_Str is new
7 Ada.Strings.Bounded.Generic_Bounded_Length
8 (Max => Integer'Width);
9 use B_Str;
10

11 Str_I : Bounded_String;
12

13 I : constant Integer := 42;
14 J : constant Integer := 103;
15 begin
16 Str_I := To_Bounded_String (I'Image);
17 Put_Line ("Value: "
18 & To_String (Str_I));
19 Put_Line ("String Length: "
20 & Length (Str_I)'Image);
21 Put_Line ("----");
22

23 Str_I := To_Bounded_String (J'Image);
24 Put_Line ("Value: "
25 & To_String (Str_I));
26 Put_Line ("String Length: "
27 & Length (Str_I)'Image);
28 end Show_Width_Attr;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Width_Attr
MD5: 82cff0cf4fecfdecce3020135cf98fd2

Runtime output

Value: 42
String Length: 3

Value: 103
String Length: 4

In this example, we're storing the string returned by Image in the Str_I variable of
Bounded_String type.
Similar to the Image and Value attributes, the Width attribute is also available for string
types other than String. In fact, we can use:
• the Wide_Width attribute for strings returned by Wide_Image; and
• the Wide_Wide_Width attribute for strings returned by Wide_Wide_Image.

10 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

1.1.5 Base

The Base attribute gives us the unconstrained underlying hardware representation selected
for a given numeric type. As an example, let's say we declared a subtype of the Integer
type named One_To_Ten:

Listing 6: my_integers.ads
1 package My_Integers is
2

3 subtype One_To_Ten is Integer
4 range 1 .. 10;
5

6 end My_Integers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Base_Attr
MD5: e3f8310ed742e61a65728fecb6caa557

If we then use the Base attribute — by writing One_To_Ten'Base —, we're actually refer-
ring to the unconstrained underlying hardware representation selected for One_To_Ten. As
One_To_Ten is a subtype of the Integer type, this also means that One_To_Ten'Base is
equivalent to Integer'Base, i.e. they refer to the same base type. (This base type is the
underlying hardware type representing the Integer type — but is not the Integer type
itself.)

For further reading...
The Ada standard defines that the minimum range of the Integer type is -2**15 + 1 ..
2**15 - 1. In modern 64-bit systems — where wider types such as Long_Integer are
defined — the range is at least -2**31 + 1 .. 2**31 - 1. Therefore, we could think of
the Integer type as having the following declaration:

type Integer is
range -2 ** 31 .. 2 ** 31 - 1;

However, even though Integer is a predefined Ada type, it's actually a subtype of an anony-
mous type. That anonymous "type" is the hardware's representation for the numeric type
as chosen by the compiler based on the requested range (for the signed integer types) or
digits of precision (for floating-point types). In other words, these types are actually sub-
types of something that does not have a specific name in Ada, and that is not constrained.
In effect,

type Integer is
range -2 ** 31 .. 2 ** 31 - 1;

is really as if we said this:

subtype Integer is
Some_Hardware_Type_With_Sufficient_Range
range -2 ** 31 .. 2 ** 31 - 1;

Since the Some_Hardware_Type_With_Sufficient_Range type is anonymous and we
therefore cannot refer to it in the code, we just say that Integer is a type rather than
a subtype.
Let's focus on signed integers — as the other numerics work the same way. When we
declare a signed integer type, we have to specify the required range, statically. If the
compiler cannot find a hardware-defined or supported signed integer type with at least the

1.1. Scalar Types 11

Advanced Journey With Ada: A Flight In Progress

range requested, the compilation is rejected. For example, in current architectures, the
code below most likely won't compile:

Listing 7: int_def.ads
1 package Int_Def is
2

3 type Too_Big_To_Fail is
4 range -2 ** 255 .. 2 ** 255 - 1;
5

6 end Int_Def;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Very_Big_Range
MD5: 29f54776dc814dc8a5d245105b527992

Build output

int_def.ads:4:06: error: integer type definition bounds out of range
gprbuild: *** compilation phase failed

Otherwise, the compiler maps the named Ada type to the hardware "type", presumably
choosing the smallest one that supports the requested range. (That's why the range has
to be static in the source code, unlike for explicit subtypes.)

The following example shows how the Base attribute affects the bounds of a variable:

Listing 8: show_base.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with My_Integers; use My_Integers;
3

4 procedure Show_Base is
5 C : constant One_To_Ten := One_To_Ten'Last;
6 begin
7 Using_Constrained_Subtype : declare
8 V : One_To_Ten := C;
9 begin
10 Put_Line
11 ("Increasing value for One_To_Ten...");
12

13 V := One_To_Ten'Succ (V);
14 exception
15 when others =>
16 Put_Line ("Exception raised!");
17 end Using_Constrained_Subtype;
18

19 Using_Base : declare
20 V : One_To_Ten'Base := C;
21 begin
22 Put_Line
23 ("Increasing value for One_To_Ten'Base...");
24

25 V := One_To_Ten'Succ (V);
26 exception
27 when others =>
28 Put_Line ("Exception raised!");
29 end Using_Base;
30

31 Put_Line ("One_To_Ten'Last: "
(continues on next page)

12 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
32 & One_To_Ten'Last'Image);
33 Put_Line ("One_To_Ten'Base'Last: "
34 & One_To_Ten'Base'Last'Image);
35 end Show_Base;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Base_Attr
MD5: ce3e9fb3ff1619e835e9108ae0a787e7

Build output

show_base.adb:13:22: warning: value not in range of type "One_To_Ten" defined at␣
↪my_integers.ads:3 [enabled by default]

show_base.adb:13:22: warning: Constraint_Error will be raised at run time [enabled␣
↪by default]

Runtime output

Increasing value for One_To_Ten...
Exception raised!
Increasing value for One_To_Ten'Base...
One_To_Ten'Last: 10
One_To_Ten'Base'Last: 2147483647

In the first block of the example (Using_Constrained_Subtype), we're asking for the next
value after the last value of a range — in this case, One_To_Ten'Succ (One_To_Ten'Last).
As expected, since the last value of the range doesn't have a successor, a constraint ex-
ception is raised.
In the Using_Base block, we're declaring a variable V of One_To_Ten'Base subtype. In
this case, the next value exists — because the condition One_To_Ten'Last + 1 <=
One_To_Ten'Base'Last is true —, so we can use the Succ attribute without having an
exception being raised.
In the following example, we adjust the result of additions and subtractions to avoid con-
straint errors:

Listing 9: my_integers.ads
1 package My_Integers is
2

3 subtype One_To_Ten is Integer range 1 .. 10;
4

5 function Sat_Add (V1, V2 : One_To_Ten'Base)
6 return One_To_Ten;
7

8 function Sat_Sub (V1, V2 : One_To_Ten'Base)
9 return One_To_Ten;
10

11 end My_Integers;

Listing 10: my_integers.adb
1 -- with Ada.Text_IO; use Ada.Text_IO;
2

3 package body My_Integers is
4

5 function Saturate (V : One_To_Ten'Base)
6 return One_To_Ten is
7 begin

(continues on next page)

1.1. Scalar Types 13

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 -- Put_Line ("SATURATE " & V'Image);
9

10 if V < One_To_Ten'First then
11 return One_To_Ten'First;
12 elsif V > One_To_Ten'Last then
13 return One_To_Ten'Last;
14 else
15 return V;
16 end if;
17 end Saturate;
18

19 function Sat_Add (V1, V2 : One_To_Ten'Base)
20 return One_To_Ten is
21 begin
22 return Saturate (V1 + V2);
23 end Sat_Add;
24

25 function Sat_Sub (V1, V2 : One_To_Ten'Base)
26 return One_To_Ten is
27 begin
28 return Saturate (V1 - V2);
29 end Sat_Sub;
30

31 end My_Integers;

Listing 11: show_base.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with My_Integers; use My_Integers;
3

4 procedure Show_Base is
5

6 type Display_Saturate_Op is (Add, Sub);
7

8 procedure Display_Saturate
9 (V1, V2 : One_To_Ten;
10 Op : Display_Saturate_Op)
11 is
12 Res : One_To_Ten;
13 begin
14 case Op is
15 when Add =>
16 Res := Sat_Add (V1, V2);
17 when Sub =>
18 Res := Sat_Sub (V1, V2);
19 end case;
20 Put_Line ("SATURATE " & Op'Image
21 & " (" & V1'Image
22 & ", " & V2'Image
23 & ") = " & Res'Image);
24 end Display_Saturate;
25

26 begin
27 Display_Saturate (1, 1, Add);
28 Display_Saturate (10, 8, Add);
29 Display_Saturate (1, 8, Sub);
30 end Show_Base;

Code block metadata

14 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Base_Attr_Sat
MD5: e9b31345c2efc056bdb71824072852d0

Runtime output

SATURATE ADD (1, 1) = 2
SATURATE ADD (10, 8) = 10
SATURATE SUB (1, 8) = 1

In this example, we're using the Base attribute to declare the parameters of the Sat_Add,
Sat_Sub and Saturate functions. Note that the parameters of the Display_Saturate
procedure are of One_To_Ten type, while the parameters of the Sat_Add, Sat_Sub and
Saturate functions are of the (unconstrained) base subtype (One_To_Ten'Base). In those
functions, we perform operations using the parameters of unconstrained subtype and ad-
just the result — in the Saturate function — before returning it as a constrained value of
One_To_Ten subtype.
The code in the body of the My_Integers package contains lines that were commented
out — to be more precise, a call to Put_Line call in the Saturate function. If you uncom-
ment them, you'll see the value of the input parameter V (of One_To_Ten'Base type) in the
runtime output of the program before it's adapted to fit the constraints of the One_To_Ten
subtype.

1.2 Enumerations

We've introduced enumerations back in the Introduction to Ada course7. In this section, we'll
discuss a few useful features of enumerations, such as enumeration renaming, enumeration
overloading and representation clauses.

In the Ada Reference Manual
• 3.5.1 Enumeration Types8

1.2.1 Enumerations as functions

If you have used programming language such as C in the past, you're familiar with the
concept of enumerations being constants with integer values. In Ada, however, enumera-
tions are not integers. In fact, they're actually parameterless functions! Let's consider this
example:

Listing 12: days.ads
1 package Days is
2

3 type Day is (Mon, Tue, Wed,
4 Thu, Fri,
5 Sat, Sun);
6

7 -- Essentially, we're declaring
8 -- these functions:
9 --

(continues on next page)
7 https://learn.adacore.com/courses/intro-to-ada/chapters/strongly_typed_language.html#

intro-ada-enum-types
8 http://www.ada-auth.org/standards/22rm/html/RM-3-5-1.html

1.2. Enumerations 15

https://learn.adacore.com/courses/intro-to-ada/chapters/strongly_typed_language.html#intro-ada-enum-types
http://www.ada-auth.org/standards/22rm/html/RM-3-5-1.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10 -- function Mon return Day;
11 -- function Tue return Day;
12 -- function Wed return Day;
13 -- function Thu return Day;
14 -- function Fri return Day;
15 -- function Sat return Day;
16 -- function Sun return Day;
17

18 end Days;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_As_Function
MD5: fa3e58b58edffa5a3e04b060a7f8cb8b

In the package Days, we're declaring the enumeration type Day. When we do this, we're
essentially declaring seven parameterless functions, one for each enumeration. For exam-
ple, the Mon enumeration corresponds to function Mon return Day. You can see all seven
function declarations in the comments of the example above.
Note that this has no direct relation to how an Ada compiler generates machine code for
enumeration. Even though enumerations are parameterless functions, a typical Ada com-
piler doesn't generate function calls for code that deals with enumerations.

Enumeration renaming

The idea that enumerations are parameterless functions can be used when we want to
rename enumerations. For example, we could rename the enumerations of the Day type
like this:

Listing 13: enumeration_example.ads
1 package Enumeration_Example is
2

3 type Day is (Mon, Tue, Wed,
4 Thu, Fri,
5 Sat, Sun);
6

7 function Monday return Day renames Mon;
8 function Tuesday return Day renames Tue;
9 function Wednesday return Day renames Wed;
10 function Thursday return Day renames Thu;
11 function Friday return Day renames Fri;
12 function Saturday return Day renames Sat;
13 function Sunday return Day renames Sun;
14

15 end Enumeration_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Renaming
MD5: e2e12bb3bfcb0b6e94769ced9a4b80f9

Now, we can use both Monday or Mon to refer to Monday of the Day type:

Listing 14: show_renaming.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Enumeration_Example; use Enumeration_Example;

(continues on next page)

16 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3

4 procedure Show_Renaming is
5 D1 : constant Day := Mon;
6 D2 : constant Day := Monday;
7 begin
8 if D1 = D2 then
9 Put_Line ("D1 = D2");
10 Put_Line (Day'Image (D1)
11 & " = "
12 & Day'Image (D2));
13 end if;
14 end Show_Renaming;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Renaming
MD5: 2d7177def2c9e9fb11c7dc5e036c3be3

Runtime output

D1 = D2
MON = MON

When running this application, we can confirm that D1 is equal to D2. Also, even though
we've assigned Monday to D2 (instead of Mon), the application displays Mon = Mon, since
Monday is just another name to refer to the actual enumeration (Mon).

Hint
If you just want to have a single (renamed) enumeration visible in your application — and
make the original enumeration invisible —, you can use a separate package. For example:

Listing 15: enumeration_example.ads
1 package Enumeration_Example is
2

3 type Day is (Mon, Tue, Wed,
4 Thu, Fri,
5 Sat, Sun);
6

7 end Enumeration_Example;

Listing 16: enumeration_renaming.ads
1 with Enumeration_Example;
2

3 package Enumeration_Renaming is
4

5 subtype Day is Enumeration_Example.Day;
6

7 function Monday return Day renames
8 Enumeration_Example.Mon;
9 function Tuesday return Day renames
10 Enumeration_Example.Tue;
11 function Wednesday return Day renames
12 Enumeration_Example.Wed;
13 function Thursday return Day renames
14 Enumeration_Example.Thu;
15 function Friday return Day renames
16 Enumeration_Example.Fri;

(continues on next page)

1.2. Enumerations 17

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
17 function Saturday return Day renames
18 Enumeration_Example.Sat;
19 function Sunday return Day renames
20 Enumeration_Example.Sun;
21

22 end Enumeration_Renaming;

Listing 17: show_renaming.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Enumeration_Renaming;
4 use Enumeration_Renaming;
5

6 procedure Show_Renaming is
7 D1 : constant Day := Monday;
8 begin
9 Put_Line (Day'Image (D1));
10 end Show_Renaming;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Renaming
MD5: 87fe75026f0fc118921eaee45fe55a8a

Runtime output

MON

Note that the call to Put_Line still display Mon instead of Monday.

1.2.2 Enumeration overloading

Enumerations can be overloaded. In simple terms, this means that the same name can be
used to declare an enumeration of different types. A typical example is the declaration of
colors:

Listing 18: colors.ads
1 package Colors is
2

3 type Color is
4 (Salmon,
5 Firebrick,
6 Red,
7 Darkred,
8 Lime,
9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15

16 type Primary_Color is
17 (Red,
18 Green,
19 Blue);

(continues on next page)

18 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
20

21 end Colors;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Overloading
MD5: b808f90d9164f044b6b7a8931863726f

Note that we have Red as an enumeration of type Color and of type Primary_Color. The
same applies to Green and Blue. Because Ada is a strongly-typed language, in most cases,
the enumeration that we're referring to is clear from the context. For example:

Listing 19: red_colors.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors; use Colors;
3

4 procedure Red_Colors is
5 C1 : constant Color := Red;
6 -- Using Red from Color
7

8 C2 : constant Primary_Color := Red;
9 -- Using Red from Primary_Color
10 begin
11 if C1 = Red then
12 Put_Line ("C1 = Red");
13 end if;
14 if C2 = Red then
15 Put_Line ("C2 = Red");
16 end if;
17 end Red_Colors;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Overloading
MD5: dd590eab88164773e974e748d77a51af

Runtime output

C1 = Red
C2 = Red

When assigning Red to C1 and C2, it is clear that, in the first case, we're referring to Red
of Color type, while in the second case, we're referring to Red of the Primary_Color type.
The same logic applies to comparisons such as the one in if C1 = Red: because the type
of C1 is defined (Color), it's clear that the Red enumeration is the one of Color type.

Enumeration subtypes

Note that enumeration overloading is not the same as enumeration subtypes. For example,
we could define the following subtype:

Listing 20: colors-shades.ads
1 package Colors.Shades is
2

3 subtype Blue_Shades is
4 Colors range Blue .. Darkblue;

(continues on next page)

1.2. Enumerations 19

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5

6 end Colors.Shades;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Overloading
MD5: 9c13508bda487cae02dbf8b403271540

In this case, Blue of Blue_Shades and Blue of Colors are the same enumeration.

Enumeration ambiguities

A situation where enumeration overloading might lead to ambiguities is when we use them
in ranges. For example:

Listing 21: colors.ads
1 package Colors is
2

3 type Color is
4 (Salmon,
5 Firebrick,
6 Red,
7 Darkred,
8 Lime,
9 Forestgreen,
10 Green,
11 Darkgreen,
12 Blue,
13 Mediumblue,
14 Darkblue);
15

16 type Primary_Color is
17 (Red,
18 Green,
19 Blue);
20

21 end Colors;

Listing 22: color_loop.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors; use Colors;
3

4 procedure Color_Loop is
5 begin
6 for C in Red .. Blue loop
7 -- ^^^^^^^^^^^
8 -- ERROR: range is ambiguous!
9 Put_Line (Color'Image (C));
10 end loop;
11 end Color_Loop;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Ambiguities
MD5: 82d0d3f28f1faf6b296a4f44db71f41b

Build output

20 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

color_loop.adb:6:17: error: ambiguous bounds in range of iteration
color_loop.adb:6:17: error: possible interpretations:
color_loop.adb:6:17: error: type "Primary_Color" defined at colors.ads:16
color_loop.adb:6:17: error: type "Color" defined at colors.ads:3
color_loop.adb:6:17: error: ambiguous bounds in discrete range
color_loop.adb:9:30: error: expected type "Color" defined at colors.ads:3
color_loop.adb:9:30: error: found type "Primary_Color" defined at colors.ads:16
gprbuild: *** compilation phase failed

Here, it's not clear whether the range in the loop is of Color type or of Primary_Color
type. Therefore, we get a compilation error for this code example. The next line in the
code example — the one with the call to Put_Line — gives us a hint about the developer's
intention to refer to the Color type. In this case, we can use qualification — for example,
Color'(Red) — to resolve the ambiguity:

Listing 23: color_loop.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors; use Colors;
3

4 procedure Color_Loop is
5 begin
6 for C in Color'(Red) .. Color'(Blue) loop
7 Put_Line (Color'Image (C));
8 end loop;
9 end Color_Loop;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Ambiguities
MD5: c3e946d330bb6aed258bcd005a540794

Runtime output

RED
DARKRED
LIME
FORESTGREEN
GREEN
DARKGREEN
BLUE

Note that, in the case of ranges, we can also rewrite the loop by using a range declaration:

Listing 24: color_loop.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors; use Colors;
3

4 procedure Color_Loop is
5 begin
6 for C in Color range Red .. Blue loop
7 Put_Line (Color'Image (C));
8 end loop;
9 end Color_Loop;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Ambiguities
MD5: 23f8db4fcb5710f7bda6b511234e0448

Runtime output

1.2. Enumerations 21

Advanced Journey With Ada: A Flight In Progress

RED
DARKRED
LIME
FORESTGREEN
GREEN
DARKGREEN
BLUE

Alternatively, Color range Red .. Blue could be used in a subtype declaration, so we
could rewrite the example above using a subtype (such as Red_To_Blue) in the loop:

Listing 25: color_loop.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors; use Colors;
3

4 procedure Color_Loop is
5 subtype Red_To_Blue is Color range Red .. Blue;
6 begin
7 for C in Red_To_Blue loop
8 Put_Line (Color'Image (C));
9 end loop;
10 end Color_Loop;

1.2.3 Position and Internal Code

As we've said above, a typical Ada compiler doesn't generate function calls for code that
deals with enumerations. On the contrary, each enumeration has values associated with
it, and the compiler uses those values instead.
Each enumeration has:
• a position value, which is a natural value indicating the position of the enumeration in
the enumeration type; and

• an internal code, which, by default, in most cases, is the same as the position value.
Also, by default, the value of the first position is zero, the value of the second position is
one, and so on. We can see this by listing each enumeration of the Day type and displaying
the value of the corresponding position:

Listing 26: days.ads
1 package Days is
2

3 type Day is (Mon, Tue, Wed,
4 Thu, Fri,
5 Sat, Sun);
6

7 end Days;

Listing 27: show_days.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Days; use Days;
3

4 procedure Show_Days is
5 begin
6 for D in Day loop
7 Put_Line (Day'Image (D)

(continues on next page)

22 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 & " position = "
9 & Integer'Image (Day'Pos (D)));
10 Put_Line (Day'Image (D)
11 & " internal code = "
12 & Integer'Image
13 (Day'Enum_Rep (D)));
14 end loop;
15 end Show_Days;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Values
MD5: d6c5cb99b9770893b7277c470f40e805

Runtime output

MON position = 0
MON internal code = 0
TUE position = 1
TUE internal code = 1
WED position = 2
WED internal code = 2
THU position = 3
THU internal code = 3
FRI position = 4
FRI internal code = 4
SAT position = 5
SAT internal code = 5
SUN position = 6
SUN internal code = 6

Note that this application also displays the internal code, which, in this case, is equivalent
to the position value for all enumerations.
We may, however, change the internal code of an enumeration using a representation
clause. We discuss this topic in another section (page 77).

1.3 Definite and Indefinite Subtypes

Indefinite types were mentioned back in the Introduction to Ada course9. In this section,
we'll recapitulate and extend on both definite and indefinite types.
Definite types are the basic kind of types we commonly use when programming applica-
tions. For example, we can only declare variables of definite types; otherwise, we get a
compilation error. Interestingly, however, to be able to explain what definite types are, we
need to first discuss indefinite types.
Indefinite types include:
• unconstrained arrays;
• record types with unconstrained discriminants without defaults.

Let's see some examples of indefinite types:
9 https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-indefinite-subtype

1.3. Definite and Indefinite Subtypes 23

https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-indefinite-subtype

Advanced Journey With Ada: A Flight In Progress

Listing 28: unconstrained_types.ads
1 package Unconstrained_Types is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 type Simple_Record (Extended : Boolean) is
7 record
8 V : Integer;
9 case Extended is
10 when False =>
11 null;
12 when True =>
13 V_Float : Float;
14 end case;
15 end record;
16

17 end Unconstrained_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
↪Indefinite_Types

MD5: e569dc73150b834c9315b14d46c0ac79

In this example, both Integer_Array and Simple_Record are indefinite types.

Important
Note that we cannot use indefinite subtypes as discriminants. For example, the following
code won't compile:

Listing 29: unconstrained_types.ads
1 package Unconstrained_Types is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 type Simple_Record (Arr : Integer_Array) is
7 record
8 L : Natural := Arr'Length;
9 end record;
10

11 end Unconstrained_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
↪Indefinite_Types_Error

MD5: cf73d308ddb4a8c2503146ecd550a791

Build output

unconstrained_types.ads:6:30: error: discriminants must have a discrete or access␣
↪type

gprbuild: *** compilation phase failed

Integer_Array is a correct type declaration — although the type itself is indefinite af-
ter the declaration. However, we cannot use it as the discriminant in the declaration of

24 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

Simple_Record. We could, however, have a correct declaration by using discriminants as
access values:

Listing 30: unconstrained_types.ads
1 package Unconstrained_Types is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 type Integer_Array_Access is
7 access Integer_Array;
8

9 type Simple_Record
10 (Arr : Integer_Array_Access) is
11 record
12 L : Natural := Arr'Length;
13 end record;
14

15 end Unconstrained_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
↪Indefinite_Types_Error

MD5: dc8193e3684b172e8503e1c5427cf93d

By adding the Integer_Array_Access type and using it in Simple_Record's type declara-
tion, we can indirectly use an indefinite type in the declaration of another indefinite type.
We discuss this topic later in another chapter (page 492).

As we've just mentioned, we cannot declare variable of indefinite types:

Listing 31: using_unconstrained_type.adb
1 with Unconstrained_Types; use Unconstrained_Types;
2

3 procedure Using_Unconstrained_Type is
4

5 A : Integer_Array;
6

7 R : Simple_Record;
8

9 begin
10 null;
11 end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
↪Indefinite_Types

MD5: 806d4ec64b911a9978ad30fa45a6df10

Build output

using_unconstrained_type.adb:5:08: error: unconstrained subtype not allowed (need␣
↪initialization)

using_unconstrained_type.adb:5:08: error: provide initial value or explicit array␣
↪bounds

using_unconstrained_type.adb:7:08: error: unconstrained subtype not allowed (need␣
↪initialization)

(continues on next page)

1.3. Definite and Indefinite Subtypes 25

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
using_unconstrained_type.adb:7:08: error: provide initial value or explicit␣

↪discriminant values
using_unconstrained_type.adb:7:08: error: or give default discriminant values for␣

↪type "Simple_Record"
gprbuild: *** compilation phase failed

As we can see when we try to build this example, the compiler complains about the dec-
laration of A and R because we're trying to use indefinite types to declare variables. The
main reason we cannot use indefinite types here is that the compiler needs to know at this
point how much memory it should allocate. Therefore, we need to provide the information
that is missing. In other words, we need to change the declaration so the type becomes
definite. We can do this by either declaring a definite type or providing constraints in the
variable declaration. For example:

Listing 32: using_unconstrained_type.adb
1 with Unconstrained_Types; use Unconstrained_Types;
2

3 procedure Using_Unconstrained_Type is
4

5 subtype Integer_Array_5 is
6 Integer_Array (1 .. 5);
7

8 A1 : Integer_Array_5;
9 A2 : Integer_Array (1 .. 5);
10

11 subtype Simple_Record_Ext is
12 Simple_Record (Extended => True);
13

14 R1 : Simple_Record_Ext;
15 R2 : Simple_Record (Extended => True);
16

17 begin
18 null;
19 end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
↪Indefinite_Types

MD5: f8e192537f42eea0ebc7873bdaa898f1

Build output

using_unconstrained_type.adb:8:04: warning: variable "A1" is never read and never␣
↪assigned [-gnatwv]

using_unconstrained_type.adb:9:04: warning: variable "A2" is never read and never␣
↪assigned [-gnatwv]

using_unconstrained_type.adb:14:04: warning: variable "R1" is never read and never␣
↪assigned [-gnatwv]

using_unconstrained_type.adb:15:04: warning: variable "R2" is never read and never␣
↪assigned [-gnatwv]

In this example, we declare the Integer_Array_5 subtype, which is definite because we're
constraining it to a range from 1 to 5, thereby defining the information that was missing in
the indefinite type Integer_Array. Because we now have a definite type, we can use it to
declare the A1 variable. Similarly, we can use the indefinite type Integer_Array directly
in the declaration of A2 by specifying the previously unknown range.
Similarly, in this example, we declare the Simple_Record_Ext subtype, which is definite
because we're initializing the record discriminant Extended. We can therefore use it in

26 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

the declaration of the R1 variable. Alternatively, we can simply use the indefinite type
Simple_Record and specify the information required for the discriminants. This is what we
do in the declaration of the R2 variable.
Although we cannot use indefinite types directly in variable declarations, they're very useful
to generalize algorithms. For example, we can use them as parameters of a subprogram:

Listing 33: show_integer_array.ads
1 with Unconstrained_Types; use Unconstrained_Types;
2

3 procedure Show_Integer_Array (A : Integer_Array);

Listing 34: show_integer_array.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Integer_Array (A : Integer_Array)
4 is
5 begin
6 for I in A'Range loop
7 Put_Line (Positive'Image (I)
8 & ": "
9 & Integer'Image (A (I)));
10 end loop;
11 Put_Line ("--------");
12 end Show_Integer_Array;

Listing 35: using_unconstrained_type.adb
1 with Unconstrained_Types; use Unconstrained_Types;
2 with Show_Integer_Array;
3

4 procedure Using_Unconstrained_Type is
5 A_5 : constant Integer_Array (1 .. 5) :=
6 (1, 2, 3, 4, 5);
7 A_10 : constant Integer_Array (1 .. 10) :=
8 (1, 2, 3, 4, 5, others => 99);
9 begin
10 Show_Integer_Array (A_5);
11 Show_Integer_Array (A_10);
12 end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
↪Indefinite_Types

MD5: 3f744fa5921a55865bc5361ec4c6eb88

Runtime output

1: 1
2: 2
3: 3
4: 4
5: 5

1: 1
2: 2
3: 3
4: 4
5: 5

(continues on next page)

1.3. Definite and Indefinite Subtypes 27

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6: 99
7: 99
8: 99
9: 99
10: 99

In this particular example, the compiler doesn't know a priori which range is used for the
A parameter of Show_Integer_Array. It could be a range from 1 to 5 as used for vari-
able A_5 of the Using_Unconstrained_Type procedure, or it could be a range from 1
to 10 as used for variable A_10, or it could be anything else. Although the parameter
A of Show_Integer_Array is unconstrained, both calls to Show_Integer_Array — in Us-
ing_Unconstrained_Type procedure — use constrained objects.
Note that we could call the Show_Integer_Array procedure above with another uncon-
strained parameter. For example:

Listing 36: show_integer_array_header.ads
1 with Unconstrained_Types; use Unconstrained_Types;
2

3 procedure Show_Integer_Array_Header
4 (AA : Integer_Array;
5 HH : String);

Listing 37: show_integer_array_header.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Show_Integer_Array;
3

4 procedure Show_Integer_Array_Header
5 (AA : Integer_Array;
6 HH : String)
7 is
8 begin
9 Put_Line (HH);
10 Show_Integer_Array (AA);
11 end Show_Integer_Array_Header;

Listing 38: using_unconstrained_type.adb
1 with Unconstrained_Types; use Unconstrained_Types;
2

3 with Show_Integer_Array_Header;
4

5 procedure Using_Unconstrained_Type is
6 A_5 : constant Integer_Array (1 .. 5) :=
7 (1, 2, 3, 4, 5);
8 A_10 : constant Integer_Array (1 .. 10) :=
9 (1, 2, 3, 4, 5, others => 99);
10 begin
11 Show_Integer_Array_Header (A_5,
12 "First example");
13 Show_Integer_Array_Header (A_10,
14 "Second example");
15 end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
(continues on next page)

28 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
↪Indefinite_Types

MD5: dd09f8c4089c6ad4c18410879f80f731

Runtime output

First example
1: 1
2: 2
3: 3
4: 4
5: 5

Second example
1: 1
2: 2
3: 3
4: 4
5: 5
6: 99
7: 99
8: 99
9: 99
10: 99

In this case, we're calling the Show_Integer_Array procedure with another unconstrained
parameter (the AA parameter). However, although we could have a long chain of proce-
dure calls using indefinite types in their parameters, we still use a (definite) object at the
beginning of this chain. For example, for the A_5 object, we have this chain:

A_5

==> Show_Integer_Array_Header (AA => A_5,
...);

==> Show_Integer_Array (A => AA);

Therefore, at this specific call to Show_Integer_Array, even though A is declared as a
parameter of indefinite type, the actual argument is of definite type because A_5 is con-
strained — and, thus, of definite type.
Note that we can declare variables based on parameters of indefinite type. For example:

Listing 39: show_integer_array_plus.ads
1 with Unconstrained_Types; use Unconstrained_Types;
2

3 procedure Show_Integer_Array_Plus
4 (A : Integer_Array;
5 V : Integer);

Listing 40: show_integer_array_plus.adb
1 with Show_Integer_Array;
2

3 procedure Show_Integer_Array_Plus
4 (A : Integer_Array;
5 V : Integer)
6 is
7 A_Plus : Integer_Array (A'Range);
8 begin

(continues on next page)

1.3. Definite and Indefinite Subtypes 29

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 for I in A_Plus'Range loop
10 A_Plus (I) := A (I) + V;
11 end loop;
12 Show_Integer_Array (A_Plus);
13 end Show_Integer_Array_Plus;

Listing 41: using_unconstrained_type.adb
1 with Unconstrained_Types; use Unconstrained_Types;
2

3 with Show_Integer_Array_Plus;
4

5 procedure Using_Unconstrained_Type is
6 A_5 : constant Integer_Array (1 .. 5) :=
7 (1, 2, 3, 4, 5);
8 begin
9 Show_Integer_Array_Plus (A_5, 5);
10 end Using_Unconstrained_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
↪Indefinite_Types

MD5: e58ae62272ff0b27c5f6e171c88a6880

Runtime output

1: 6
2: 7
3: 8
4: 9
5: 10

In the Show_Integer_Array_Plus procedure, we're declaring A_Plus based on the range
of A, which is itself of indefinite type. However, since the object passed as an argument to
Show_Integer_Array_Plus must have a constraint, A_Plus will also be constrained. For
example, in the call to Show_Integer_Array_Plus using A_5 as an argument, the decla-
ration of A_Plus becomes A_Plus : Integer_Array (1 .. 5);. Therefore, it becomes
clear that the compiler needs to allocate five elements for A_Plus.
We'll see later how definite and indefinite types apply to formal parameters.

In the Ada Reference Manual
• 3.3 Objects and Named Numbers10

10 http://www.ada-auth.org/standards/22rm/html/RM-3-3.html

30 Chapter 1. Types

http://www.ada-auth.org/standards/22rm/html/RM-3-3.html

Advanced Journey With Ada: A Flight In Progress

1.3.1 Constrained Attribute

We can use the Constrained attribute to verify whether an object of discriminated type
is constrained or not. Let's start our discussion by reusing the Simple_Record type from
previous examples. In this version of the Unconstrained_Types package, we're adding a
Reset procedure for the discriminated record type:

Listing 42: unconstrained_types.ads
1 package Unconstrained_Types is
2

3 type Simple_Record
4 (Extended : Boolean := False) is
5 record
6 V : Integer;
7 case Extended is
8 when False =>
9 null;
10 when True =>
11 V_Float : Float;
12 end case;
13 end record;
14

15 procedure Reset (R : in out Simple_Record);
16

17 end Unconstrained_Types;

Listing 43: unconstrained_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Unconstrained_Types is
4

5 procedure Reset (R : in out Simple_Record) is
6 Zero_Not_Extended : constant
7 Simple_Record := (Extended => False,
8 V => 0);
9

10 Zero_Extended : constant
11 Simple_Record := (Extended => True,
12 V => 0,
13 V_Float => 0.0);
14 begin
15 Put_Line ("---- Reset: R'Constrained => "
16 & R'Constrained'Image);
17

18 if not R'Constrained then
19 R := Zero_Extended;
20 else
21 if R.Extended then
22 R := Zero_Extended;
23 else
24 R := Zero_Not_Extended;
25 end if;
26 end if;
27 end Reset;
28

29 end Unconstrained_Types;

Code block metadata

1.3. Definite and Indefinite Subtypes 31

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
↪Constrained_Attribute

MD5: b56e6d71fd4f05e8490412d7fe40b923

As the name indicates, the Reset procedure initializes all record components with zero.
Note that we use the Constrained attribute to verify whether objects are constrained before
assigning to them. For objects that are not constrained, we can simply assign another object
to it — as we do with the R := Zero_Extended statement. When an object is constrained,
however, the discriminants must match. If we assign an object to R, the discriminant of
that object must match the discriminant of R. This is the kind of verification that we do in
the else part of that procedure: we check the state of the Extended discriminant before
assigning an object to the R parameter.
The Using_Constrained_Attribute procedure below declares two objects of Sim-
ple_Record type: R1 and R2. Because the Simple_Record type has a default value for
its discriminant, we can declare objects of this type without specifying a value for the dis-
criminant. This is exactly what we do in the declaration of R1. Here, we don't specify any
constraints, so that it takes the default value (Extended => False). In the declaration of
R2, however, we explicitly set Extended to False:

Listing 44: using_constrained_attribute.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Unconstrained_Types; use Unconstrained_Types;
4

5 procedure Using_Constrained_Attribute is
6 R1 : Simple_Record;
7 R2 : Simple_Record (Extended => False);
8

9 procedure Show_Rs is
10 begin
11 Put_Line ("R1'Constrained => "
12 & R1'Constrained'Image);
13 Put_Line ("R1.Extended => "
14 & R1.Extended'Image);
15 Put_Line ("--");
16 Put_Line ("R2'Constrained => "
17 & R2'Constrained'Image);
18 Put_Line ("R2.Extended => "
19 & R2.Extended'Image);
20 Put_Line ("----------------");
21 end Show_Rs;
22 begin
23 Show_Rs;
24

25 Reset (R1);
26 Reset (R2);
27 Put_Line ("----------------");
28

29 Show_Rs;
30 end Using_Constrained_Attribute;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.
↪Constrained_Attribute

MD5: f7517fcd3c68a784f55064f188d4e7bb

Runtime output

32 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

R1'Constrained => FALSE
R1.Extended => FALSE
--
R2'Constrained => TRUE
R2.Extended => FALSE

---- Reset: R'Constrained => FALSE
---- Reset: R'Constrained => TRUE

R1'Constrained => FALSE
R1.Extended => TRUE
--
R2'Constrained => TRUE
R2.Extended => FALSE

When we run this code, the user messages from Show_Rs indicate to us that R1 is not
constrained, while R2 is constrained. Because we declare R1 without specifying a value for
the Extended discriminant, R1 is not constrained. In the declaration of R2, on the other
hand, the explicit value for the Extended discriminant makes this object constrained. Note
that, for both R1 and R2, the value of Extended is False in the declarations.
As we were just discussing, the Reset procedure includes checks to avoid mismatches in
discriminants. When we don't have those checks, we might get exceptions at runtime. We
can force this situation by replacing the implementation of the Reset procedure with the
following lines:

-- [...]
begin

Put_Line ("---- Reset: R'Constrained => "
& R'Constrained'Image);

R := Zero_Extended;
end Reset;

Running the code now generates a runtime exception:

raised CONSTRAINT_ERROR : unconstrained_types.adb:12 discriminant check failed

This exception is raised during the call to Reset (R2). As see in the code, R2 is con-
strained. Also, its Extended discriminant is set to False, which means that it doesn't have
the V_Float component. Therefore, R2 is not compatible with the constant Zero_Extended
object, so we cannot assign Zero_Extended to R2. Also, because R2 is constrained, its
Extended discriminant cannot be modified.
The behavior is different for the call to Reset (R1), which works fine. Here, when we
pass R1 as an argument to the Reset procedure, its Extended discriminant is False by
default. Thus, R1 is also not compatible with the Zero_Extended object. However, because
R1 is not constrained, the assignment modifies R1 (by changing the value of the Extended
discriminant). Therefore, with the call to Reset, the Extended discriminant of R1 changes
from False to True.

In the Ada Reference Manual
• 3.7.2 Operations of Discriminated Types11

11 http://www.ada-auth.org/standards/22rm/html/RM-3-7-2.html

1.3. Definite and Indefinite Subtypes 33

http://www.ada-auth.org/standards/22rm/html/RM-3-7-2.html

Advanced Journey With Ada: A Flight In Progress

1.4 Incomplete types

Incomplete types — as the name suggests — are types that have missing information in
their declaration. This is a simple example:

type Incomplete;

Because this type declaration is incomplete, we need to provide the missing information at
some later point. Consider the incomplete type R in the following example:

Listing 45: incomplete_type_example.ads
1 package Incomplete_Type_Example is
2

3 type R;
4 -- Incomplete type declaration!
5

6 type R is record
7 I : Integer;
8 end record;
9 -- type R is now complete!
10

11 end Incomplete_Type_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Incomplete_Types.Incomplete_Types
MD5: 5ca250595f2b0cc101df286ab319982f

The first declaration of type R is incomplete. However, in the second declaration of R, we
specify that R is a record. By providing this missing information, we're completing the type
declaration of R.
It's also possible to declare an incomplete type in the private part of a package specification
and its complete form in the package body. Let's rewrite the example above accordingly:

Listing 46: incomplete_type_example.ads
1 package Incomplete_Type_Example is
2

3 private
4

5 type R;
6 -- Incomplete type declaration!
7

8 end Incomplete_Type_Example;

Listing 47: incomplete_type_example.adb
1 package body Incomplete_Type_Example is
2

3 type R is record
4 I : Integer;
5 end record;
6 -- type R is now complete!
7

8 end Incomplete_Type_Example;

Code block metadata

34 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Types.Incomplete_Types.Incomplete_Types_2
MD5: fd2f0301b4a63887add1cb2093692ddb

A typical application of incomplete types is to create linked lists using access types based
on those incomplete types. This kind of type is called a recursive type. For example:

Listing 48: linked_list_example.ads
1 package Linked_List_Example is
2

3 type Integer_List;
4

5 type Next is access Integer_List;
6

7 type Integer_List is record
8 I : Integer;
9 N : Next;
10 end record;
11

12 end Linked_List_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Incomplete_Types.Linked_List_Example
MD5: b2d3a048473d498bbe691bc6e38ca1e9

Here, the N component of Integer_List is essentially giving us access to the next element
of Integer_List type. Because the Next type is both referring to the Integer_List type
and being used in the declaration of the Integer_List type, we need to start with an
incomplete declaration of the Integer_List type and then complete it after the declaration
of Next.
Incomplete types are useful to declare mutually dependent types (page 149), as we'll see
later on. Also, we can also have formal incomplete types, as we'll discuss later.

In the Ada Reference Manual
• 3.10.1 Incomplete Type Declarations12

1.5 Type view

Ada distinguishes between the partial and the full view of a type. The full view is a type
declaration that contains all the information needed by the compiler. For example, the
following declaration of type R represents the full view of this type:

Listing 49: full_view.ads
1 package Full_View is
2

3 -- Full view of the R type:
4 type R is record
5 I : Integer;
6 end record;
7

8 end Full_View;

12 http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html

1.5. Type view 35

http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Full_View
MD5: d37792287d08f9aa3d32499e233516df

As soon as we start applying encapsulation and information hiding — via the private key-
word — to a specific type, we are introducing a partial view and making only that view
compile-time visible to clients. Doing so requires us to introduce the private part of the
package (unless already present). For example:

Listing 50: partial_full_views.ads
1 package Partial_Full_Views is
2

3 -- Partial view of the R type:
4 type R is private;
5

6 private
7

8 -- Full view of the R type:
9 type R is record
10 I : Integer;
11 end record;
12

13 end Partial_Full_Views;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Partial_Full_View
MD5: b0cf748e43b23ea6c845e283c4266ff3

As indicated in the example, the type R is private declaration is the partial view of the
R type, while the type R is record [...] declaration in the private part of the package
is the full view.
Although the partial view doesn't contain the full type declaration, it contains very important
information for the users of the package where it's declared. In fact, the partial view of a
private type is all that users actually need to know to effectively use this type, while the
full view is only needed by the compiler.
In the previous example, the partial view indicates that R is a private type, which means
that, even though users cannot directly access any information stored in this type — for
example, read the value of the I component of R —, they can use the R type to declare
objects. For example:

Listing 51: main.adb
1 with Partial_Full_Views; use Partial_Full_Views;
2

3 procedure Main is
4 -- Partial view of R indicates that
5 -- R exists as a private type, so we
6 -- can declare objects of this type:
7 C : R;
8 begin
9 -- But we cannot directly access any
10 -- information declared in the full
11 -- view of R:
12 --
13 -- C.I := 42;
14 --
15 null;
16 end Main;

36 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Partial_Full_View
MD5: 05bc9a75406d0a46f6d009d97885d010

Build output

main.adb:7:04: warning: variable "C" is never read and never assigned [-gnatwv]

In many cases, the restrictions applied to the partial and full views must match. For exam-
ple, if we declare a limited type in the full view of a private type, its partial view must also
be limited:

Listing 52: limited_private_example.ads
1 package Limited_Private_Example is
2

3 -- Partial view must be limited,
4 -- since the full view is limited.
5 type R is limited private;
6

7 private
8

9 type R is limited record
10 I : Integer;
11 end record;
12

13 end Limited_Private_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Limited_Private
MD5: 23d01b93fe052a500c8ca6ff76a2fd51

There are, however, situations where the full viewmay contain additional requirements that
aren't mentioned in the partial view. For example, a type may be declared as non-tagged
in the partial view, but, at the same time, be tagged in the full view:

Listing 53: tagged_full_view_example.ads
1 package Tagged_Full_View_Example is
2

3 -- Partial view using non-tagged type:
4 type R is private;
5

6 private
7

8 -- Full view using tagged type:
9 type R is tagged record
10 I : Integer;
11 end record;
12

13 end Tagged_Full_View_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Tagged_Full_View
MD5: 0ff9142b1ee086695b98b72a9d0f50ac

In this case, from a user's perspective, the R type is non-tagged, so that users cannot
use any object-oriented programming features for this type. In the package body of
Tagged_Full_View_Example, however, this type is tagged, so that all object-oriented pro-
gramming features are available for subprograms of the package body that make use of this

1.5. Type view 37

Advanced Journey With Ada: A Flight In Progress

type. Again, the partial view of the private type contains the most important information
for users that want to declare objects of this type.

In the Ada Reference Manual
• 7.3 Private Types and Private Extensions13

1.5.1 Non-Record Private Types

Although it's very common to declare private types as record types, this is not the only
option. In fact, we could declare any type in the full view — scalars, for example —, so we
could declare a "private integer" type:

Listing 54: private_integers.ads
1 package Private_Integers is
2

3 -- Partial view of private Integer type:
4 type Private_Integer is private;
5

6 private
7

8 -- Full view of private Integer type:
9 type Private_Integer is new Integer;
10

11 end Private_Integers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Integer
MD5: f1fcbed95e0f66a6f67d1bfd9ba9df1c

This code compiles as expected, but isn't very useful. We can improve it by adding operators
to it, for example:

Listing 55: private_integers.ads
1 package Private_Integers is
2

3 -- Partial view of private Integer type:
4 type Private_Integer is private;
5

6 function "+" (Left, Right : Private_Integer)
7 return Private_Integer;
8

9 private
10

11 -- Full view of private Integer type:
12 type Private_Integer is new Integer;
13

14 end Private_Integers;

Listing 56: private_integers.adb
1 package body Private_Integers is
2

3 function "+" (Left, Right : Private_Integer)
(continues on next page)

13 http://www.ada-auth.org/standards/22rm/html/RM-7-3.html

38 Chapter 1. Types

http://www.ada-auth.org/standards/22rm/html/RM-7-3.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4 return Private_Integer
5 is
6 Res : constant Integer :=
7 Integer (Left) + Integer (Right);
8 -- Note that we're converting Left
9 -- and Right to Integer, which calls
10 -- the "+" operator of the Integer
11 -- type. Writing "Left + Right" would
12 -- have called the "+" operator of
13 -- Private_Integer, which leads to
14 -- recursive calls, as this is the
15 -- operator we're currently in.
16 begin
17 return Private_Integer (Res);
18 end "+";
19

20 end Private_Integers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Integer
MD5: ac161cb5debfde16465c45949cf682d7

Now, let's use the new operator in a test application:

Listing 57: show_private_integers.adb
1 with Private_Integers; use Private_Integers;
2

3 procedure Show_Private_Integers is
4 A, B : Private_Integer;
5 begin
6 A := A + B;
7 end Show_Private_Integers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Integer
MD5: 5933779ce5f0802b448df96c42e65a8d

Build output

show_private_integers.adb:4:07: warning: variable "B" is read but never assigned [-
↪gnatwv]

show_private_integers.adb:6:09: warning: "A" may be referenced before it has a␣
↪value [enabled by default]

In this example, we use the + operator as if we were adding two common integer variables
of Integer type.

1.5. Type view 39

Advanced Journey With Ada: A Flight In Progress

Unconstrained Types

There are, however, some limitations: we cannot use unconstrained types such as arrays
or even discriminants for arrays in the same way as we did for scalars. For example, the
following declarations won't work:

Listing 58: private_arrays.ads
1 package Private_Arrays is
2

3 type Private_Unconstrained_Array is private;
4

5 type Private_Constrained_Array
6 (L : Positive) is private;
7

8 private
9

10 type Integer_Array is
11 array (Positive range <>) of Integer;
12

13 type Private_Unconstrained_Array is
14 array (Positive range <>) of Integer;
15

16 type Private_Constrained_Array
17 (L : Positive) is
18 array (1 .. 2) of Integer;
19

20 -- NOTE: using an array type fails as well:
21 --
22 -- type Private_Constrained_Array
23 -- (L : Positive) is
24 -- Integer_Array (1 .. L);
25

26 end Private_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Array
MD5: b873c2d381c159532b429101e4533c05

Build output

private_arrays.ads:13:09: error: full view of "Private_Unconstrained_Array" not␣
↪compatible with declaration at line 3

private_arrays.ads:13:09: error: one is constrained, the other unconstrained
private_arrays.ads:17:07: error: elementary or array type cannot have discriminants
gprbuild: *** compilation phase failed

Completing the private type with an unconstrained array type in the full view is not allowed
because clients could expect, according to their view, to declare objects of the type. But
doing so would not be allowed according to the full view. So this is another case of the
partial view having to present clients with a sufficiently true view of the type's capabilities.
One solution is to rewrite the declaration of Private_Constrained_Array using a record
type:

Listing 59: private_arrays.ads
1 package Private_Arrays is
2

3 type Private_Constrained_Array
4 (L : Positive) is private;

(continues on next page)

40 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5

6 private
7

8 type Integer_Array is
9 array (Positive range <>) of Integer;
10

11 type Private_Constrained_Array
12 (L : Positive) is
13 record
14 Arr : Integer_Array (1 .. 2);
15 end record;
16

17 end Private_Arrays;

Listing 60: declare_private_array.adb
1 with Private_Arrays; use Private_Arrays;
2

3 procedure Declare_Private_Array is
4 Arr : Private_Constrained_Array (5);
5 begin
6 null;
7 end Declare_Private_Array;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Array
MD5: 3830721499a59d85efddd4989aa7c288

Build output

declare_private_array.adb:4:03: warning: variable "Arr" is never read and never␣
↪assigned [-gnatwv]

Now, the code compiles fine — but we had to use a record type in the full view to make it
work.
Another solution is to make the private type indefinite. In this case, the client's partial view
would be consistent with a completion as an indefinite type in the private part:

Listing 61: private_arrays.ads
1 package Private_Arrays is
2

3 type Private_Constrained_Array (<>) is
4 private;
5

6 function Init
7 (L : Positive)
8 return Private_Constrained_Array;
9

10 private
11

12 type Private_Constrained_Array is
13 array (Positive range <>) of Integer;
14

15 end Private_Arrays;

1.5. Type view 41

Advanced Journey With Ada: A Flight In Progress

Listing 62: private_arrays.adb
1 package body Private_Arrays is
2

3 function Init
4 (L : Positive)
5 return Private_Constrained_Array
6 is
7 PCA : Private_Constrained_Array (1 .. L);
8 begin
9 return PCA;
10 end Init;
11

12 end Private_Arrays;

Listing 63: declare_private_array.adb
1 with Private_Arrays; use Private_Arrays;
2

3 procedure Declare_Private_Array is
4 Arr : Private_Constrained_Array := Init (5);
5 begin
6 null;
7 end Declare_Private_Array;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Array
MD5: cd170a1e44fffb93314776a68f1cb413

Build output

private_arrays.adb:7:07: warning: variable "PCA" is read but never assigned [-
↪gnatwv]

The bounds for the object's declaration come from the required initial value when an object
is declared. In this case, we initialize the object with a call to the Init function.

1.6 Type conversion

An important operation when dealing with objects of different types is type conversion,
which we already discussed in the Introduction to Ada course14. In fact, we can convert
an object Obj_X of an operand type X to a similar, closely related target type Y by simply
indicating the target type: Y (Obj_X). In this section, we discuss type conversions for
different kinds of types.
Ada distinguishes between two kinds of conversion: value conversion and view conversion.
The main difference is the way how the operand (argument) of the conversion is evaluated:
• in a value conversion, the operand is evaluated as an expression (page 319);
• in a view conversion, the operand is evaluated as a name.

In other words, we cannot use expressions such as 2 * A in a view conversion, but only A.
In a value conversion, we could use both forms.

In the Ada Reference Manual
14 https://learn.adacore.com/courses/intro-to-ada/chapters/strongly_typed_language.html#
intro-ada-type-conversion

42 Chapter 1. Types

https://learn.adacore.com/courses/intro-to-ada/chapters/strongly_typed_language.html#intro-ada-type-conversion

Advanced Journey With Ada: A Flight In Progress

• 4.6 Type Conversions15

1.6.1 Value conversion

Value conversions are possible for various types. In this section, we see some examples,
starting with types derived from scalar types up to array conversions.

Root and derived types

Let's start with the conversion between a scalar type and its derived types. For example,
we can convert back-and-forth between the Integer type and the derived Int type:

Listing 64: custom_integers.ads
1 package Custom_Integers is
2

3 type Int is new Integer
4 with Dynamic_Predicate => Int /= 0;
5

6 function Double (I : Integer)
7 return Integer is
8 (I * 2);
9

10 end Custom_Integers;

Listing 65: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Custom_Integers; use Custom_Integers;
3

4 procedure Show_Conversion is
5 Int_Var : Int := 1;
6 Integer_Var : Integer := 2;
7 begin
8 -- Int to Integer conversion
9 Integer_Var := Integer (Int_Var);
10

11 Put_Line ("Integer_Var : "
12 & Integer_Var'Image);
13

14 -- Int to Integer conversion
15 -- as an actual parameter
16 Integer_Var := Double (Integer (Int_Var));
17

18 Put_Line ("Integer_Var : "
19 & Integer_Var'Image);
20

21 -- Integer to Int conversion
22 -- using an expression
23 Int_Var := Int (Integer_Var * 2);
24

25 Put_Line ("Int_Var : "
26 & Int_Var'Image);
27 end Show_Conversion;

Code block metadata
15 http://www.ada-auth.org/standards/22rm/html/RM-4-6.html

1.6. Type conversion 43

http://www.ada-auth.org/standards/22rm/html/RM-4-6.html

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Root_Derived_Type_
↪Conversion

MD5: 7cd324f308edc34de3bc4bccce63f1ee

Runtime output

Integer_Var : 1
Integer_Var : 2
Int_Var : 4

In the Show_Conversion procedure from this example, we first convert from Int to Integer.
Then, we do the same conversion while providing the resulting value as an actual parameter
for the Double function. Finally, we convert the Integer_Var * 2 expression from Integer
to Int.
Note that the converted value must conform to any constraints that the target type might
have. In the example above, Int has a predicate that dictates that its value cannot be zero.
This (dynamic) predicate is checked at runtime, so an exception is raised if it fails:

Listing 66: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Custom_Integers; use Custom_Integers;
3

4 procedure Show_Conversion is
5 Int_Var : Int;
6 Integer_Var : Integer;
7 begin
8 Integer_Var := 0;
9 Int_Var := Int (Integer_Var);
10

11 Put_Line ("Int_Var : "
12 & Int_Var'Image);
13 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Root_Derived_Type_
↪Conversion

MD5: 4150cdffd4c1fed39fa1728a77fa599f

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_
↪conversion.adb:9

In this case, the conversion from Integer to Int fails because, while zero is a valid integer
value, it doesn't obey Int's predicate.

44 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

Numeric type conversion

A typical conversion is the one between integer and floating-point values. For example:

Listing 67: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Conversion is
4 F : Float := 1.0;
5 I : Integer := 2;
6 begin
7 I := Integer (F);
8

9 Put_Line ("I : "
10 & I'Image);
11

12 I := 4;
13 F := Float (I);
14

15 Put_Line ("F : "
16 & F'Image);
17 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Numeric_Type_
↪Conversion

MD5: f64649c786377617b0bc9ff49475ba55

Runtime output

I : 1
F : 4.00000E+00

Also, we can convert between fixed-point types and floating-point or integer types:

Listing 68: fixed_point_defs.ads
1 package Fixed_Point_Defs is
2 S : constant := 32;
3 Exp : constant := 15;
4 D : constant := 2.0 ** (-S + Exp + 1);
5

6 type TQ15_31 is delta D
7 range -1.0 * 2.0 ** Exp ..
8 1.0 * 2.0 ** Exp - D;
9

10 pragma Assert (TQ15_31'Size = S);
11 end Fixed_Point_Defs;

Listing 69: show_conversion.adb
1 with Fixed_Point_Defs; use Fixed_Point_Defs;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Show_Conversion is
5 F : Float;
6 FP : TQ15_31;
7 I : Integer;
8 begin
9 FP := TQ15_31 (10.25);

(continues on next page)

1.6. Type conversion 45

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10 I := Integer (FP);
11

12 Put_Line ("FP : "
13 & FP'Image);
14 Put_Line ("I : "
15 & I'Image);
16

17 I := 128;
18 FP := TQ15_31 (I);
19 F := Float (FP);
20

21 Put_Line ("FP : "
22 & FP'Image);
23 Put_Line ("F : "
24 & F'Image);
25 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Numeric_Type_
↪Conversion

MD5: 70714ba396b03469397b982e00299561

Runtime output

FP : 10.25000
I : 10
FP : 128.00000
F : 1.28000E+02

As we can see in the examples above, converting between different numeric types works in
all directions. (Of course, rounding is applied when converting from floating-point to integer
types, but this is expected.)

Enumeration conversion

We can also convert between an enumeration type and a type derived from it:

Listing 70: custom_enumerations.ads
1 package Custom_Enumerations is
2

3 type Priority is (Low, Mid, High);
4

5 type Important_Priority is new
6 Priority range Mid .. High;
7

8 end Custom_Enumerations;

Listing 71: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Custom_Enumerations; use Custom_Enumerations;
3

4 procedure Show_Conversion is
5 P : Priority := Low;
6 IP : Important_Priority := High;
7 begin
8 P := Priority (IP);

(continues on next page)

46 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9

10 Put_Line ("P: "
11 & P'Image);
12

13 P := Mid;
14 IP := Important_Priority (P);
15

16 Put_Line ("IP: "
17 & IP'Image);
18 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Enumeration_Type_
↪Conversion

MD5: b1e42cbd8b57291d3b3a9968c41efdd7

Runtime output

P: HIGH
IP: MID

In this example, we have the Priority type and the derived type Important_Priority. As
expected, the conversion works fine when the converted value is in the range of the target
type. If not, an exception is raised:

Listing 72: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Custom_Enumerations; use Custom_Enumerations;
3

4 procedure Show_Conversion is
5 P : Priority;
6 IP : Important_Priority;
7 begin
8 P := Low;
9 IP := Important_Priority (P);
10

11 Put_Line ("IP: "
12 & IP'Image);
13 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Enumeration_Type_
↪Conversion

MD5: 6bbc777d4b44023bf572ca5dc6c2b4f8

Build output

show_conversion.adb:9:10: warning: value not in range of type "Important_Priority"␣
↪defined at custom_enumerations.ads:5 [enabled by default]

show_conversion.adb:9:10: warning: Constraint_Error will be raised at run time␣
↪[enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_conversion.adb:9 range check failed

In this example, an exception is raised because Low is not in the Important_Priority
type's range.

1.6. Type conversion 47

Advanced Journey With Ada: A Flight In Progress

Array conversion

Similarly, we can convert between array types. For example, if we have the array type
Integer_Array and its derived type Derived_Integer_Array, we can convert between
those array types:

Listing 73: custom_arrays.ads
1 package Custom_Arrays is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 type Derived_Integer_Array is new
7 Integer_Array;
8

9 end Custom_Arrays;

Listing 74: show_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4 with Custom_Arrays; use Custom_Arrays;
5

6 procedure Show_Conversion is
7 subtype Common_Range is Positive range 1 .. 3;
8

9 AI : Integer_Array (Common_Range);
10 AI_D : Derived_Integer_Array (Common_Range);
11 begin
12 AI_D := [1, 2, 3];
13 AI := Integer_Array (AI_D);
14

15 Put_Line ("AI: "
16 & AI'Image);
17

18 AI := [4, 5, 6];
19 AI_D := Derived_Integer_Array (AI);
20

21 Put_Line ("AI_D: "
22 & AI_D'Image);
23 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Array_Type_
↪Conversion

MD5: e0a9fd519685b418a06dc7a3d0dab1c0

Runtime output

AI:
[1, 2, 3]
AI_D:
[4, 5, 6]

Note that both arrays must have the same number of components in order for the conver-
sion to be successful. (Sliding is fine, though.) In this example, both arrays have the same
range: Common_Range.
We can also convert between array types that aren't derived one from the other. As long

48 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

as the components and the index subtypes are of the same type, the conversion between
those types is possible. To be more precise, these are the requirements for the array con-
version to be accepted:
• The component types must be the same type.
• The index types (or subtypes) must be the same or, at least, convertible.
• The dimensionality of the arrays must be the same.
• The bounds must be compatible (but not necessarily equal).

Converting between different array types can be very handy, especially when we're dealing
with array types that were not declared in the same package. For example:

Listing 75: custom_arrays_1.ads
1 package Custom_Arrays_1 is
2

3 type Integer_Array_1 is
4 array (Positive range <>) of Integer;
5

6 type Float_Array_1 is
7 array (Positive range <>) of Float;
8

9 end Custom_Arrays_1;

Listing 76: custom_arrays_2.ads
1 package Custom_Arrays_2 is
2

3 type Integer_Array_2 is
4 array (Positive range <>) of Integer;
5

6 type Float_Array_2 is
7 array (Positive range <>) of Float;
8

9 end Custom_Arrays_2;

Listing 77: show_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4 with Custom_Arrays_1; use Custom_Arrays_1;
5 with Custom_Arrays_2; use Custom_Arrays_2;
6

7 procedure Show_Conversion is
8 subtype Common_Range is Positive range 1 .. 3;
9

10 AI_1 : Integer_Array_1 (Common_Range);
11 AI_2 : Integer_Array_2 (Common_Range);
12 AF_1 : Float_Array_1 (Common_Range);
13 AF_2 : Float_Array_2 (Common_Range);
14 begin
15 AI_2 := [1, 2, 3];
16 AI_1 := Integer_Array_1 (AI_2);
17

18 Put_Line ("AI_1: "
19 & AI_1'Image);
20

21 AI_1 := [4, 5, 6];
22 AI_2 := Integer_Array_2 (AI_1);

(continues on next page)

1.6. Type conversion 49

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
23

24 Put_Line ("AI_2: "
25 & AI_2'Image);
26

27 -- ERROR: Cannot convert arrays whose
28 -- components have different types:
29 --
30 -- AF_1 := Float_Array_1 (AI_1);
31 --
32 -- Instead, use array aggregate where each
33 -- component is converted from integer to
34 -- float:
35 --
36 AF_1 := [for I in AF_1'Range =>
37 Float (AI_1 (I))];
38

39 Put_Line ("AF_1: "
40 & AF_1'Image);
41

42 AF_2 := Float_Array_2 (AF_1);
43

44 Put_Line ("AF_2: "
45 & AF_2'Image);
46 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Array_Type_
↪Conversion

MD5: 5c62f7cf94eedf8b0b223c24a83cc8d3

Runtime output

AI_1:
[1, 2, 3]
AI_2:
[4, 5, 6]
AF_1:
[4.00000E+00, 5.00000E+00, 6.00000E+00]
AF_2:
[4.00000E+00, 5.00000E+00, 6.00000E+00]

As we can see in this example, the fact that Integer_Array_1 and Integer_Array_2 have
the same component type (Integer) allows us to convert between them. The same applies
to the Float_Array_1 and Float_Array_2 types.
A conversion is not possible when the component types don't match. Even though we can
convert between integer and floating-point types, we cannot convert an array of integers
to an array of floating-point directly. Therefore, we cannot write a statement such as AF_1
:= Float_Array_1 (AI_1);.
However, when the components don't match, we can of course implement the array conver-
sion by converting the individual components. For the example above, we used an iterated
component association in an array aggregate: [for I in AF_1'Range => Float (AI_1
(I))];. (We discuss this topic later in another chapter (page 182).)
We may also encounter array types originating from the instantiation of generic packages.
In this case as well, we can use array conversions. Consider the following generic package:

50 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

Listing 78: custom_arrays.ads
1 generic
2 type T is private;
3 package Custom_Arrays is
4 type T_Array is
5 array (Positive range <>) of T;
6 end Custom_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Generic_Array_Type_
↪Conversion

MD5: 8b3a963a1292a90d99d83c6d81ce3995

We could instantiate this generic package and reuse parts of the previous code example:

Listing 79: show_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4 with Custom_Arrays;
5

6 procedure Show_Conversion is
7 package CA_Int_1 is
8 new Custom_Arrays (T => Integer);
9 package CA_Int_2 is
10 new Custom_Arrays (T => Integer);
11

12 subtype Common_Range is Positive range 1 .. 3;
13

14 AI_1 : CA_Int_1.T_Array (Common_Range);
15 AI_2 : CA_Int_2.T_Array (Common_Range);
16 begin
17 AI_2 := [1, 2, 3];
18 AI_1 := CA_Int_1.T_Array (AI_2);
19

20 Put_Line ("AI_1: "
21 & AI_1'Image);
22

23 AI_1 := [4, 5, 6];
24 AI_2 := CA_Int_2.T_Array (AI_1);
25

26 Put_Line ("AI_2: "
27 & AI_2'Image);
28 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Generic_Array_Type_
↪Conversion

MD5: 956186d864763924b93b6a9d807525b6

Runtime output

AI_1:
[1, 2, 3]
AI_2:
[4, 5, 6]

As we can see in this example, each of the instantiated CA_Int_1 and CA_Int_2 packages

1.6. Type conversion 51

Advanced Journey With Ada: A Flight In Progress

has a T_Array type. Even though these T_Array types have the same name, they're actu-
ally completely unrelated types. However, we can still convert between them in the same
way as we did in the previous code examples.

1.6.2 View conversion

As mentioned before, view conversions just allow names to be converted. Thus, we cannot
use expressions in this case.
Note that a view conversion never changes the value during the conversion. We could say
that a view conversion is simply making us view an object from a different angle. The object
itself is still the same for both the original and the target types.
For example, consider this package:

Listing 80: some_tagged_types.ads
1 package Some_Tagged_Types is
2

3 type T is tagged record
4 A : Integer;
5 end record;
6

7 type T_Derived is new T with record
8 B : Float;
9 end record;
10

11 Obj : T_Derived;
12

13 end Some_Tagged_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Tagged_Types_View
MD5: 2e18ba972682f1ae1d38e38842fde48e

Here, Obj is an object of type T_Derived. When we view this object, we notice that it has
two components: A and B. However, we could view this object as being of type T. From that
perspective, this object only has one component: A. (Note that changing the perspective
doesn't change the object itself.) Therefore, a view conversion from T_Derived to T just
makes us view the object Obj from a different angle.
In this sense, a view conversion changes the view of a given object to the target type's
view, both in terms of components that exist and operations that are available. It doesn't
really change anything at all in the value itself.
There are basically two kinds of view conversions: the ones using tagged types and the
ones using untagged types. We discuss these kinds of conversion in this section.

52 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

View conversion of tagged types

A conversion between tagged types is a view conversion. Let's consider a typical code
example that declares one, two and three-dimensional points:

Listing 81: points.ads
1 package Points is
2

3 type Point_1D is tagged record
4 X : Float;
5 end record;
6

7 procedure Display (P : Point_1D);
8

9 type Point_2D is new Point_1D with record
10 Y : Float;
11 end record;
12

13 procedure Display (P : Point_2D);
14

15 type Point_3D is new Point_2D with record
16 Z : Float;
17 end record;
18

19 procedure Display (P : Point_3D);
20

21 end Points;

Listing 82: points.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Points is
4

5 procedure Display (P : Point_1D) is
6 begin
7 Put_Line ("(X => " & P.X'Image & ")");
8 end Display;
9

10 procedure Display (P : Point_2D) is
11 begin
12 Put_Line ("(X => " & P.X'Image
13 & ", Y => " & P.Y'Image & ")");
14 end Display;
15

16 procedure Display (P : Point_3D) is
17 begin
18 Put_Line ("(X => " & P.X'Image
19 & ", Y => " & P.Y'Image
20 & ", Z => " & P.Z'Image & ")");
21 end Display;
22

23 end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Tagged_Type_
↪Conversion

MD5: 0acc05ae2310ab4ba038dfdb6bae0495

We can use the types from the Points package and convert between each other:

1.6. Type conversion 53

Advanced Journey With Ada: A Flight In Progress

Listing 83: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Points; use Points;
3

4 procedure Show_Conversion is
5 P_1D : Point_1D;
6 P_3D : Point_3D;
7 begin
8 P_3D := (X => 0.1, Y => 0.5, Z => 0.3);
9 P_1D := Point_1D (P_3D);
10

11 Put ("P_3D : ");
12 Display (P_3D);
13

14 Put ("P_1D : ");
15 Display (P_1D);
16 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Tagged_Type_
↪Conversion

MD5: fb8e07c8f2399cfae935179d8f413150

Runtime output

P_3D : (X => 1.00000E-01, Y => 5.00000E-01, Z => 3.00000E-01)
P_1D : (X => 1.00000E-01)

In this example, as expected, we're able to convert from the Point_3D type (which has
three components) to the Point_1D type, which has only one component.

View conversion of untagged types

For untagged types, a view conversion is the one that happens when we have an object of
an untagged type as an actual parameter for a formal in out or out parameter.
Let's see a code example. Consider the following simple procedure:

Listing 84: double.ads
1 procedure Double (X : in out Float);

Listing 85: double.adb
1 procedure Double (X : in out Float) is
2 begin
3 X := X * 2.0;
4 end Double;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Untagged_Type_View_
↪Conversion

MD5: 31f4409d9faeaf213c5940de65eeb014

The Double procedure has an in out parameter of Float type. We can call this procedure
using an integer variable I as the actual parameter. For example:

54 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

Listing 86: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Double;
3

4 procedure Show_Conversion is
5 I : Integer;
6 begin
7 I := 2;
8 Put_Line ("I : "
9 & I'Image);
10

11 -- Calling Double with
12 -- Integer parameter:
13 Double (Float (I));
14 Put_Line ("I : "
15 & I'Image);
16 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Untagged_Type_View_
↪Conversion

MD5: 2256d3c120d569789dcd4c9959ed9d0f

Runtime output

I : 2
I : 4

In this case, the Float (I) conversion in the call to Double creates a temporary floating-
point variable. This is the same as if we had written the following code:

Listing 87: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Double;
3

4 procedure Show_Conversion is
5 I : Integer;
6 begin
7 I := 2;
8 Put_Line ("I : "
9 & I'Image);
10

11 declare
12 F : Float := Float (I);
13 begin
14 Double (F);
15 I := Integer (F);
16 end;
17 Put_Line ("I : "
18 & I'Image);
19 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Untagged_Type_View_
↪Conversion

MD5: 3b90caf789952710ece42141a7b60968

Runtime output

1.6. Type conversion 55

Advanced Journey With Ada: A Flight In Progress

I : 2
I : 4

In this sense, the view conversion that happens in Double (Float (I)) can be considered
syntactic sugar, as it allows us to elegantly write two conversions in a single statement.

1.6.3 Implicit conversions

Implicit conversions are only possible when we have a type T and a subtype S related to
the T type. For example:

Listing 88: custom_integers.ads
1 package Custom_Integers is
2

3 type Int is new Integer
4 with Dynamic_Predicate => Int /= 0;
5

6 subtype Sub_Int_1 is Integer
7 with Dynamic_Predicate => Sub_Int_1 /= 0;
8

9 subtype Sub_Int_2 is Sub_Int_1
10 with Dynamic_Predicate => Sub_Int_2 /= 1;
11

12 end Custom_Integers;

Listing 89: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Custom_Integers; use Custom_Integers;
3

4 procedure Show_Conversion is
5 Int_Var : Int;
6 Sub_Int_1_Var : Sub_Int_1;
7 Sub_Int_2_Var : Sub_Int_2;
8 Integer_Var : Integer;
9 begin
10 Integer_Var := 5;
11 Int_Var := Int (Integer_Var);
12

13 Put_Line ("Int_Var : "
14 & Int_Var'Image);
15

16 -- Implicit conversions:
17 -- no explicit conversion required!
18 Sub_Int_1_Var := Integer_Var;
19 Sub_Int_2_Var := Integer_Var;
20

21 Put_Line ("Sub_Int_1_Var : "
22 & Sub_Int_1_Var'Image);
23 Put_Line ("Sub_Int_2_Var : "
24 & Sub_Int_2_Var'Image);
25 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Implicit_Subtype_
↪Conversion

MD5: dbbe498fa66701ca94f48119b1bc1a91

56 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

Runtime output

Int_Var : 5
Sub_Int_1_Var : 5
Sub_Int_2_Var : 5

In this example, we declare the Int type and the Sub_Int_1 and Sub_Int_2 subtypes:
• the Int type is derived from the Integer type,
• Sub_Int_1 is a subtype of the Integer type, and
• Sub_Int_2 is a subtype of the Sub_Int_1 subtype.

We need an explicit conversion when converting between the Integer and Int types. How-
ever, as the conversion is implicit for subtypes, we can simply write Sub_Int_1_Var :=
Integer_Var;. (Of course, writing the explicit conversion Sub_Int_1 (Integer_Var) in
the assignment is possible as well.) Also, the same applies to the Sub_Int_2 subtype: we
can write an implicit conversion in the Sub_Int_2_Var := Integer_Var; statement.

1.6.4 Conversion of other types

For other kinds of types, such as records, a direct conversion as we've seen so far isn't pos-
sible. In this case, we have to write a conversion function ourselves. A common convention
in Ada is to name this function To_Typename. For example, if we want to convert from any
type to Integer or Float, we implement the To_Integer and To_Float functions, respec-
tively. (Obviously, because Ada supports subprogram overloading, we can have multiple
To_Typename functions for different operand types.)
Let's see a code example:

Listing 90: custom_rec.ads
1 package Custom_Rec is
2

3 type Rec is record
4 X : Integer;
5 end record;
6

7 function To_Integer (R : Rec)
8 return Integer is
9 (R.X);
10

11 end Custom_Rec;

Listing 91: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Custom_Rec; use Custom_Rec;
3

4 procedure Show_Conversion is
5 R : Rec;
6 I : Integer;
7 begin
8 R := (X => 2);
9 I := To_Integer (R);
10

11 Put_Line ("I : " & I'Image);
12 end Show_Conversion;

Code block metadata

1.6. Type conversion 57

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Other_Type_
↪Conversions

MD5: d52a4fde48243a7dd6942f0b2b91ce62

Runtime output

I : 2

In this example, we have the To_Integer function that converts from the Rec type to the
Integer type.

In other languages
In C++, you can define conversion operators to cast between objects of different classes.
Also, you can overload the = operator. Consider this example:

#include <iostream>

class T1 {
public:

T1 (float x) :
x(x) {}

// If class T3 is declared before class
// T1, we can overload the "=" operator.
//
// void operator=(T3 v) {
// x = static_cast<float>(v);
// }

void display();
private:

float x;
};

class T3 {
public:

T3 (float x, float y, float z) :
x(x), y(y), z(z) {}

// implicit conversion
operator float() const {

return (x + y + z) / 3.0;
}

// implicit conversion
//
// operator T1() const {
// return T1((x + y + z) / 3.0);
// }

// explicit conversion (C++11)
explicit operator T1() const {

return T1(float(*this));
}

void display();

private:
float x, y, z;

};
(continues on next page)

58 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)

void T1::display()
{

std::cout << "(x => " << x
<< ")" << std::endl;

}

void T3::display()
{

std::cout << "(x => " << x
<< "y => " << y
<< "z => " << z
<< ")" << std::endl;

}

int main ()
{

const T3 t_3 (0.5, 0.4, 0.6);
T1 t_1 (0.0);
float f;

// Implicit conversion
f = t_3;

std::cout << "f : " << f
<< std::endl;

// Explicit conversion
f = static_cast<float>(t_3);

// f = (float)t_3;

std::cout << "f : " << f
<< std::endl;

// Explicit conversion
t_1 = static_cast<T1>(t_3);

// t_1 = (T1)t_3;

std::cout << "t_1 : ";
t_1.display();
std::cout << std::endl;

}

Here, we're using operator float() and operator T1() to cast from an object of class
T3 to a floating-point value and an object of class T1, respectively. (If we switch the order
and declare the T3 class before the T1 class, we could overload the = operator, as you can
see in the commented-out lines.)
In Ada, this kind of conversions isn't available. Instead, we have to implement conversion
functions such as the To_Integer function from the previous code example. This is the
corresponding implementation:

Listing 92: custom_defs.ads
1 package Custom_Defs is
2

3 type T1 is private;
4

5 function Init (X : Float)
(continues on next page)

1.6. Type conversion 59

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 return T1;
7

8 procedure Display (Obj : T1);
9

10 type T3 is private;
11

12 function Init (X, Y, Z : Float)
13 return T3;
14

15 function To_Float (Obj : T3)
16 return Float;
17

18 function To_T1 (Obj : T3)
19 return T1;
20

21 procedure Display (Obj : T3);
22

23 private
24 type T1 is record
25 X : Float;
26 end record;
27

28 function Init (X : Float)
29 return T1 is
30 (X => X);
31

32 type T3 is record
33 X, Y, Z : Float;
34 end record;
35

36 function Init (X, Y, Z : Float)
37 return T3 is
38 (X => X, Y => Y, Z => Z);
39

40 end Custom_Defs;

Listing 93: custom_defs.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Custom_Defs is
4

5 procedure Display (Obj : T1) is
6 begin
7 Put_Line ("(X => "
8 & Obj.X'Image & ")");
9 end Display;
10

11 function To_Float (Obj : T3)
12 return Float is
13 ((Obj.X + Obj.Y + Obj.Z) / 3.0);
14

15 function To_T1 (Obj : T3)
16 return T1 is
17 (Init (To_Float (Obj)));
18

19 procedure Display (Obj : T3) is
20 begin
21 Put_Line ("(X => " & Obj.X'Image
22 & ", Y => " & Obj.Y'Image
23 & ", Z => " & Obj.Z'Image

(continues on next page)

60 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
24 & ")");
25 end Display;
26

27 end Custom_Defs;

Listing 94: show_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Custom_Defs; use Custom_Defs;
3

4 procedure Show_Conversion is
5 T_3 : constant T3 := Init (0.5, 0.4, 0.6);
6 T_1 : T1 := Init (0.0);
7 F : Float;
8 begin
9 -- Explicit conversion from
10 -- T3 to Float type
11 F := To_Float (T_3);
12

13 Put_Line ("F : " & F'Image);
14

15 -- Explicit conversion from
16 -- T3 to T1 type
17 T_1 := To_T1 (T_3);
18

19 Put ("T_1 : ");
20 Display (T_1);
21 end Show_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Explicit_Rec_
↪Conversion

MD5: b3e7be5488fb8026b4386063ba16aaeb

Runtime output

F : 5.00000E-01
T_1 : (X => 5.00000E-01)

In this example, we translate the casting operators from the C++ version by implementing
the To_Float and To_T1 functions. (In addition to that, we replace the C++ constructors
by Init functions.)

1.7 Qualified Expressions

We already saw qualified expressions in the Introduction to Ada16 course. As mentioned
there, a qualified expression specifies the exact type or subtype that the target expression
will be resolved to, and it can be either any expression in parentheses, or an aggregate:

Listing 95: simple_integers.ads
1 package Simple_Integers is
2

(continues on next page)
16 https://learn.adacore.com/courses/intro-to-ada/chapters/more_about_types.html#intro-ada-qualified-expressions

1.7. Qualified Expressions 61

https://learn.adacore.com/courses/intro-to-ada/chapters/more_about_types.html#intro-ada-qualified-expressions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 type Int is new Integer;
4

5 subtype Int_Not_Zero is Int
6 with Dynamic_Predicate => Int_Not_Zero /= 0;
7

8 end Simple_Integers;

Listing 96: show_qualified_expressions.adb
1 with Simple_Integers; use Simple_Integers;
2

3 procedure Show_Qualified_Expressions is
4 I : Int;
5 begin
6 -- Using qualified expression Int'(N)
7 I := Int'(0);
8 end Show_Qualified_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Qualified_Expressions.Example
MD5: 0a83e10b51c72827e322984bd5c8009d

Here, the qualified expression Int'(0) indicates that the value zero is of Int type.

In the Ada Reference Manual
• 4.7 Qualified Expressions17

1.7.1 Verifying subtypes

Note: This feature was introduced in Ada 2022.

We can use qualified expressions to verify a subtype's predicate:

Listing 97: show_qualified_expressions.adb
1 with Simple_Integers; use Simple_Integers;
2

3 procedure Show_Qualified_Expressions is
4 I : Int;
5 begin
6 I := Int_Not_Zero'(0);
7 end Show_Qualified_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Qualified_Expressions.Example
MD5: 3c4ab8ad7bf75ae029047f673aa15d70

Build output

17 http://www.ada-auth.org/standards/22rm/html/RM-4-7.html

62 Chapter 1. Types

http://www.ada-auth.org/standards/22rm/html/RM-4-7.html

Advanced Journey With Ada: A Flight In Progress

show_qualified_expressions.adb:6:23: warning: expression fails predicate check on
↪"Int_Not_Zero" [enabled by default]

show_qualified_expressions.adb:6:23: warning: check will fail at run time [-gnatw.
↪a]

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_qualified_
↪expressions.adb:6

Here, the qualified expression Int_Not_Zero'(0) checks the dynamic predicate of the sub-
type. (This predicate check fails at runtime.)

1.8 Default initial values

In the Introduction to Ada course18, we've seen that record components can have default
values. For example:

Listing 98: defaults.ads
1 package Defaults is
2

3 type R is record
4 X : Positive := 1;
5 Y : Positive := 10;
6 end record;
7

8 end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_1
MD5: e230be602cbb24a854e71c8176c7148c

In this section, we'll extend the concept of default values to other kinds of type declarations,
such as scalar types and arrays.
To assign a default value for a scalar type declaration — such as an enumeration and a new
integer —, we use the Default_Value aspect:

Listing 99: defaults.ads
1 package Defaults is
2

3 type E is (E1, E2, E3)
4 with Default_Value => E1;
5

6 type T is new Integer
7 with Default_Value => -1;
8

9 end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_2
MD5: e6cd8261b099278ceeb5fda91d318f6e

18 https://learn.adacore.com/courses/intro-to-ada/chapters/records.html#intro-ada-record-default-values

1.8. Default initial values 63

https://learn.adacore.com/courses/intro-to-ada/chapters/records.html#intro-ada-record-default-values

Advanced Journey With Ada: A Flight In Progress

Note that we cannot specify a default value for a subtype:

Listing 100: defaults.ads
1 package Defaults is
2

3 subtype T is Integer
4 with Default_Value => -1;
5 -- ERROR!!
6

7 end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_3
MD5: beef68e4a7a3714cfa3e547bdcda9a0c

Build output

defaults.ads:4:11: error: aspect "Default_Value" cannot apply to subtype
gprbuild: *** compilation phase failed

For array types, we use the Default_Component_Value aspect:

Listing 101: defaults.ads
1 package Defaults is
2

3 type Arr is
4 array (Positive range <>) of Integer
5 with Default_Component_Value => -1;
6

7 end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_4
MD5: 2c390e3900e4af42498381025a37955e

This is a package containing the declarations we've just seen:

Listing 102: defaults.ads
1 package Defaults is
2

3 type E is (E1, E2, E3)
4 with Default_Value => E1;
5

6 type T is new Integer
7 with Default_Value => -1;
8

9 -- We cannot specify default
10 -- values for subtypes:
11 --
12 -- subtype T is Integer
13 -- with Default_Value => -1;
14

15 type R is record
16 X : Positive := 1;
17 Y : Positive := 10;
18 end record;
19

(continues on next page)

64 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
20 type Arr is
21 array (Positive range <>) of Integer
22 with Default_Component_Value => -1;
23

24 end Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults
MD5: e9263ff5b96523c129a3d2d9bbb5a4dd

In the example below, we declare variables of the types from the Defaults package:

Listing 103: use_defaults.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Defaults; use Defaults;
3

4 procedure Use_Defaults is
5 E1 : E;
6 T1 : T;
7 R1 : R;
8 A1 : Arr (1 .. 5);
9 begin
10 Put_Line ("Enumeration: "
11 & E'Image (E1));
12 Put_Line ("Integer type: "
13 & T'Image (T1));
14 Put_Line ("Record type: "
15 & Positive'Image (R1.X)
16 & ", "
17 & Positive'Image (R1.Y));
18

19 Put ("Array type: ");
20 for V of A1 loop
21 Put (Integer'Image (V) & " ");
22 end loop;
23 New_Line;
24 end Use_Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults
MD5: f8e55d31cbda2447fe14eb07eaad1975

Runtime output

Enumeration: E1
Integer type: -1
Record type: 1, 10
Array type: -1 -1 -1 -1 -1

As we see in the Use_Defaults procedure, all variables still have their default values, since
we haven't assigned any value to them.

In the Ada Reference Manual
• 3.5 Scalar Types19

19 http://www.ada-auth.org/standards/22rm/html/RM-3-5.html

1.8. Default initial values 65

http://www.ada-auth.org/standards/22rm/html/RM-3-5.html

Advanced Journey With Ada: A Flight In Progress

• 3.6 Array Types20

1.9 Deferred Constants

Deferred constants are declarations where the value of the constant is not specified im-
mediately, but rather deferred to a later point. In that sense, if a constant declaration is
deferred, it is actually declared twice:
1. in the deferred constant declaration, and
2. in the full constant declaration.

The simplest form of deferred constant is the one that has a full constant declaration in the
private part of the package specification. For example:

Listing 104: deferred_constants.ads
1 package Deferred_Constants is
2

3 type Speed is new Long_Float;
4

5 Light : constant Speed;
6 -- ^ deferred constant declaration
7

8 private
9

10 Light : constant Speed := 299_792_458.0;
11 -- ^ full constant declaration
12

13 end Deferred_Constants;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_
↪Constant_Private

MD5: f76e42326889f70fa7e1e216576f9771

Another form of deferred constant is the one that imports a constant from an external imple-
mentation — using the Import keyword. We can use this to import a constant declaration
from an implementation in C. For example, we can declare the light constant in a C file:

Listing 105: constants.c
1 double light = 299792458.0;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_
↪Constant_C

MD5: 71194a329dc5adaac3e01aff143a9943

Then, we can import this constant in the Deferred_Constants package:

Listing 106: deferred_constants.ads
1 package Deferred_Constants is
2

(continues on next page)
20 http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

66 Chapter 1. Types

http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 type Speed is new Long_Float;
4

5 Light : constant Speed with
6 Import, Convention => C;
7 -- ^^^^ deferred constant
8 -- declaration; imported
9 -- from C file
10

11 end Deferred_Constants;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_
↪Constant_C

MD5: 9355d194e973c6c6540485178b2259c9

In this case, we don't have a full declaration in the Deferred_Constants package, as the
Light constant is imported from the constants.c file.
As a rule, the deferred and the full declarations should match — except, of course, for the
actual value that is missing in the deferred declaration. For instance, we're not allowed to
use different types in both declarations. However, we may use a subtype in the full decla-
ration — as long as it's compatible with the type that was used in the deferred declaration.
For example:

Listing 107: deferred_constants.ads
1 package Deferred_Constants is
2

3 type Speed is new Long_Float;
4

5 subtype Positive_Speed is
6 Speed range 0.0 .. Speed'Last;
7

8 Light : constant Speed;
9 -- ^ deferred constant declaration
10

11 private
12

13 Light : constant Positive_Speed :=
14 299_792_458.0;
15 -- ^ full constant declaration
16 -- using a subtype
17

18 end Deferred_Constants;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_
↪Constant_Subtype

MD5: ad6e13e30bacb6d97ccfa6c7345ffb67

Here, we're using the Speed type in the deferred declaration of the Light constant, but
we're using the Positive_Speed subtype in the full declaration.
A useful application of deferred constants is when the value of the constant is calculated
using entities not meant to be compile-time visible to clients. As such, these other entities
are only visible in the private part of the package, so that's where the value of the deferred
constant must be computed. For example, the full constant declaration may be computed
by a call to an expression function:

1.9. Deferred Constants 67

Advanced Journey With Ada: A Flight In Progress

Listing 108: deferred_constants.ads
1 package Deferred_Constants is
2

3 type Speed is new Long_Float;
4

5 Light : constant Speed;
6 -- ^ deferred constant declaration
7

8 private
9

10 function Calculate_Light return Speed is
11 (299_792_458.0);
12

13 Light : constant Speed := Calculate_Light;
14 -- ^ full constant declaration
15 -- calling a private function
16

17 end Deferred_Constants;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_
↪Constant_Function

MD5: f0b1a9521af31a4b48bbd54891f1c32b

Here, we call the Calculate_Light function — declared in the private part of the De-
ferred_Constants package — for the full declaration of the Light constant.

In the Ada Reference Manual
• 7.4 Deferred Constants21

1.10 User-defined literals

Note: This feature was introduced in Ada 2022.

Any type definition has a kind of literal associated with it. For example, integer types are
associated with integer literals. Therefore, we can initialize an object of integer type with
an integer literal:

Listing 109: simple_integer_literal.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Simple_Integer_Literal is
4 V : Integer;
5 begin
6 V := 10;
7

8 Put_Line (Integer'Image (V));
9 end Simple_Integer_Literal;

Code block metadata
21 http://www.ada-auth.org/standards/22rm/html/RM-7-4.html

68 Chapter 1. Types

http://www.ada-auth.org/standards/22rm/html/RM-7-4.html

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Simple_
↪Integer_Literal

MD5: 9f65e7c319be2b292dc1fdf02dd7cfb4

Runtime output

10

Here, 10 is the integer literal that we use to initialize the integer variable V. Other examples
of literals are real literals and string literals, as we'll see later.
Whenwe declare an enumeration type, we limit the set of literals that we can use to initialize
objects of that type:

Listing 110: simple_enumeration.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Simple_Enumeration is
4 type Activation_State is (Unknown, Off, On);
5

6 S : Activation_State;
7 begin
8 S := On;
9 Put_Line (Activation_State'Image (S));
10 end Simple_Enumeration;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Simple_
↪Enumeration

MD5: 075df146fcb567817dadfdb245659773

Runtime output

ON

For objects of Activation_State type, such as S, the only possible literals that we can use
are Unknown, Off and On. In this sense, types have a constrained set of literals that can be
used for objects of that type.
User-defined literals allow us to extend this set of literals. We could, for example, extend
the type declaration of Activation_State and allow the use of integer literals for objects of
that type. In this case, we need to use the Integer_Literal aspect and specify a function
that implements the conversion from literals to the type we're declaring. For this conversion
from integer literals to the Activation_State type, we could specify that 0 corresponds
to Off, 1 corresponds to On and other values correspond to Unknown. We'll see the corre-
sponding implementation later.
These are the three kinds of literals and their corresponding aspect:

Literal Example Aspect
Integer 1 Integer_Literal
Real 1.0 Real_Literal
String "On" String_Literal

For our previous Activation_States type, we could declare a function Inte-
ger_To_Activation_State that converts integer literals to one of the enumeration literals
that we've specified for the Activation_States type:

1.10. User-defined literals 69

Advanced Journey With Ada: A Flight In Progress

Listing 111: activation_states.ads
1 package Activation_States is
2

3 type Activation_State is (Unknown, Off, On)
4 with Integer_Literal =>
5 Integer_To_Activation_State;
6

7 function Integer_To_Activation_State
8 (S : String)
9 return Activation_State;
10

11 end Activation_States;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.User_Defined_
↪Literals

MD5: 67b6d96f049ab6cde962aefda96bffca

Based on this specification, we can now use an integer literal to initialize an object S of
Activation_State type:

S : Activation_State := 1;

Note that we have a string parameter in the declaration of the Inte-
ger_To_Activation_State function, even though the function itself is only used to convert
integer literals (but not string literals) to the Activation_State type. It's our job to pro-
cess that string parameter in the implementation of the Integer_To_Activation_State
function and convert it to an integer value — using Integer'Value, for example:

Listing 112: activation_states.adb
1 package body Activation_States is
2

3 function Integer_To_Activation_State
4 (S : String)
5 return Activation_State is
6 begin
7 case Integer'Value (S) is
8 when 0 => return Off;
9 when 1 => return On;
10 when others => return Unknown;
11 end case;
12 end Integer_To_Activation_State;
13

14 end Activation_States;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.User_Defined_
↪Literals

MD5: 104a835915b93ea3b860bce03fd709a3

Let's look at a complete example that makes use of all three kinds of literals:

Listing 113: activation_states.ads
1 package Activation_States is
2

3 type Activation_State is (Unknown, Off, On)
(continues on next page)

70 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4 with String_Literal =>
5 To_Activation_State,
6 Integer_Literal =>
7 Integer_To_Activation_State,
8 Real_Literal =>
9 Real_To_Activation_State;
10

11 function To_Activation_State
12 (S : Wide_Wide_String)
13 return Activation_State;
14

15 function Integer_To_Activation_State
16 (S : String)
17 return Activation_State;
18

19 function Real_To_Activation_State
20 (S : String)
21 return Activation_State;
22

23 end Activation_States;

Listing 114: activation_states.adb
1 package body Activation_States is
2

3 function To_Activation_State
4 (S : Wide_Wide_String)
5 return Activation_State
6 is
7 begin
8 if S = "Off" then
9 return Off;
10 elsif S = "On" then
11 return On;
12 else
13 return Unknown;
14 end if;
15 end To_Activation_State;
16

17 function Integer_To_Activation_State
18 (S : String)
19 return Activation_State
20 is
21 begin
22 case Integer'Value (S) is
23 when 0 => return Off;
24 when 1 => return On;
25 when others => return Unknown;
26 end case;
27 end Integer_To_Activation_State;
28

29 function Real_To_Activation_State
30 (S : String)
31 return Activation_State
32 is
33 V : constant Float := Float'Value (S);
34 begin
35 if V < 0.0 then
36 return Unknown;
37 elsif V < 1.0 then
38 return Off;

(continues on next page)

1.10. User-defined literals 71

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
39 else
40 return On;
41 end if;
42 end Real_To_Activation_State;
43

44 end Activation_States;

Listing 115: activation_examples.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Activation_States; use Activation_States;
3

4 procedure Activation_Examples is
5 S : Activation_State;
6 begin
7 S := "Off";
8 Put_Line ("String: Off => "
9 & Activation_State'Image (S));
10

11 S := 1;
12 Put_Line ("Integer: 1 => "
13 & Activation_State'Image (S));
14

15 S := 1.5;
16 Put_Line ("Real: 1.5 => "
17 & Activation_State'Image (S));
18 end Activation_Examples;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Activation_
↪States

MD5: 186b7b898e4c16bfd8dcd683e8f0379d

Runtime output

String: Off => OFF
Integer: 1 => ON
Real: 1.5 => ON

In this example, we're extending the declaration of the Activation_State type to include
string and real literals. For string literals, we use the To_Activation_State function, which
converts:
• the "Off" string to Off,
• the "On" string to On, and
• any other string to Unknown.

For real literals, we use the Real_To_Activation_State function, which converts:
• any negative number to Unknown,
• a value in the interval [0, 1) to Off, and
• a value equal or above 1.0 to On.

Note that the string parameter of To_Activation_State function — which converts string
literals — is of Wide_Wide_String type, and not of String type, as it's the case for the
other conversion functions.
In the Activation_Examples procedure, we show how we can initialize an object of Acti-
vation_State type with all kinds of literals (string, integer and real literals).

72 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

With the definition of the Activation_State type that we've seen in the complete example,
we can initialize an object of this type with an enumeration literal or a string, as both forms
are defined in the type specification:

Listing 116: using_string_literal.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Activation_States; use Activation_States;
3

4 procedure Using_String_Literal is
5 S1 : constant Activation_State := On;
6 S2 : constant Activation_State := "On";
7 begin
8 Put_Line (Activation_State'Image (S1));
9 Put_Line (Activation_State'Image (S2));
10 end Using_String_Literal;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Activation_
↪States

MD5: 6ca6aa79b88058801688fc2dfb186091

Runtime output

ON
ON

Note we need to be very careful when designing conversion functions. For example, the
use of string literals may limit the kind of checks that we can do. Consider the following
misspelling of the Off literal:

Listing 117: misspelling_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Activation_States; use Activation_States;
3

4 procedure Misspelling_Example is
5 S : constant Activation_State :=
6 Offf;
7 -- ^ Error: Off is misspelled.
8 begin
9 Put_Line (Activation_State'Image (S));
10 end Misspelling_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Activation_
↪States

MD5: ebc1036a58e460a9212106606461b014

Build output

misspelling_example.adb:6:10: error: "Offf" is undefined
misspelling_example.adb:6:10: error: possible misspelling of "Off"
gprbuild: *** compilation phase failed

As expected, the compiler detects this error. However, this error is accepted when using
the corresponding string literal:

1.10. User-defined literals 73

Advanced Journey With Ada: A Flight In Progress

Listing 118: misspelling_example.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Activation_States; use Activation_States;
3

4 procedure Misspelling_Example is
5 S : constant Activation_State :=
6 "Offf";
7 -- ^ Error: Off is misspelled.
8 begin
9 Put_Line (Activation_State'Image (S));
10 end Misspelling_Example;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Activation_
↪States

MD5: 99f74c67712a9b55c146b9d57405e47f

Runtime output

UNKNOWN

Here, our implementation of To_Activation_State simply returns Unknown. In some cases,
this might be exactly the behavior that we want. However, let's assume that we'd pre-
fer better error handling instead. In this case, we could change the implementation of
To_Activation_State to check all literals that we want to allow, and indicate an error oth-
erwise — by raising an exception, for example. Alternatively, we could specify this in the
preconditions of the conversion function:

function To_Activation_State
(S : Wide_Wide_String)
return Activation_State
with Pre => S = "Off" or

S = "On" or
S = "Unknown";

In this case, the precondition explicitly indicates which string literals are allowed for the
To_Activation_State type.
User-defined literals can also be used for more complex types, such as records. For exam-
ple:

Listing 119: silly_records.ads
1 package Silly_Records is
2

3 type Silly is record
4 X : Integer;
5 Y : Float;
6 end record
7 with String_Literal => To_Silly;
8

9 function To_Silly (S : Wide_Wide_String)
10 return Silly;
11 end Silly_Records;

Listing 120: silly_records.adb
1 package body Silly_Records is
2

(continues on next page)

74 Chapter 1. Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 function To_Silly (S : Wide_Wide_String)
4 return Silly
5 is
6 begin
7 if S = "Magic" then
8 return (X => 42, Y => 42.0);
9 else
10 return (X => 0, Y => 0.0);
11 end if;
12 end To_Silly;
13

14 end Silly_Records;

Listing 121: silly_magic.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Silly_Records; use Silly_Records;
3

4 procedure Silly_Magic is
5 R1 : Silly;
6 begin
7 R1 := "Magic";
8 Put_Line (R1.X'Image & ", " & R1.Y'Image);
9 end Silly_Magic;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Types.User-Defined_Literals.Record_
↪Literals

MD5: 2a077045f058a8d5c09c43f66fc128be

Runtime output

42, 4.20000E+01

In this example, when we initialize an object of Silly type with a string, its components
are:
• set to 42 when using the "Magic" string; or
• simply set to zero when using any other string.

Obviously, this example isn't particularly useful. However, the goal is to show that this
approach is useful for more complex types where a string literal (or a numeric literal) might
simplify handling those types. Used-defined literals let you design types in ways that, oth-
erwise, would only be possible when using a preprocessor or a domain-specific language.

In the Ada Reference Manual
• 4.2.1 User-Defined Literals22

22 http://www.ada-auth.org/standards/22rm/html/RM-4-2-1.html

1.10. User-defined literals 75

http://www.ada-auth.org/standards/22rm/html/RM-4-2-1.html

Advanced Journey With Ada: A Flight In Progress

76 Chapter 1. Types

CHAPTER

TWO

TYPES AND REPRESENTATION

2.1 Enumeration Representation Clauses

We have talked about the internal code of an enumeration in another section (page 22).
We may change this internal code by using a representation clause, which has the following
format:

for Primary_Color is (Red => 1,
Green => 5,
Blue => 1000);

The value of each code in a representation clause must be distinct. However, as you can
see above, we don't need to use sequential values — the values must, however, increase
for each enumeration.
We can rewrite the previous example using a representation clause:

Listing 1: days.ads
1 package Days is
2

3 type Day is (Mon, Tue, Wed,
4 Thu, Fri,
5 Sat, Sun);
6

7 for Day use (Mon => 2#00000001#,
8 Tue => 2#00000010#,
9 Wed => 2#00000100#,
10 Thu => 2#00001000#,
11 Fri => 2#00010000#,
12 Sat => 2#00100000#,
13 Sun => 2#01000000#);
14

15 end Days;

Listing 2: show_days.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Days; use Days;
3

4 procedure Show_Days is
5 begin
6 for D in Day loop
7 Put_Line (Day'Image (D)
8 & " position = "
9 & Integer'Image (Day'Pos (D)));
10 Put_Line (Day'Image (D)
11 & " internal code = "

(continues on next page)

77

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
12 & Integer'Image
13 (Day'Enum_Rep (D)));
14 end loop;
15 end Show_Days;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Enumeration_
↪Representation_Clauses.Enumeration_Values

MD5: a70c3f8a967c355a4bf8f2d669f9c541

Runtime output

MON position = 0
MON internal code = 1
TUE position = 1
TUE internal code = 2
WED position = 2
WED internal code = 4
THU position = 3
THU internal code = 8
FRI position = 4
FRI internal code = 16
SAT position = 5
SAT internal code = 32
SUN position = 6
SUN internal code = 64

Now, the value of the internal code is the one that we've specified in the representation
clause instead of being equivalent to the value of the enumeration position.
In the example above, we're using binary values for each enumeration — basically viewing
the integer value as a bit-field and assigning one bit for each enumeration. As long as we
maintain an increasing order, we can use totally arbitrary values as well. For example:

Listing 3: days.ads
1 package Days is
2

3 type Day is (Mon, Tue, Wed,
4 Thu, Fri,
5 Sat, Sun);
6

7 for Day use (Mon => 5,
8 Tue => 9,
9 Wed => 42,
10 Thu => 49,
11 Fri => 50,
12 Sat => 66,
13 Sun => 99);
14

15 end Days;

78 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

2.2 Data Representation

This section provides a glimpse on attributes and aspects used for data representation.
They are usually used for embedded applications because of strict requirements that are
often found there. Therefore, unless you have very specific requirements for your applica-
tion, in most cases, you won't need them. However, you should at least have a rudimentary
understanding of them. To read a thorough overview on this topic, please refer to the In-
troduction to Embedded Systems Programming23 course.

In the Ada Reference Manual
• 13.2 Packed Types24

• 13.3 Operational and Representation Attributes25

• 13.5.3 Bit Ordering26

2.2.1 Sizes

Ada offers multiple attributes to retrieve the size of a type or an object:

Attribute Description
Size Size of the representation of a subtype or an object (in bits).
Object_Size Size of a component or an aliased object (in bits).
Compo-
nent_Size

Size of a component of an array (in bits).

Storage_Size Number of storage elements reserved for an access type or a task
object.

For the first three attributes, the size is measured in bits. In the case of Storage_Size, the
size is measured in storage elements. Note that the size information depends your target
architecture. We'll discuss some examples to better understand the differences among
those attributes.

Important
A storage element is the smallest element we can use to store data in memory. As we'll
see soon, a storage element corresponds to a byte in many architectures.
The size of a storage element is represented by the System.Storage_Unit constant. In
other words, the storage unit corresponds to the number of bits used for a single storage
element.
In typical architectures, System.Storage_Unit is 8 bits. In this specific case, a storage
element is equal to a byte in memory. Note, however, that System.Storage_Unit might
have a value different than eight in certain architectures.

23 https://learn.adacore.com/courses/intro-to-embedded-sys-prog/chapters/low_level_programming.html#
intro-embedded-sys-prog-low-level-programming
24 http://www.ada-auth.org/standards/22rm/html/RM-13-2.html
25 http://www.ada-auth.org/standards/22rm/html/RM-13-3.html
26 http://www.ada-auth.org/standards/22rm/html/RM-13-5-3.html

2.2. Data Representation 79

https://learn.adacore.com/courses/intro-to-embedded-sys-prog/chapters/low_level_programming.html#intro-embedded-sys-prog-low-level-programming
https://learn.adacore.com/courses/intro-to-embedded-sys-prog/chapters/low_level_programming.html#intro-embedded-sys-prog-low-level-programming
http://www.ada-auth.org/standards/22rm/html/RM-13-2.html
http://www.ada-auth.org/standards/22rm/html/RM-13-3.html
http://www.ada-auth.org/standards/22rm/html/RM-13-5-3.html

Advanced Journey With Ada: A Flight In Progress

Size attribute and aspect

Let's start with a code example using the Size attribute:

Listing 4: custom_types.ads
1 package Custom_Types is
2

3 type UInt_7 is range 0 .. 127;
4

5 type UInt_7_S32 is range 0 .. 127
6 with Size => 32;
7

8 end Custom_Types;

Listing 5: show_sizes.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Custom_Types; use Custom_Types;
4

5 procedure Show_Sizes is
6 V1 : UInt_7;
7 V2 : UInt_7_S32;
8 begin
9 Put_Line ("UInt_7'Size: "
10 & UInt_7'Size'Image);
11 Put_Line ("UInt_7'Object_Size: "
12 & UInt_7'Object_Size'Image);
13 Put_Line ("V1'Size: "
14 & V1'Size'Image);
15 New_Line;
16

17 Put_Line ("UInt_7_S32'Size: "
18 & UInt_7_S32'Size'Image);
19 Put_Line ("UInt_7_S32'Object_Size: "
20 & UInt_7_S32'Object_Size'Image);
21 Put_Line ("V2'Size: "
22 & V2'Size'Image);
23 end Show_Sizes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Sizes

MD5: e0da7cd23dc6989bea3d2902221f033e

Build output

show_sizes.adb:6:04: warning: variable "V1" is read but never assigned [-gnatwv]
show_sizes.adb:7:04: warning: variable "V2" is read but never assigned [-gnatwv]

Runtime output

UInt_7'Size: 7
UInt_7'Object_Size: 8
V1'Size: 8

UInt_7_S32'Size: 32
UInt_7_S32'Object_Size: 32
V2'Size: 32

Depending on your target architecture, you may see this output:

80 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

UInt_7'Size: 7
UInt_7'Object_Size: 8
V1'Size: 8

UInt_7_S32'Size: 32
UInt_7_S32'Object_Size: 32
V2'Size: 32

When we use the Size attribute for a type T, we're retrieving the minimum number of bits
necessary to represent objects of that type. Note that this is not the same as the actual
size of an object of type T because the compiler will select an object size that is appropriate
for the target architecture.
In the example above, the size of the UInt_7 is 7 bits, while the most appropriate size to
store objects of this type in the memory of our target architecture is 8 bits. To be more
specific, the range of UInt_7 (0 .. 127) can be perfectly represented in 7 bits. However,
most target architectures don't offer 7-bit registers or 7-bit memory storage, so 8 bits is the
most appropriate size in this case.
We can retrieve the size of an object of type T by using the Object_Size. Alternatively, we
can use the Size attribute directly on objects of type T to retrieve their actual size — in our
example, we write V1'Size to retrieve the size of V1.
In the example above, we've used both the Size attribute (for example, UInt_7'Size) and
the Size aspect (with Size => 32). While the size attribute is a function that returns the
size, the size aspect is a request to the compiler to verify that the expected size can be used
on the target platform. You can think of this attribute as a dialog between the developer
and the compiler:

(Developer) "I think that UInt_7_S32 should be stored using at least 32 bits. Do
you agree?"
(Ada compiler) "For the target platform that you selected, I can confirm that this
is indeed the case."

Depending on the target platform, however, the conversation might play out like this:
(Developer) "I think that UInt_7_S32 should be stored using at least 32 bits. Do
you agree?"
(Ada compiler) "For the target platform that you selected, I cannot possibly do it!
COMPILATION ERROR!"

Component size

Let's continue our discussion on sizes with an example that makes use of the Compo-
nent_Size attribute:

Listing 6: custom_types.ads
1 package Custom_Types is
2

3 type UInt_7 is range 0 .. 127;
4

5 type UInt_7_Array is
6 array (Positive range <>) of UInt_7;
7

8 type UInt_7_Array_Comp_32 is
9 array (Positive range <>) of UInt_7
10 with Component_Size => 32;
11

12 end Custom_Types;

2.2. Data Representation 81

Advanced Journey With Ada: A Flight In Progress

Listing 7: show_sizes.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Custom_Types; use Custom_Types;
4

5 procedure Show_Sizes is
6 Arr_1 : UInt_7_Array (1 .. 20);
7 Arr_2 : UInt_7_Array_Comp_32 (1 .. 20);
8 begin
9 Put_Line
10 ("UInt_7_Array'Size: "
11 & UInt_7_Array'Size'Image);
12 Put_Line
13 ("UInt_7_Array'Object_Size: "
14 & UInt_7_Array'Object_Size'Image);
15 Put_Line
16 ("UInt_7_Array'Component_Size: "
17 & UInt_7_Array'Component_Size'Image);
18 Put_Line
19 ("Arr_1'Component_Size: "
20 & Arr_1'Component_Size'Image);
21 Put_Line
22 ("Arr_1'Size: "
23 & Arr_1'Size'Image);
24 New_Line;
25

26 Put_Line
27 ("UInt_7_Array_Comp_32'Object_Size: "
28 & UInt_7_Array_Comp_32'Size'Image);
29 Put_Line
30 ("UInt_7_Array_Comp_32'Object_Size: "
31 & UInt_7_Array_Comp_32'Object_Size'Image);
32 Put_Line
33 ("UInt_7_Array_Comp_32'Component_Size: "
34 &
35 UInt_7_Array_Comp_32'Component_Size'Image);
36 Put_Line
37 ("Arr_2'Component_Size: "
38 & Arr_2'Component_Size'Image);
39 Put_Line
40 ("Arr_2'Size: "
41 & Arr_2'Size'Image);
42 New_Line;
43 end Show_Sizes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Sizes

MD5: e316bcb827e014075dfbf044935827ae

Build output

show_sizes.adb:6:04: warning: variable "Arr_1" is read but never assigned [-gnatwv]
show_sizes.adb:7:04: warning: variable "Arr_2" is read but never assigned [-gnatwv]

Runtime output

UInt_7_Array'Size: 17179869176
UInt_7_Array'Object_Size: 17179869176

(continues on next page)

82 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
UInt_7_Array'Component_Size: 8
Arr_1'Component_Size: 8
Arr_1'Size: 160

UInt_7_Array_Comp_32'Object_Size: 68719476704
UInt_7_Array_Comp_32'Object_Size: 68719476704
UInt_7_Array_Comp_32'Component_Size: 32
Arr_2'Component_Size: 32
Arr_2'Size: 640

Depending on your target architecture, you may see this output:

UInt_7_Array'Size: 17179869176
UInt_7_Array'Object_Size: 17179869176
UInt_7_Array'Component_Size: 8
Arr_1'Component_Size: 8
Arr_1'Size: 160

UInt_7_Array_Comp_32'Size: 68719476704
UInt_7_Array_Comp_32'Object_Size: 68719476704
UInt_7_Array_Comp_32'Component_Size: 32
Arr_2'Component_Size: 32
Arr_2'Size: 640

Here, the value we get for Component_Size of the UInt_7_Array type is 8 bits, which
matches the UInt_7'Object_Size — as we've seen in the previous subsection. In gen-
eral, we expect the component size to match the object size of the underlying type.
However, we might have component sizes that aren't equal to the object size of the com-
ponent's type. For example, in the declaration of the UInt_7_Array_Comp_32 type, we're
using the Component_Size aspect to query whether the size of each component can be 32
bits:

type UInt_7_Array_Comp_32 is
array (Positive range <>) of UInt_7

with Component_Size => 32;

If the code compiles, we see this value when we use the Component_Size attribute. In this
case, even though UInt_7'Object_Size is 8 bits, the component size of the array type
(UInt_7_Array_Comp_32'Component_Size) is 32 bits.
Note that we can use the Component_Size attribute with data types, as well as with actual
objects of that data type. Therefore, we can write UInt_7_Array'Component_Size and
Arr_1'Component_Size, for example.
This big number (17179869176 bits) for UInt_7_Array'Size and
UInt_7_Array'Object_Size might be surprising for you. This is due to the fact that
Ada is reporting the size of the UInt_7_Array type for the case when the complete
range is used. Considering that we specified a positive range in the declaration of the
UInt_7_Array type, the maximum length on this machine is 231 - 1. The object size of
an array type is calculated by multiplying the maximum length by the component size.
Therefore, the object size of the UInt_7_Array type corresponds to the multiplication of
231 - 1 components (maximum length) by 8 bits (component size).

2.2. Data Representation 83

Advanced Journey With Ada: A Flight In Progress

Storage size

To complete our discussion on sizes, let's look at this example of storage sizes:

Listing 8: custom_types.ads
1 package Custom_Types is
2

3 type UInt_7 is range 0 .. 127;
4

5 type UInt_7_Access is access UInt_7;
6

7 end Custom_Types;

Listing 9: show_sizes.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System;
3

4 with Custom_Types; use Custom_Types;
5

6 procedure Show_Sizes is
7 AV1, AV2 : UInt_7_Access;
8 begin
9 Put_Line
10 ("UInt_7_Access'Storage_Size: "
11 & UInt_7_Access'Storage_Size'Image);
12 Put_Line
13 ("UInt_7_Access'Storage_Size (bits): "
14 & Integer'Image (UInt_7_Access'Storage_Size
15 * System.Storage_Unit));
16

17 Put_Line
18 ("UInt_7'Size: "
19 & UInt_7'Size'Image);
20 Put_Line
21 ("UInt_7_Access'Size: "
22 & UInt_7_Access'Size'Image);
23 Put_Line
24 ("UInt_7_Access'Object_Size: "
25 & UInt_7_Access'Object_Size'Image);
26 Put_Line
27 ("AV1'Size: "
28 & AV1'Size'Image);
29 New_Line;
30

31 Put_Line ("Allocating AV1...");
32 AV1 := new UInt_7;
33 Put_Line ("Allocating AV2...");
34 AV2 := new UInt_7;
35 New_Line;
36

37 Put_Line
38 ("AV1.all'Size: "
39 & AV1.all'Size'Image);
40 New_Line;
41 end Show_Sizes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Sizes

(continues on next page)

84 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
MD5: 5e652ee25b8550ac331f3ce98e24f7ba

Runtime output

UInt_7_Access'Storage_Size: 0
UInt_7_Access'Storage_Size (bits): 0
UInt_7'Size: 7
UInt_7_Access'Size: 64
UInt_7_Access'Object_Size: 64
AV1'Size: 64

Allocating AV1...
Allocating AV2...

AV1.all'Size: 8

Depending on your target architecture, you may see this output:

UInt_7_Access'Storage_Size: 0
UInt_7_Access'Storage_Size (bits): 0

UInt_7'Size: 7
UInt_7_Access'Size: 64
UInt_7_Access'Object_Size: 64
AV1'Size: 64

Allocating AV1...
Allocating AV2...

AV1.all'Size: 8

As we've mentioned earlier on, Storage_Size corresponds to the number of storage ele-
ments reserved for an access type or a task object. In this case, we see that the storage
size of the UInt_7_Access type is zero. This is because we haven't indicated that mem-
ory should be reserved for this data type. Thus, the compiler doesn't reserve memory and
simply sets the size to zero.
Because Storage_Size gives us the number of storage elements, we have to multiply this
value by System.Storage_Unit to get the total storage size in bits. (In this particular ex-
ample, however, the multiplication doesn't make any difference, as the number of storage
elements is zero.)
Note that the size of our original data type UInt_7 is 7 bits, while the size of its correspond-
ing access type UInt_7_Access (and the access object AV1) is 64 bits. This is due to the
fact that the access type doesn't contain an object, but rather memory information about
an object. You can retrieve the size of an object allocated via new by first dereferencing it
— in our example, we do this by writing AV1.all'Size.
Now, let's use the Storage_Size aspect to actually reserve memory for this data type:

Listing 10: custom_types.ads
1 package Custom_Types is
2

3 type UInt_7 is range 0 .. 127;
4

5 type UInt_7_Reserved_Access is access UInt_7
6 with Storage_Size => 8;
7

8 end Custom_Types;

2.2. Data Representation 85

Advanced Journey With Ada: A Flight In Progress

Listing 11: show_sizes.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System;
3

4 with Custom_Types; use Custom_Types;
5

6 procedure Show_Sizes is
7 RAV1, RAV2 : UInt_7_Reserved_Access;
8 begin
9 Put_Line
10 ("UInt_7_Reserved_Access'Storage_Size: "
11 & UInt_7_Reserved_Access'Storage_Size'Image);
12

13 Put_Line
14 ("UInt_7_Reserved_Access'Storage_Size (bits): "
15 & Integer'Image
16 (UInt_7_Reserved_Access'Storage_Size
17 * System.Storage_Unit));
18

19 Put_Line
20 ("UInt_7_Reserved_Access'Size: "
21 & UInt_7_Reserved_Access'Size'Image);
22 Put_Line
23 ("UInt_7_Reserved_Access'Object_Size: "
24 & UInt_7_Reserved_Access'Object_Size'Image);
25 Put_Line
26 ("RAV1'Size: "
27 & RAV1'Size'Image);
28 New_Line;
29

30 Put_Line ("Allocating RAV1...");
31 RAV1 := new UInt_7;
32 Put_Line ("Allocating RAV2...");
33 RAV2 := new UInt_7;
34 New_Line;
35 end Show_Sizes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Sizes

MD5: 6ac085d8467a61ba4f9cd138c024442d

Runtime output

UInt_7_Reserved_Access'Storage_Size: 8
UInt_7_Reserved_Access'Storage_Size (bits): 64
UInt_7_Reserved_Access'Size: 64
UInt_7_Reserved_Access'Object_Size: 64
RAV1'Size: 64

Allocating RAV1...
Allocating RAV2...

raised STORAGE_ERROR : s-poosiz.adb:108 explicit raise

Depending on your target architecture, you may see this output:

UInt_7_Reserved_Access'Storage_Size: 8
UInt_7_Reserved_Access'Storage_Size (bits): 64

(continues on next page)

86 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)

UInt_7_Reserved_Access'Size: 64
UInt_7_Reserved_Access'Object_Size: 64
RAV1'Size: 64

Allocating RAV1...
Allocating RAV2...

raised STORAGE_ERROR : s-poosiz.adb:108 explicit raise

In this case, we're reserving 8 storage elements in the declaration of
UInt_7_Reserved_Access.

type UInt_7_Reserved_Access is access UInt_7
with Storage_Size => 8;

Since each storage element corresponds to one byte (8 bits) in this architecture, we're
reserving a maximum of 64 bits (or 8 bytes) for the UInt_7_Reserved_Access type.
This example raises an exception at runtime — a storage error, to be more specific. This
is because the maximum reserved size is 64 bits, and the size of a single access object is
64 bits as well. Therefore, after the first allocation, the reserved storage space is already
consumed, so we cannot allocate a second access object.
This behavior might be quite limiting in many cases. However, for certain applications
wherememory is very constrained, this might be exactly what we want to see. For example,
having an exception being raised when the allocated memory for this data type has reached
its limit might allow the application to have enoughmemory to at least handle the exception
gracefully.

2.2.2 Alignment

For many algorithms, it's important to ensure that we're using the appropriate alignment.
This can be done by using the Alignment attribute and the Alignment aspect. Let's look
at this example:

Listing 12: custom_types.ads
1 package Custom_Types is
2

3 type UInt_7 is range 0 .. 127;
4

5 type Aligned_UInt_7 is new UInt_7
6 with Alignment => 4;
7

8 end Custom_Types;

Listing 13: show_alignment.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Custom_Types; use Custom_Types;
4

5 procedure Show_Alignment is
6 V : constant UInt_7 := 0;
7 Aligned_V : constant Aligned_UInt_7 := 0;
8 begin
9 Put_Line
10 ("UInt_7'Alignment: "

(continues on next page)

2.2. Data Representation 87

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
11 & UInt_7'Alignment'Image);
12 Put_Line
13 ("UInt_7'Size: "
14 & UInt_7'Size'Image);
15 Put_Line
16 ("UInt_7'Object_Size: "
17 & UInt_7'Object_Size'Image);
18 Put_Line
19 ("V'Alignment: "
20 & V'Alignment'Image);
21 Put_Line
22 ("V'Size: "
23 & V'Size'Image);
24 New_Line;
25

26 Put_Line
27 ("Aligned_UInt_7'Alignment: "
28 & Aligned_UInt_7'Alignment'Image);
29 Put_Line
30 ("Aligned_UInt_7'Size: "
31 & Aligned_UInt_7'Size'Image);
32 Put_Line
33 ("Aligned_UInt_7'Object_Size: "
34 & Aligned_UInt_7'Object_Size'Image);
35 Put_Line
36 ("Aligned_V'Alignment: "
37 & Aligned_V'Alignment'Image);
38 Put_Line
39 ("Aligned_V'Size: "
40 & Aligned_V'Size'Image);
41 New_Line;
42 end Show_Alignment;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Alignment

MD5: a2fea340559193c293ccaee226de2558

Runtime output

UInt_7'Alignment: 1
UInt_7'Size: 7
UInt_7'Object_Size: 8
V'Alignment: 1
V'Size: 8

Aligned_UInt_7'Alignment: 4
Aligned_UInt_7'Size: 7
Aligned_UInt_7'Object_Size: 32
Aligned_V'Alignment: 4
Aligned_V'Size: 32

Depending on your target architecture, you may see this output:

UInt_7'Alignment: 1
UInt_7'Size: 7
UInt_7'Object_Size: 8
V'Alignment: 1
V'Size: 8

(continues on next page)

88 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)

Aligned_UInt_7'Alignment: 4
Aligned_UInt_7'Size: 7
Aligned_UInt_7'Object_Size: 32
Aligned_V'Alignment: 4
Aligned_V'Size: 32

In this example, we're reusing the UInt_7 type that we've already been using in previous
examples. Because we haven't specified any alignment for the UInt_7 type, it has an
alignment of 1 storage unit (or 8 bits). However, in the declaration of the Aligned_UInt_7
type, we're using the Alignment aspect to request an alignment of 4 storage units (or 32
bits):

type Aligned_UInt_7 is new UInt_7
with Alignment => 4;

When using the Alignment attribute for the Aligned_UInt_7 type, we can confirm that its
alignment is indeed 4 storage units (bytes).
Note that we can use the Alignment attribute for both data types and objects — in the code
above, we're using UInt_7'Alignment and V'Alignment, for example.
Because of the alignment we're specifying for the Aligned_UInt_7 type, its size— indicated
by the Object_Size attribute — is 32 bits instead of 8 bits as for the UInt_7 type.
Note that you can also retrieve the alignment associated with a class using
S'Class'Alignment. For example:

Listing 14: show_class_alignment.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Class_Alignment is
4

5 type Point_1D is tagged record
6 X : Integer;
7 end record;
8

9 type Point_2D is new Point_1D with record
10 Y : Integer;
11 end record
12 with Alignment => 16;
13

14 type Point_3D is new Point_2D with record
15 Z : Integer;
16 end record;
17

18 begin
19 Put_Line ("1D_Point'Alignment: "
20 & Point_1D'Alignment'Image);
21 Put_Line ("1D_Point'Class'Alignment: "
22 & Point_1D'Class'Alignment'Image);
23 Put_Line ("2D_Point'Alignment: "
24 & Point_2D'Alignment'Image);
25 Put_Line ("2D_Point'Class'Alignment: "
26 & Point_2D'Class'Alignment'Image);
27 Put_Line ("3D_Point'Alignment: "
28 & Point_3D'Alignment'Image);
29 Put_Line ("3D_Point'Class'Alignment: "
30 & Point_3D'Class'Alignment'Image);
31 end Show_Class_Alignment;

2.2. Data Representation 89

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Class_Alignment

MD5: 4eb28d59439d1eb86cd23fb08acd3493

Runtime output

1D_Point'Alignment: 8
1D_Point'Class'Alignment: 8
2D_Point'Alignment: 16
2D_Point'Class'Alignment: 16
3D_Point'Alignment: 16
3D_Point'Class'Alignment: 16

2.2.3 Overlapping Storage

Algorithms can be designed to perform in-place or out-of-place processing. In other words,
they can take advantage of the fact that input and output arrays share the same storage
space or not.
We can use the Has_Same_Storage and the Overlaps_Storage attributes to retrieve more
information about how the storage space of two objects related to each other:
• the Has_Same_Storage attribute indicates whether two objects have the exact same
storage.
– A typical example is when both objects are exactly the same, so they obviously
share the same storage. For example, for array A, A'Has_Same_Storage (A) is
always True.

• the Overlaps_Storage attribute indicates whether two objects have at least one bit
in common.
– Note that, if two objects have the same storage, this implies that their storage
also overlaps. In other words, A'Has_Same_Storage (B) = True implies that
A'Overlaps_Storage (B) = True.

Let's look at this example:

Listing 15: int_array_processing.ads
1 package Int_Array_Processing is
2

3 type Int_Array is
4 array (Positive range <>) of Integer;
5

6 procedure Show_Storage (X : Int_Array;
7 Y : Int_Array);
8

9 procedure Process (X : Int_Array;
10 Y : out Int_Array);
11

12 end Int_Array_Processing;

Listing 16: int_array_processing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Int_Array_Processing is
4

(continues on next page)

90 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 procedure Show_Storage (X : Int_Array;
6 Y : Int_Array) is
7 begin
8 if X'Has_Same_Storage (Y) then
9 Put_Line
10 ("Info: X and Y have the same storage.");
11 else
12 Put_Line
13 ("Info: X and Y don't have"
14 & "the same storage.");
15 end if;
16 if X'Overlaps_Storage (Y) then
17 Put_Line
18 ("Info: X and Y overlap.");
19 else
20 Put_Line
21 ("Info: X and Y don't overlap.");
22 end if;
23 end Show_Storage;
24

25 procedure Process (X : Int_Array;
26 Y : out Int_Array) is
27 begin
28 Put_Line ("==== PROCESS ====");
29 Show_Storage (X, Y);
30

31 if X'Has_Same_Storage (Y) then
32 Put_Line ("In-place processing...");
33 else
34 if not X'Overlaps_Storage (Y) then
35 Put_Line
36 ("Out-of-place processing...");
37 else
38 Put_Line
39 ("Cannot process "
40 & "overlapping arrays...");
41 end if;
42 end if;
43 New_Line;
44 end Process;
45

46 end Int_Array_Processing;

Listing 17: main.adb
1 with Int_Array_Processing;
2 use Int_Array_Processing;
3

4 procedure Main is
5 A : Int_Array (1 .. 20) := (others => 3);
6 B : Int_Array (1 .. 20) := (others => 4);
7 begin
8 Process (A, A);
9 -- In-place processing:
10 -- sharing the exact same storage
11

12 Process (A (1 .. 10), A (10 .. 20));
13 -- Overlapping one component: A (10)
14

15 Process (A (1 .. 10), A (11 .. 20));
16 -- Out-of-place processing:

(continues on next page)

2.2. Data Representation 91

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
17 -- same array, but not sharing any storage
18

19 Process (A, B);
20 -- Out-of-place processing:
21 -- two different arrays
22 end Main;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Overlapping_Storage

MD5: 0f599163c6f24c3ef46ec6577b501c21

Build output

int_array_processing.adb:29:24: warning: "Y" may be referenced before it has a␣
↪value [enabled by default]

Runtime output

==== PROCESS ====
Info: X and Y have the same storage.
Info: X and Y overlap.
In-place processing...

==== PROCESS ====
Info: X and Y don't havethe same storage.
Info: X and Y overlap.
Cannot process overlapping arrays...

==== PROCESS ====
Info: X and Y don't havethe same storage.
Info: X and Y don't overlap.
Out-of-place processing...

==== PROCESS ====
Info: X and Y don't havethe same storage.
Info: X and Y don't overlap.
Out-of-place processing...

In this code example, we implement two procedures:
• Show_Storage, which shows storage information about two arrays by using the
Has_Same_Storage and Overlaps_Storage attributes.

• Process, which are supposed to process an input array X and store the processed data
in the output array Y.
– Note that the implementation of this procedure is actually just a mock-up, so that
no processing is actually taking place.

We have four different instances of how we can call the Process procedure:
• in the Process (A, A) call, we're using the same array for the input and output
arrays. This is a perfect example of in-place processing. Because the input and the
output arrays arguments are actually the same object, they obviously share the exact
same storage.

• in the Process (A (1 .. 10), A (10 .. 20)) call, we're using two slices of the A
array as input and output arguments. In this case, a single component of the A array is
shared: A (10). Because the storage space is overlapping, but not exactly the same,
neither in-place nor out-of-place processing can usually be used in this case.

92 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

• in the Process (A (1 .. 10), A (11 .. 20)) call, even though we're using the same
array A for the input and output arguments, we're using slices that are completely
independent from each other, so that the input and output arrays are not sharing any
storage in this case. Therefore, we can use out-of-place processing.

• in the Process (A, B) call, we have two different arrays — which obviously don't
share any storage space —, so we can use out-of-place processing.

2.2.4 Packed Representation

As we've seen previously, the minimum number of bits required to represent a data type
might be less than the actual number of bits used to store an object of that same type.
We've seen an example where UInt_7'Size was 7 bits, while UInt_7'Object_Size was 8
bits. The most extreme case is the one for the Boolean type: in this case, Boolean'Size is
1 bit, while Boolean'Object_Size might be 8 bits (or even more on certain architectures).
In such cases, we have 7 (or more) unused bits in memory for each object of Boolean type.
In other words, we're wasting memory. On the other hand, we're gaining speed of access
because we can directly access each element without having to first change its internal
representation back and forth. We'll come back to this point later.
The situation is even worse when implementing bit-fields, which can be declared as an array
of Boolean components. For example:

Listing 18: flag_definitions.ads
1 package Flag_Definitions is
2

3 type Flags is
4 array (Positive range <>) of Boolean;
5

6 end Flag_Definitions;

Listing 19: show_flags.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Flag_Definitions; use Flag_Definitions;
3

4 procedure Show_Flags is
5 Flags_1 : Flags (1 .. 8);
6 begin
7 Put_Line ("Boolean'Size: "
8 & Boolean'Size'Image);
9 Put_Line ("Boolean'Object_Size: "
10 & Boolean'Object_Size'Image);
11 Put_Line ("Flags_1'Size: "
12 & Flags_1'Size'Image);
13 Put_Line ("Flags_1'Component_Size: "
14 & Flags_1'Component_Size'Image);
15 end Show_Flags;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Non_Packed_Flags

MD5: 6fd7a913e3c6717e846c2e822c1cbad7

Build output

show_flags.adb:5:04: warning: variable "Flags_1" is read but never assigned [-
↪gnatwv]

2.2. Data Representation 93

Advanced Journey With Ada: A Flight In Progress

Runtime output

Boolean'Size: 1
Boolean'Object_Size: 8
Flags_1'Size: 64
Flags_1'Component_Size: 8

Depending on your target architecture, you may see this output:

Boolean'Size: 1
Boolean'Object_Size: 8
Flags_1'Size: 64
Flags_1'Component_Size: 8

In this example, we're declaring the Flags type as an array of Boolean components. As we
can see in this case, although the size of the Boolean type is just 1 bit, an object of this
type has a size of 8 bits. Consequently, each component of the Flags type has a size of 8
bits. Moreover, an array with 8 components of Boolean type — such as the Flags_1 array
— has a size of 64 bits.
Therefore, having a way to compact the representation — so that we can store multiple
objects without wasting storage space — may help us improving memory usage. This is
actually possible by using the Pack aspect. For example, we could extend the previous
example and declare a Packed_Flags type that makes use of this aspect:

Listing 20: flag_definitions.ads
1 package Flag_Definitions is
2

3 type Flags is
4 array (Positive range <>) of Boolean;
5

6 type Packed_Flags is
7 array (Positive range <>) of Boolean
8 with Pack;
9

10 end Flag_Definitions;

Listing 21: show_packed_flags.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Flag_Definitions; use Flag_Definitions;
3

4 procedure Show_Packed_Flags is
5 Flags_1 : Flags (1 .. 8);
6 Flags_2 : Packed_Flags (1 .. 8);
7 begin
8 Put_Line ("Boolean'Size: "
9 & Boolean'Size'Image);
10 Put_Line ("Boolean'Object_Size: "
11 & Boolean'Object_Size'Image);
12 Put_Line ("Flags_1'Size: "
13 & Flags_1'Size'Image);
14 Put_Line ("Flags_1'Component_Size: "
15 & Flags_1'Component_Size'Image);
16 Put_Line ("Flags_2'Size: "
17 & Flags_2'Size'Image);
18 Put_Line ("Flags_2'Component_Size: "
19 & Flags_2'Component_Size'Image);
20 end Show_Packed_Flags;

Code block metadata

94 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Packed_Flags

MD5: c71cf68dc8bc41d0df2a5e3eb61b51fd

Build output

show_packed_flags.adb:5:04: warning: variable "Flags_1" is read but never assigned␣
↪[-gnatwv]

show_packed_flags.adb:6:04: warning: variable "Flags_2" is read but never assigned␣
↪[-gnatwv]

Runtime output

Boolean'Size: 1
Boolean'Object_Size: 8
Flags_1'Size: 64
Flags_1'Component_Size: 8
Flags_2'Size: 8
Flags_2'Component_Size: 1

Depending on your target architecture, you may see this output:

Boolean'Size: 1
Boolean'Object_Size: 8
Flags_1'Size: 64
Flags_1'Component_Size: 8
Flags_2'Size: 8
Flags_2'Component_Size: 1

In this example, we're declaring the Flags_2 array of Packed_Flags type. Its size is 8 bits —
instead of the 64 bits required for the Flags_1 array. Because the array type Packed_Flags
is packed, we can now effectively use this type to store an object of Boolean type using
just 1 bit of the memory, as indicated by the Flags_2'Component_Size attribute.
In many cases, we need to convert between a normal representation (such as the one used
for the Flags_1 array above) to a packed representation (such as the one for the Flags_2
array). In many programming languages, this conversion may require writing custom code
with manual bit-shifting and bit-masking to get the proper target representation. In Ada,
however, we just need to indicate the actual type conversion, and the compiler takes care
of generating code containing bit-shifting and bit-masking to performs the type conversion.
Let's modify the previous example and introduce this type conversion:

Listing 22: flag_definitions.ads
1 package Flag_Definitions is
2

3 type Flags is
4 array (Positive range <>) of Boolean;
5

6 type Packed_Flags is
7 array (Positive range <>) of Boolean
8 with Pack;
9

10 Default_Flags : constant Flags :=
11 (True, True, False, True,
12 False, False, True, True);
13

14 end Flag_Definitions;

2.2. Data Representation 95

Advanced Journey With Ada: A Flight In Progress

Listing 23: show_flag_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Flag_Definitions; use Flag_Definitions;
3

4 procedure Show_Flag_Conversion is
5 Flags_1 : Flags (1 .. 8);
6 Flags_2 : Packed_Flags (1 .. 8);
7 begin
8 Flags_1 := Default_Flags;
9 Flags_2 := Packed_Flags (Flags_1);
10

11 for I in Flags_2'Range loop
12 Put_Line (I'Image & ": "
13 & Flags_1 (I)'Image & ", "
14 & Flags_2 (I)'Image);
15 end loop;
16 end Show_Flag_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.
↪Flag_Conversion

MD5: faff2079f6779097b6e0f7cd6cd48612

Runtime output

1: TRUE, TRUE
2: TRUE, TRUE
3: FALSE, FALSE
4: TRUE, TRUE
5: FALSE, FALSE
6: FALSE, FALSE
7: TRUE, TRUE
8: TRUE, TRUE

In this extended example, we're now declaring Default_Flags as an array of constant flags,
which we use to initialize Flags_1.
The actual conversion happens with Flags_2 := Packed_Flags (Flags_1). Here, the type
conversion Packed_Flags() indicates that we're converting from the normal representation
(used for the Flags type) to the packed representation (used for Packed_Flags type). We
don't need to write more code than that to perform the correct type conversion.
Also, by using the same strategy, we could read information from a packed representation.
For example:

Flags_1 := Flags (Flags_2);

In this case, we use Flags() to convert from a packed representation to the normal repre-
sentation.
We elaborate on the topic of converting between data representations in the section on
changing data representation (page 106).

96 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

Trade-offs

As indicated previously, when we're using a packed representation (vs. using a standard
unpacked representation), we're trading off speed of access for less memory consumption.
The following table summarizes this:

Representation More speed of access Less memory consumption
Unpacked X
Packed X

On one hand, we have better memory usage when we apply packed representations be-
cause we may save many bits for each object. On the other hand, there's a cost associated
with accessing those packed objects because they need to be unpacked before we can
actually access them. In fact, the compiler generates code — using bit-shifting and bit-
masking — that converts a packed representation into an unpacked representation, which
we can then access. Also, when storing a packed object, the compiler generates code that
converts the unpacked representation of the object into the packed representation.
This packing and unpacking mechanism has a performance cost associated with it, which
results in less speed of access for packed objects. As usual in those circumstances, be-
fore using packed representation, we should assess whether memory constraints are more
important than speed in our target architecture.

2.3 Record Representation and storage clauses

In this section, we discuss how to use record representation clauses to specify how a record
is represented in memory. Our goal is to provide a brief introduction into the topic. If you're
interested in more details, you can find a thorough discussion about record representation
clauses in the Introduction to Embedded Systems Programming27 course.
Let's start with the simple approach of declaring a record type without providing further
information. In this case, we're basically asking the compiler to select a reasonable repre-
sentation for that record in the memory of our target architecture.
Let's see a simple example:

Listing 24: p.ads
1 package P is
2

3 type R is record
4 A : Integer;
5 B : Integer;
6 end record;
7

8 end P;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_
↪Storage_Clauses.Rep_Clauses_1

MD5: 88171257118810bb7e02cea60ffb1ad9

Considering a typical 64-bit PC architecture with 8-bit storage units, and Integer defined
as a 32-bit type, we get this memory representation:
27 https://learn.adacore.com/courses/intro-to-embedded-sys-prog/chapters/low_level_programming.html#
intro-embedded-sys-prog-low-level-programming

2.3. Record Representation and storage clauses 97

https://learn.adacore.com/courses/intro-to-embedded-sys-prog/chapters/low_level_programming.html#intro-embedded-sys-prog-low-level-programming

Advanced Journey With Ada: A Flight In Progress

position

component

0 1 2 3

A

4 5 6 7

B

Each storage unit is a position in memory. In the graph above, the numbers on the top (0,
1, 2, ...) represent those positions for record R.
In addition, we can show the bits that are used for components A and B:

position

bits

component

0

#0 .. 7

1

#8 .. #15

2

#16 .. #23

3

#24 .. #31

A

4

#0 .. 7

5

#8 .. #15

6

#16 .. #23

7

#24 .. #31

B

The memory representation we see in the graph above can be described in Ada using rep-
resentation clauses, as you can see in the code starting at the for R use record line in the
code example below — we'll discuss the syntax and further details right after this example.

Listing 25: p.ads
1 package P is
2

3 type R is record
4 A : Integer;
5 B : Integer;
6 end record;
7

8 -- Representation clause for record R:
9 for R use record
10 A at 0 range 0 .. 31;
11 -- ^ starting memory position
12 B at 4 range 0 .. 31;
13 -- ^ first bit .. last bit
14 end record;
15

16 end P;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_
↪Storage_Clauses.Rep_Clauses_2

MD5: b6be86ae7e1a5c2e7d981fe37bad49ed

Here, we're specifying that the A component is stored in the bits #0 up to #31 starting
at position #0. Note that the position itself doesn't represent an absolute address in the
device's memory; instead, it's relative to the memory space reserved for that record. The
B component has the same 32-bit range, but starts at position #4.
This is a generalized view of the syntax:

for Record_Type use record
Component_Name at Start_Position

(continues on next page)

98 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
range First_Bit .. Last_Bit;

end record;

These are the elements we see above:
• Component_Name: name of the component (from the record type declaration);
• Start_Position: start position — in storage units — of the memory space reserved
for that component;

• First_Bit: first bit (in the start position) of the component;
• Last_Bit: last bit of the component.

Note that the last bit of a component might be in a different storage unit. Since the Integer
type has a larger width (32 bits) than the storage unit (8 bits), components of that type span
over multiple storage units. Therefore, in our example, the first bit of component A is at
position #0, while the last bit is at position #3.
Also note that the last eight bits of component A are bits #24 .. #31. If we think in terms of
storage units, this corresponds to bits #0 .. #7 of position #3. However, when specifying
the last bit in Ada, we always use the First_Bit value as a reference, not the position
where those bits might end up. Therefore, we write range 0 .. 31, well knowing that
those 32 bits span over four storage units (positions #0 .. #3).

In the Ada Reference Manual
• 13.5.1 Record Representation Clauses28

2.3.1 Storage Place Attributes

We can retrieve information about the start position, and the first and last bits of a compo-
nent by using the storage place attributes:
• Position, which retrieves the start position of a component;
• First_Bit, which retrieves the first bit of a component;
• Last_Bit, which retrieves the last bit of a component.

Note, however, that these attributes can only be used with actual records, and not with
record types.
We can revisit the previous example and verify how the compiler represents the R type in
memory:

Listing 26: p.ads
1 package P is
2

3 type R is record
4 A : Integer;
5 B : Integer;
6 end record;
7

8 end P;

28 http://www.ada-auth.org/standards/22rm/html/RM-13-5-1.html

2.3. Record Representation and storage clauses 99

http://www.ada-auth.org/standards/22rm/html/RM-13-5-1.html

Advanced Journey With Ada: A Flight In Progress

Listing 27: show_storage.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System;
3

4 with P; use P;
5

6 procedure Show_Storage is
7 R1 : R;
8 begin
9 Put_Line ("R'Size: "
10 & R'Size'Image);
11 Put_Line ("R'Object_Size: "
12 & R'Object_Size'Image);
13 New_Line;
14

15 Put_Line ("System.Storage_Unit: "
16 & System.Storage_Unit'Image);
17 New_Line;
18

19 Put_Line ("R1.A'Position : "
20 & R1.A'Position'Image);
21 Put_Line ("R1.A'First_Bit : "
22 & R1.A'First_Bit'Image);
23 Put_Line ("R1.A'Last_Bit : "
24 & R1.A'Last_Bit'Image);
25 New_Line;
26

27 Put_Line ("R1.B'Position : "
28 & R1.B'Position'Image);
29 Put_Line ("R1.B'First_Bit : "
30 & R1.B'First_Bit'Image);
31 Put_Line ("R1.B'Last_Bit : "
32 & R1.B'Last_Bit'Image);
33 end Show_Storage;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_
↪Storage_Clauses.Storage_Place_Attributes

MD5: 05a402585ce71eb47cf972e68c02835e

Build output

show_storage.adb:7:04: warning: variable "R1" is read but never assigned [-gnatwv]

Runtime output

R'Size: 64
R'Object_Size: 64

System.Storage_Unit: 8

R1.A'Position : 0
R1.A'First_Bit : 0
R1.A'Last_Bit : 31

R1.B'Position : 4
R1.B'First_Bit : 0
R1.B'Last_Bit : 31

First of all, we see that the size of the R type is 64 bits, which can be explained by those

100 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

two 32-bit integer components. Then, we see that components A and B start at positions
#0 and #4, and each one makes use of bits in the range from #0 to #31. This matches the
graph we've seen above.

In the Ada Reference Manual
• 13.5.2 Storage Place Attributes29

2.3.2 Using Representation Clauses

We can use representation clauses to change the way the compiler handles memory for
a record type. For example, let's say we want to have an empty storage unit between
components A and B. We can use a representation clause where we specify that component
B starts at position #5 instead of #4, leaving an empty byte after component A and before
component B:

position

bits

component

0

#0 .. 7

1

#8 .. #15

2

#16 .. #23

3

#24 .. #31

A

4

5

#0 .. 7

6

#8 .. #15

7

#16 .. #23

8

#24 .. #31

B

This is the code that implements that:

Listing 28: p.ads
1 package P is
2

3 type R is record
4 A : Integer;
5 B : Integer;
6 end record;
7

8 for R use record
9 A at 0 range 0 .. 31;
10 B at 5 range 0 .. 31;
11 end record;
12

13 end P;

Listing 29: show_empty_byte.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with P; use P;
4

5 procedure Show_Empty_Byte is
6 begin
7 Put_Line ("R'Size: "
8 & R'Size'Image);
9 Put_Line ("R'Object_Size: "
10 & R'Object_Size'Image);
11 end Show_Empty_Byte;

Code block metadata
29 http://www.ada-auth.org/standards/22rm/html/RM-13-5-2.html

2.3. Record Representation and storage clauses 101

http://www.ada-auth.org/standards/22rm/html/RM-13-5-2.html

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_
↪Storage_Clauses.Rep_Clauses_Empty_Byte

MD5: c616e534e95a06f2e8b3052a3e8a9aab

Runtime output

R'Size: 72
R'Object_Size: 96

When running the application above, we see that, due to the extra byte in the record repre-
sentation, the sizes increase. On a typical 64-bit PC, R'Size is now 76 bits, which reflects
the additional eight bits that we introduced between components A and B. Depending on
the target architecture, you may also see that R'Object_Size is now 96 bits, which is the
size the compiler selects as the most appropriate for this record type. As we've mentioned
in the previous section, we can use aspects to request a specific size to the compiler. In
this case, we could use the Object_Size aspect:

Listing 30: p.ads
1 package P is
2

3 type R is record
4 A : Integer;
5 B : Integer;
6 end record
7 with Object_Size => 72;
8

9 for R use record
10 A at 0 range 0 .. 31;
11 B at 5 range 0 .. 31;
12 end record;
13

14 end P;

Listing 31: show_empty_byte.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with P; use P;
4

5 procedure Show_Empty_Byte is
6 begin
7 Put_Line ("R'Size: "
8 & R'Size'Image);
9 Put_Line ("R'Object_Size: "
10 & R'Object_Size'Image);
11 end Show_Empty_Byte;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_
↪Storage_Clauses.Rep_Clauses_Empty_Byte

MD5: 9d7bae2b2aabeda4bc03752544cee9b9

Runtime output

R'Size: 72
R'Object_Size: 72

If the code compiles, R'Size and R'Object_Size should now have the same value.

102 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

2.3.3 Derived Types And Representation Clauses

In some cases, you might want to modify the memory representation of a record without
impacting existing code. For example, you might want to use a record type that was de-
clared in a package that you're not allowed to change. Also, you would like to modify its
memory representation in your application. A nice strategy is to derive a type and use a
representation clause for the derived type.
We can apply this strategy on our previous example. Let's say we would like to use record
type R from package P in our application, but we're not allowed to modify package P — or
the record type, for that matter. In this case, we could simply derive R as R_New and use a
representation clause for R_New. This is exactly what we do in the specification of the child
package P.Rep:

Listing 32: p.ads
1 package P is
2

3 type R is record
4 A : Integer;
5 B : Integer;
6 end record;
7

8 end P;

Listing 33: p-rep.ads
1 package P.Rep is
2

3 type R_New is new R
4 with Object_Size => 72;
5

6 for R_New use record
7 A at 0 range 0 .. 31;
8 B at 5 range 0 .. 31;
9 end record;
10

11 end P.Rep;

Listing 34: show_empty_byte.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with P; use P;
4 with P.Rep; use P.Rep;
5

6 procedure Show_Empty_Byte is
7 begin
8 Put_Line ("R'Size: "
9 & R'Size'Image);
10 Put_Line ("R'Object_Size: "
11 & R'Object_Size'Image);
12

13 Put_Line ("R_New'Size: "
14 & R_New'Size'Image);
15 Put_Line ("R_New'Object_Size: "
16 & R_New'Object_Size'Image);
17 end Show_Empty_Byte;

Code block metadata

2.3. Record Representation and storage clauses 103

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_
↪Storage_Clauses.Derived_Rep_Clauses_Empty_Byte

MD5: 3a1e0837f8bd8250f20fc7b274b869d5

Runtime output

R'Size: 64
R'Object_Size: 64
R_New'Size: 72
R_New'Object_Size: 72

When running this example, we see that the R type retains the memory representation
selected by the compiler for the target architecture, while the R_New has the memory rep-
resentation that we specified.

2.3.4 Representation on Bit Level

A very common application of representation clauses is to specify individual bits of a record.
This is particularly useful, for example, when mapping registers or implementing protocols.
Let's consider the following fictitious register as an example:

bit

component

0 1

S

2 3

(reserved)

4

Error

5 6 7

V1

Here, S is the current status, Error is a flag, and V1 contains a value. Due to the fact that
we can use representation clauses to describe individual bits of a register as records, the
implementation becomes as simple as this:

Listing 35: p.ads
1 package P is
2

3 type Status is (Ready, Waiting,
4 Processing, Done);
5 type UInt_3 is range 0 .. 2 ** 3 - 1;
6

7 type Simple_Reg is record
8 S : Status;
9 Error : Boolean;
10 V1 : UInt_3;
11 end record;
12

13 for Simple_Reg use record
14 S at 0 range 0 .. 1;
15 -- Bit #2 and 3: reserved!
16 Error at 0 range 4 .. 4;
17 V1 at 0 range 5 .. 7;
18 end record;
19

20 end P;

104 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

Listing 36: show_simple_reg.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with P; use P;
4

5 procedure Show_Simple_Reg is
6 begin
7 Put_Line ("Simple_Reg'Size: "
8 & Simple_Reg'Size'Image);
9 Put_Line ("Simple_Reg'Object_Size: "
10 & Simple_Reg'Object_Size'Image);
11 end Show_Simple_Reg;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_
↪Storage_Clauses.Rep_Clauses_Simple_Reg

MD5: cbac444336572460062f922767c226a5

Runtime output

Simple_Reg'Size: 8
Simple_Reg'Object_Size: 8

As we can see in the declaration of the Simple_Reg type, each component represents a field
from our register, and it has a fixed location (which matches the register representation we
see in the graph above). Any operation on the register is as simple as accessing the record
component. For example:

Listing 37: show_simple_reg.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with P; use P;
4

5 procedure Show_Simple_Reg is
6 Default : constant Simple_Reg :=
7 (S => Ready,
8 Error => False,
9 V1 => 0);
10

11 R : Simple_Reg := Default;
12 begin
13 Put_Line ("R.S: " & R.S'Image);
14

15 R.V1 := 4;
16

17 Put_Line ("R.V1: " & R.V1'Image);
18 end Show_Simple_Reg;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_
↪Storage_Clauses.Rep_Clauses_Simple_Reg

MD5: e442396e43d6609c1c837165bbc21641

Runtime output

R.S: READY
R.V1: 4

2.3. Record Representation and storage clauses 105

Advanced Journey With Ada: A Flight In Progress

As we can see in the example, to retrieve the current status of the register, we just have
to write R.S. To update the V1 field of the register with the value 4, we just have to write
R.V1 := 4. No extra code — such as bit-masking or bit-shifting — is needed here.

In other languages
Some programming languages require that developers use complicated, error-prone ap-
proaches—whichmay includemanually bit-shifting and bit-masking variables — to retrieve
information from or store information to individual bits or registers. In Ada, however, this is
efficiently handled by the compiler, so that developers only need to correctly describe the
register mapping using representation clauses.

2.4 Changing Data Representation

Note: This section was originally written by Robert Dewar and published as Gem #27:
Changing Data Representation30 and Gem #2831.

A powerful feature of Ada is the ability to specify the exact data layout. This is particularly
important when you have an external device or program that requires a very specific format.
Some examples are:

Listing 38: communication.ads
1 package Communication is
2

3 type Com_Packet is record
4 Key : Boolean;
5 Id : Character;
6 Val : Integer range 100 .. 227;
7 end record;
8

9 for Com_Packet use record
10 Key at 0 range 0 .. 0;
11 Id at 0 range 1 .. 8;
12 Val at 0 range 9 .. 15;
13 end record;
14

15 end Communication;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.Com_Packet

MD5: cbd7f5547c5b0458853ac21d03aa41f8

Build output

communication.ads:12:11: warning: component clause forces biased representation␣
↪for "Val" [-gnatw.b]

which lays out the fields of a record, and in the case of Val, forces a biased representation
in which all zero bits represents 100. Another example is:
30 https://www.adacore.com/gems/gem-27
31 https://www.adacore.com/gems/gem-28

106 Chapter 2. Types and Representation

https://www.adacore.com/gems/gem-27
https://www.adacore.com/gems/gem-27
https://www.adacore.com/gems/gem-28

Advanced Journey With Ada: A Flight In Progress

Listing 39: array_representation.ads
1 package Array_Representation is
2

3 type Val is (A, B, C, D, E, F, G, H);
4

5 type Arr is array (1 .. 16) of Val
6 with Component_Size => 3;
7

8 end Array_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.Array_Rep

MD5: 7eb17fc2cd415acb7c53a363fa336807

which forces the components to take only 3 bits, crossing byte boundaries as needed. A
final example is:

Listing 40: enumeration_representation.ads
1 package Enumeration_Representation is
2

3 type Status is (Off, On, Unknown);
4 for Status use (Off => 2#001#,
5 On => 2#010#,
6 Unknown => 2#100#);
7

8 end Enumeration_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.Enum_Rep

MD5: 3c3e9f4ae11e9bb2482588d27ba43c30

which allows specified values for an enumeration type, instead of the efficient default values
of 0, 1, 2.
In all these cases, we might use these representation clauses to match external speci-
fications, which can be very useful. The disadvantage of such layouts is that they are
inefficient, and accessing individual components, or, in the case of the enumeration type,
looping through the values can increase space and time requirements for the program code.
One approach that is often effective is to read or write the data in question in this specified
form, but internally in the program represent the data in the normal default layout, allowing
efficient access, and do all internal computations with this more efficient form.
To follow this approach, you will need to convert between the efficient format and the spec-
ified format. Ada provides a very convenient method for doing this, as described in RM 13.6
"Change of Representation"32.
The idea is to use type derivation, where one type has the specified format and the other
has the normal default format. For instance for the array case above, we would write:

Listing 41: array_representation.ads
1 package Array_Representation is
2

(continues on next page)
32 http://www.ada-auth.org/standards/22rm/html/RM-13-6.html

2.4. Changing Data Representation 107

http://www.ada-auth.org/standards/22rm/html/RM-13-6.html
http://www.ada-auth.org/standards/22rm/html/RM-13-6.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 type Val is (A, B, C, D, E, F, G, H);
4 type Arr is array (1 .. 16) of Val;
5

6 type External_Arr is new Arr
7 with Component_Size => 3;
8

9 end Array_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.Array_Rep

MD5: d4e90f6ef8ff81771980771356eab235

Now we read and write the data using the External_Arr type. When we want to convert
to the efficient form, Arr, we simply use a type conversion.

Listing 42: using_array_for_io.adb
1 with Array_Representation;
2 use Array_Representation;
3

4 procedure Using_Array_For_IO is
5 Input_Data : External_Arr;
6 Work_Data : Arr;
7 Output_Data : External_Arr;
8 begin
9 -- (read data into Input_Data)
10

11 -- Now convert to internal form
12 Work_Data := Arr (Input_Data);
13

14 -- (computations using efficient
15 -- Work_Data form)
16

17 -- Convert back to external form
18 Output_Data := External_Arr (Work_Data);
19

20 end Using_Array_For_IO;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.Array_Rep

MD5: 88efe4b8a7f07e0c32f11131d6eafbc1

Build output

using_array_for_io.adb:5:04: warning: variable "Input_Data" is read but never␣
↪assigned [-gnatwv]

Using this approach, the quite complex task of copying all the data of the array from one
form to another, with all the necessary masking and shift operations, is completely auto-
matic.
Similar code can be used in the record and enumeration type cases. It is even possible to
specify two different representations for the two types, and convert from one form to the
other, as in:

108 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

Listing 43: enumeration_representation.ads
1 package Enumeration_Representation is
2

3 type Status_In is (Off, On, Unknown);
4 type Status_Out is new Status_In;
5

6 for Status_In use (Off => 2#001#,
7 On => 2#010#,
8 Unknown => 2#100#);
9 for Status_Out use (Off => 103,
10 On => 1045,
11 Unknown => 7700);
12

13 end Enumeration_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.Enum_Rep

MD5: f78c3718280f9265ff54270c5834b458

There are two restrictions that must be kept in mind when using this feature. First, you have
to use a derived type. You can't put representation clauses on subtypes, which means that
the conversion must always be explicit. Second, there is a rule RM 13.133 (10) that restricts
the placement of interesting representation clauses:

10 For an untagged derived type, no type-related representation items are al-
lowed if the parent type is a by-reference type, or has any user-defined primitive
subprograms.

All the representation clauses that are interesting from the point of view of change of rep-
resentation are "type related", so for example, the following sequence would be illegal:

Listing 44: array_representation.ads
1 package Array_Representation is
2

3 type Val is (A, B, C, D, E, F, G, H);
4 type Arr is array (1 .. 16) of Val;
5

6 procedure Rearrange (Arg : in out Arr);
7

8 type External_Arr is new Arr
9 with Component_Size => 3;
10

11 end Array_Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.Array_Rep_2

MD5: 70201932d40e3fb356bc1d8ab188f2df

Build output

array_representation.ads:9:11: error: representation item not permitted before Ada␣
↪2022

array_representation.ads:9:11: error: parent type "Arr" has primitive operations
gprbuild: *** compilation phase failed

33 http://www.ada-auth.org/standards/22rm/html/RM-13-1.html

2.4. Changing Data Representation 109

http://www.ada-auth.org/standards/22rm/html/RM-13-1.html

Advanced Journey With Ada: A Flight In Progress

Why these restrictions? Well, the answer is a little complex, and has to do with efficiency
considerations, which we will address below.

2.4.1 Restrictions

In the previous subsection, we discussed the use of derived types and representation
clauses to achieve automatic change of representation. More accurately, this feature is
not completely automatic, since it requires you to write an explicit conversion. In fact there
is a principle behind the design here which says that a change of representation should
never occur implicitly behind the back of the programmer without such an explicit request
by means of a type conversion.
The reason for that is that the change of representation operation can be very expensive,
since in general it can require component by component copying, changing the represen-
tation on each component.
Let's have a look at the -gnatG expanded code to see what is hidden under the covers here.
For example, the conversion Arr (Input_Data) from the previous example generates the
following expanded code:

B26b : declare
[subtype p__TarrD1 is integer range 1 .. 16]
R25b : p__TarrD1 := 1;

begin
for L24b in 1 .. 16 loop

[subtype p__arr___XP3 is
system__unsigned_types__long_long_unsigned range 0 ..
16#FFFF_FFFF_FFFF#]

work_data := p__arr___XP3!((work_data and not shift_left!(
16#7#, 3 * (integer(L24b - 1)))) or shift_left!(p__arr___XP3!
(input_data (R25b)), 3 * (integer(L24b - 1))));

R25b := p__TarrD1'succ(R25b);
end loop;

end B26b;

That's pretty horrible! In fact, we could have simplified it for this section, but we have left
it in its original form, so that you can see why it is nice to let the compiler generate all this
stuff so you don't have to worry about it yourself.
Given that the conversion can be pretty inefficient, you don't want to convert backwards
and forwards more than you have to, and the whole approach is only worthwhile if we'll be
doing extensive computations involving the value.
The expense of the conversion explains two aspects of this feature that are not obvious.
First, why do we require derived types instead of just allowing subtypes to have different
representations, avoiding the need for an explicit conversion?
The answer is precisely that the conversions are expensive, and you don't want them hap-
pening behind your back. So if you write the explicit conversion, you get all the gobbledy-
gook listed above, but you can be sure that this never happens unless you explicitly ask for
it.
This also explains the restriction we mentioned in previous subsection from RM 13.134 (10):

10 For an untagged derived type, no type-related representation items are al-
lowed if the parent type is a by-reference type, or has any user-defined primitive
subprograms.

It turns out this restriction is all about avoiding implicit changes of representation. Let's
have a look at how type derivation works when there are primitive subprograms defined at
the point of derivation. Consider this example:
34 http://www.ada-auth.org/standards/22rm/html/RM-13-1.html

110 Chapter 2. Types and Representation

http://www.ada-auth.org/standards/22rm/html/RM-13-1.html

Advanced Journey With Ada: A Flight In Progress

Listing 45: my_ints.ads
1 package My_Ints is
2

3 type My_Int_1 is range 1 .. 10;
4

5 function Odd (Arg : My_Int_1)
6 return Boolean;
7

8 type My_Int_2 is new My_Int_1;
9

10 end My_Ints;

Listing 46: my_ints.adb
1 package body My_Ints is
2

3 function Odd (Arg : My_Int_1)
4 return Boolean is
5 (True);
6 -- Dummy implementation!
7

8 end My_Ints;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.My_Int

MD5: a29401698307998288f02b349d04d1d2

Now when we do the type derivation, we inherit the function Odd for My_Int_2. But where
does this function come from? We haven't written it explicitly, so the compiler somehow
materializes this new implicit function. How does it do that?
We might think that a complete new function is created including a body in which My_Int_2
replaces My_Int_1, but that would be impractical and expensive. The actual mechanism
avoids the need to do this by use of implicit type conversions. Suppose after the above
declarations, we write:

Listing 47: using_my_int.adb
1 with My_Ints; use My_Ints;
2

3 procedure Using_My_Int is
4 Var : My_Int_2;
5 begin
6

7 if Odd (Var) then
8 -- ^ Calling Odd function
9 -- for My_Int_2 type.
10 null;
11 end if;
12

13 end Using_My_Int;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.My_Int

MD5: f68272d55e68687b7102885313c7831b

Build output

2.4. Changing Data Representation 111

Advanced Journey With Ada: A Flight In Progress

using_my_int.adb:4:04: warning: variable "Var" is read but never assigned [-gnatwv]

The compiler translates this as:

Listing 48: using_my_int.adb
1 with My_Ints; use My_Ints;
2

3 procedure Using_My_Int is
4 Var : My_Int_2;
5 begin
6

7 if Odd (My_Int_1 (Var)) then
8 -- ^ Converting My_Int_2 to
9 -- My_Int_1 type before
10 -- calling Odd function.
11 null;
12 end if;
13

14 end Using_My_Int;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_
↪Representation.My_Int

MD5: b3d0053c61412a2b985cd580b645e048

Build output

using_my_int.adb:4:04: warning: variable "Var" is read but never assigned [-gnatwv]

This implicit conversion is a nice trick, it means that we can get the effect of inheriting a
new operation without actually having to create it. Furthermore, in a case like this, the type
conversion generates no code, since My_Int_1 and My_Int_2 have the same representa-
tion.
But the whole point is that they might not have the same representation if one of them
had a representation clause that made the representations different, and in this case the
implicit conversion inserted by the compiler could be expensive, perhaps generating the
junk we quoted above for the Arr case. Since we never want that to happen implicitly,
there is a rule to prevent it.
The business of forbidding by-reference types (which includes all tagged types) is also
driven by this consideration. If the representations are the same, it is fine to pass by refer-
ence, even in the presence of the conversion, but if there was a change of representation,
it would force a copy, which would violate the by-reference requirement.
So to summarize this section, on the one hand Ada gives you a very convenient way to trig-
ger these complex conversions between different representations. On the other hand, Ada
guarantees that you never get these potentially expensive conversions happening unless
you explicitly ask for them.

112 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

2.5 Valid Attribute

When receiving data from external sources, we're subjected to problems such as trans-
mission errors. If not handled properly, erroneous data can lead to major issues in an
application.
One of those issues originates from the fact that transmission errors might lead to invalid
information stored in memory. When proper checks are active, using invalid information is
detected at runtime and an exception is raised at this point, which might then be handled
by the application.
Instead of relying on exception handling, however, we could instead ensure that the in-
formation we're about to use is valid. We can do this by using the Valid attribute. For
example, if we have a variable Var, we can verify that the value stored in Var is valid by
writing Var'Valid, which returns a Boolean value. Therefore, if the value of Var isn't valid,
Var'Valid returns False, so we can have code that handles this situation before we ac-
tually make use of Var. In other words, instead of handling a potential exception in other
parts of the application, we can proactively verify that input information is correct and avoid
that an exception is raised.
In the next example, we show an application that
• generates a file containing mock-up data, and then
• reads information from this file as state values.

The mock-up data includes valid and invalid states.

Listing 49: create_test_file.ads
1 procedure Create_Test_File (File_Name : String);

Listing 50: create_test_file.adb
1 with Ada.Sequential_IO;
2

3 procedure Create_Test_File (File_Name : String)
4 is
5 package Integer_Sequential_IO is new
6 Ada.Sequential_IO (Integer);
7 use Integer_Sequential_IO;
8

9 F : File_Type;
10 begin
11 Create (F, Out_File, File_Name);
12 Write (F, 1);
13 Write (F, 2);
14 Write (F, 4);
15 Write (F, 3);
16 Write (F, 2);
17 Write (F, 10);
18 Close (F);
19 end Create_Test_File;

Listing 51: states.ads
1 with Ada.Sequential_IO;
2

3 package States is
4

5 type State is (Off, On, Waiting)
6 with Size => Integer'Size;

(continues on next page)

2.5. Valid Attribute 113

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7

8 for State use (Off => 1,
9 On => 2,
10 Waiting => 4);
11

12 package State_Sequential_IO is new
13 Ada.Sequential_IO (State);
14

15 procedure Read_Display_States
16 (File_Name : String);
17

18 end States;

Listing 52: states.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body States is
4

5 procedure Read_Display_States
6 (File_Name : String)
7 is
8 use State_Sequential_IO;
9

10 F : State_Sequential_IO.File_Type;
11 S : State;
12

13 procedure Display_State (S : State) is
14 begin
15 -- Before displaying the value,
16 -- check whether it's valid or not.
17 if S'Valid then
18 Put_Line (S'Image);
19 else
20 Put_Line ("Invalid value detected!");
21 end if;
22 end Display_State;
23

24 begin
25 Open (F, In_File, File_Name);
26

27 while not End_Of_File (F) loop
28 Read (F, S);
29 Display_State (S);
30 end loop;
31

32 Close (F);
33 end Read_Display_States;
34

35 end States;

Listing 53: show_states_from_file.adb
1 with States; use States;
2 with Create_Test_File;
3

4 procedure Show_States_From_File is
5 File_Name : constant String := "data.bin";
6 begin
7 Create_Test_File (File_Name);

(continues on next page)

114 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 Read_Display_States (File_Name);
9 end Show_States_From_File;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Valid_Attribute.Valid_
↪States

MD5: f7af2946ebe663932494448a0d3d3020

Runtime output

OFF
ON
WAITING
Invalid value detected!
ON
Invalid value detected!

Let's start our discussion on this example with the States package, which contains the
declaration of the State type. This type is a simple enumeration containing three states:
Off, On and Waiting. We're assigning specific integer values for this type by declaring an
enumeration representation clause. Note that we're using the Size aspect to request that
objects of this type have the same size as the Integer type. This becomes important later
on when parsing data from the file.
In the Create_Test_File procedure, we create a file containing integer values, which is
parsed later by the Read_Display_States procedure. The Create_Test_File procedure
doesn't contain any reference to the State type, so we're not constrained to just writing
information that is valid for this type. On the contrary, this procedure makes use of the
Integer type, so we can write any integer value to the file. We use this strategy to write
both valid and invalid values of State to the file. This allows us to simulate an environment
where transmission errors occur.
We call the Read_Display_States procedure to read information from the file and display
each state stored in the file. In the main loop of this procedure, we call Read to read a
state from the file and store it in the S variable. We then call the nested Display_State
procedure to display the actual state stored in S. The most important line of code in the
Display_State procedure is the one that uses the Valid attribute:

if S'Valid then

In this line, we're verifying that the S variable contains a valid state before displaying the
actual information from S. If the value stored in S isn't valid, we can handle the issue accord-
ingly. In this case, we're simply displaying a message indicating that an invalid value was
detected. If we didn't have this check, the Constraint_Error exception would be raised
when trying to use invalid data stored in S— this would happen, for example, after reading
the integer value 3 from the input file.
In summary, using the Valid attribute is a good strategy we can employ when we know
that information stored in memory might be corrupted.

In the Ada Reference Manual
• 13.9.2 The Valid Attribute35

35 http://www.ada-auth.org/standards/22rm/html/RM-13-9-2.html

2.5. Valid Attribute 115

http://www.ada-auth.org/standards/22rm/html/RM-13-9-2.html

Advanced Journey With Ada: A Flight In Progress

2.6 Unchecked Union

We've introduced variant records back in the Introduction to Ada course36. In simple terms,
a variant record is a record with discriminants that allows for changing its structure. Basi-
cally, it's a record containing a case.
The State_Or_Integer declaration in the States package below is an example of a variant
record:

Listing 54: states.ads
1 package States is
2

3 type State is (Off, On, Waiting)
4 with Size => Integer'Size;
5

6 for State use (Off => 1,
7 On => 2,
8 Waiting => 4);
9

10 type State_Or_Integer (Use_Enum : Boolean) is
11 record
12 case Use_Enum is
13 when False => I : Integer;
14 when True => S : State;
15 end case;
16 end record;
17

18 procedure Display_State_Value
19 (V : State_Or_Integer);
20

21 end States;

Listing 55: states.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body States is
4

5 procedure Display_State_Value
6 (V : State_Or_Integer)
7 is
8 begin
9 Put_Line ("State: " & V.S'Image);
10 Put_Line ("Value: " & V.I'Image);
11 end Display_State_Value;
12

13 end States;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.State_
↪Or_Integer

MD5: fa72f52a4396a2e66931ff6932c567fc

As mentioned in the previous course, if you try to access a component that is not valid for
your record, a Constraint_Error exception is raised. For example, in the implementation
of the Display_State_Value procedure, we're trying to retrieve the value of the integer
component (I) of the V record. When calling this procedure, the Constraint_Error ex-
36 https://learn.adacore.com/courses/intro-to-ada/chapters/more_about_records.html#
intro-ada-variant-records

116 Chapter 2. Types and Representation

https://learn.adacore.com/courses/intro-to-ada/chapters/more_about_records.html#intro-ada-variant-records

Advanced Journey With Ada: A Flight In Progress

ception is raised as expected because Use_Enum is set to True, so that the I component is
invalid — only the S component is valid in this case.

Listing 56: show_variant_rec_error.adb
1 with States; use States;
2

3 procedure Show_Variant_Rec_Error is
4 V : State_Or_Integer (Use_Enum => True);
5 begin
6 V.S := On;
7 Display_State_Value (V);
8 end Show_Variant_Rec_Error;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.State_
↪Or_Integer

MD5: b8cf215dd55bfdec6950df35c7bc19b9

Runtime output

State: ON

raised CONSTRAINT_ERROR : states.adb:10 discriminant check failed

In addition to not being able to read the value of a component that isn't valid, assigning a
value to a component that isn't valid also raises an exception at runtime. In this example,
we cannot assign to V.I:

Listing 57: show_variant_rec_error.adb
1 with States; use States;
2

3 procedure Show_Variant_Rec_Error is
4 V : State_Or_Integer (Use_Enum => True);
5 begin
6 V.I := 4;
7 -- Error: V.I cannot be accessed because
8 -- Use_Enum is set to True.
9 end Show_Variant_Rec_Error;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.State_
↪Or_Integer

MD5: 985a84faccc3d590ac767e914bea0c1d

Build output

show_variant_rec_error.adb:4:04: warning: variable "V" is never read and never␣
↪assigned [-gnatwv]

show_variant_rec_error.adb:6:05: warning: component not present in subtype of
↪"State_Or_Integer" defined at line 4 [enabled by default]

show_variant_rec_error.adb:6:05: warning: Constraint_Error will be raised at run␣
↪time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_variant_rec_error.adb:6 discriminant check failed

2.6. Unchecked Union 117

Advanced Journey With Ada: A Flight In Progress

We may circumvent this limitation by using the Unchecked_Union aspect. For example, we
can derive a new type from State_Or_Integer and use this aspect in its declaration. We
do this in the declaration of the Unchecked_State_Or_Integer type below.

Listing 58: states.ads
1 package States is
2

3 type State is (Off, On, Waiting)
4 with Size => Integer'Size;
5

6 for State use (Off => 1,
7 On => 2,
8 Waiting => 4);
9

10 type State_Or_Integer (Use_Enum : Boolean) is
11 record
12 case Use_Enum is
13 when False => I : Integer;
14 when True => S : State;
15 end case;
16 end record;
17

18 type Unchecked_State_Or_Integer
19 (Use_Enum : Boolean) is new
20 State_Or_Integer (Use_Enum)
21 with Unchecked_Union;
22

23 procedure Display_State_Value
24 (V : Unchecked_State_Or_Integer);
25

26 end States;

Listing 59: states.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body States is
4

5 procedure Display_State_Value
6 (V : Unchecked_State_Or_Integer)
7 is
8 begin
9 Put_Line ("State: " & V.S'Image);
10 Put_Line ("Value: " & V.I'Image);
11 end Display_State_Value;
12

13 end States;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.
↪Unchecked_State_Or_Integer

MD5: e97271a24aab23d2db450308401667ac

Because we now use the Unchecked_State_Or_Integer type for the input parameter of the
Display_State_Value procedure, no exception is raised at runtime, as both components
are now accessible. For example:

118 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

Listing 60: show_unchecked_union.adb
1 with States; use States;
2

3 procedure Show_Unchecked_Union is
4 V : State_Or_Integer (Use_Enum => True);
5 begin
6 V.S := On;
7 Display_State_Value
8 (Unchecked_State_Or_Integer (V));
9 end Show_Unchecked_Union;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.
↪Unchecked_State_Or_Integer

MD5: 331cc1ab6709ab7e0062d64c55a75a6c

Runtime output

State: ON
Value: 2

Note that, in the call to the Display_State_Value procedure, we first need to convert the
V argument from the State_Or_Integer to the Unchecked_State_Or_Integer type.
Also, we can assign to any of the components of a record that has the Unchecked_Union
aspect. In our example, we can now assign to both the S and the I components of the V
record:

Listing 61: show_unchecked_union.adb
1 with States; use States;
2

3 procedure Show_Unchecked_Union is
4 V : Unchecked_State_Or_Integer
5 (Use_Enum => True);
6 begin
7 V := (Use_Enum => True, S => On);
8 Display_State_Value (V);
9

10 V := (Use_Enum => False, I => 4);
11 Display_State_Value (V);
12 end Show_Unchecked_Union;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.
↪Unchecked_State_Or_Integer

MD5: bb472e91c5e7b7e63d6246dbcf5226a0

Runtime output

State: ON
Value: 2
State: WAITING
Value: 4

In the example above, we're use an aggregate in the assignments to V. By doing so, we
avoid that Use_Enum is set to the wrong component. For example:

2.6. Unchecked Union 119

Advanced Journey With Ada: A Flight In Progress

Listing 62: show_unchecked_union.adb
1 with States; use States;
2

3 procedure Show_Unchecked_Union is
4 V : Unchecked_State_Or_Integer
5 (Use_Enum => True);
6 begin
7 V.S := On;
8 Display_State_Value (V);
9

10 V.I := 4;
11 -- Error: cannot directly assign to V.I,
12 -- as Use_Enum is set to True.
13

14 Display_State_Value (V);
15 end Show_Unchecked_Union;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.
↪Unchecked_State_Or_Integer

MD5: 74ac11a3effdafd3959fface295a86da

Build output

show_unchecked_union.adb:10:05: warning: component not present in subtype of
↪"Unchecked_State_Or_Integer" defined at line 4 [enabled by default]

show_unchecked_union.adb:10:05: warning: Constraint_Error will be raised at run␣
↪time [enabled by default]

Runtime output

State: ON
Value: 2

raised CONSTRAINT_ERROR : show_unchecked_union.adb:10 discriminant check failed

Here, even though the record has the Unchecked_Union attribute, we cannot directly assign
to the I component because Use_Enum is set to True, so only the S is accessible. We can,
however, read its value, as we do in the Display_State_Value procedure.
Be aware that, due to the fact the union is not checked, we might write invalid data to the
record. In the example below, we initialize the I component with 3, which is a valid integer
value, but results in an invalid value for the S component, as the value 3 cannot be mapped
to the representation of the State type.

Listing 63: show_unchecked_union.adb
1 with States; use States;
2

3 procedure Show_Unchecked_Union is
4 V : Unchecked_State_Or_Integer
5 (Use_Enum => True);
6 begin
7 V := (Use_Enum => False, I => 3);
8 Display_State_Value (V);
9 end Show_Unchecked_Union;

Code block metadata

120 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.
↪Unchecked_State_Or_Integer

MD5: f63e64df137cfc3c29e41f784306f0e4

Runtime output

raised CONSTRAINT_ERROR : states.adb:9 invalid data

To mitigate this problem, we could use the Valid attribute — discussed in the previous
section — for the S component before trying to use its value in the implementation of the
Display_State_Value procedure:

Listing 64: states.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body States is
4

5 procedure Display_State_Value
6 (V : Unchecked_State_Or_Integer)
7 is
8 begin
9 if V.S'Valid then
10 Put_Line ("State: " & V.S'Image);
11 else
12 Put_Line ("State: <invalid>");
13 end if;
14 Put_Line ("Value: " & V.I'Image);
15 end Display_State_Value;
16

17 end States;

Listing 65: show_unchecked_union.adb
1 with States; use States;
2

3 procedure Show_Unchecked_Union is
4 V : Unchecked_State_Or_Integer
5 (Use_Enum => True);
6 begin
7 V := (Use_Enum => False, I => 3);
8 Display_State_Value (V);
9 end Show_Unchecked_Union;

However, in general, you should avoid using the Unchecked_Union aspect due to the poten-
tial issues you might introduce into your application. In the majority of the cases, you don't
need it at all — except for special cases such as when interfacing with C code that makes
use of union types or solving very specific problems when doing low-level programming.

In the Ada Reference Manual
• B.3.3 Unchecked Union Types37

37 http://www.ada-auth.org/standards/22rm/html/RM-B-3-3.html

2.6. Unchecked Union 121

http://www.ada-auth.org/standards/22rm/html/RM-B-3-3.html

Advanced Journey With Ada: A Flight In Progress

2.7 Shared variable control

Ada has built-in support for handling both volatile and atomic data. Let's start by discussing
volatile objects.

In the Ada Reference Manual
• C.6 Shared Variable Control38

2.7.1 Volatile

A volatile39 object can be described as an object in memory whose value may change
between two consecutive memory accesses of a process A — even if process A itself hasn't
changed the value. This situation may arise when an object in memory is being shared by
multiple threads. For example, a thread Bmay modify the value of that object between two
read accesses of a thread A. Another typical example is the one of memory-mapped I/O40,
where the hardware might be constantly changing the value of an object in memory.
Because the value of a volatile object may be constantly changing, a compiler cannot gen-
erate code to store the value of that object in a register and then use the value from the
register in subsequent operations. Storing into a register is avoided because, if the value
is stored there, it would be outdated if another process had changed the volatile object in
the meantime. Instead, the compiler generates code in such a way that the process must
read the value of the volatile object from memory for each access.
Let's look at a simple example:

Listing 66: show_volatile_object.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Volatile_Object is
4 Val : Long_Float with Volatile;
5 begin
6 Val := 0.0;
7 for I in 0 .. 999 loop
8 Val := Val + 2.0 * Long_Float (I);
9 end loop;
10

11 Put_Line ("Val: " & Long_Float'Image (Val));
12 end Show_Volatile_Object;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Volatile_Object_Ada

MD5: aa1e276e64e69813bfc3e3ef39f3dd47

Runtime output

Val: 9.99000000000000E+05

In this example, Val has the Volatile aspect, which makes the object volatile. We can
also use the Volatile aspect in type declarations. For example:
38 http://www.ada-auth.org/standards/22rm/html/RM-C-6.html
39 https://en.wikipedia.org/wiki/Volatile_(computer_programming)
40 https://en.wikipedia.org/wiki/Memory-mapped_I/O

122 Chapter 2. Types and Representation

http://www.ada-auth.org/standards/22rm/html/RM-C-6.html
https://en.wikipedia.org/wiki/Volatile_(computer_programming)
https://en.wikipedia.org/wiki/Memory-mapped_I/O

Advanced Journey With Ada: A Flight In Progress

Listing 67: shared_var_types.ads
1 package Shared_Var_Types is
2

3 type Volatile_Long_Float is new
4 Long_Float with Volatile;
5

6 end Shared_Var_Types;

Listing 68: show_volatile_type.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Shared_Var_Types; use Shared_Var_Types;
3

4 procedure Show_Volatile_Type is
5 Val : Volatile_Long_Float;
6 begin
7 Val := 0.0;
8 for I in 0 .. 999 loop
9 Val := Val + 2.0 * Volatile_Long_Float (I);
10 end loop;
11

12 Put_Line ("Val: "
13 & Volatile_Long_Float'Image (Val));
14 end Show_Volatile_Type;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Volatile_Type

MD5: 0d31156d47b2edcfb94debd016c8bb87

Runtime output

Val: 9.99000000000000E+05

Here, we're declaring a new type Volatile_Long_Float in the Shared_Var_Types package.
This type is based on the Long_Float type and uses the Volatile aspect. Any object of
this type is automatically volatile.
In addition to that, we can declare components of an array to be volatile. In this case, we
can use the Volatile_Components aspect in the array declaration. For example:

Listing 69: show_volatile_array_components.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Volatile_Array_Components is
4 Arr : array (1 .. 2) of Long_Float
5 with Volatile_Components;
6 begin
7 Arr := (others => 0.0);
8

9 for I in 0 .. 999 loop
10 Arr (1) := Arr (1) + 2.0 * Long_Float (I);
11 Arr (2) := Arr (2) + 10.0 * Long_Float (I);
12 end loop;
13

14 Put_Line ("Arr (1): "
15 & Long_Float'Image (Arr (1)));
16 Put_Line ("Arr (2): "

(continues on next page)

2.7. Shared variable control 123

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
17 & Long_Float'Image (Arr (2)));
18 end Show_Volatile_Array_Components;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Volatile_Array_Components

MD5: 05b3ee20f08c5a85f5872727a61c148d

Runtime output

Arr (1): 9.99000000000000E+05
Arr (2): 4.99500000000000E+06

Note that it's possible to use the Volatile aspect for the array declaration as well:

Listing 70: shared_var_types.ads
1 package Shared_Var_Types is
2

3 private
4 Arr : array (1 .. 2) of Long_Float
5 with Volatile;
6

7 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Volatile_Array

MD5: c9b7b9f94f1fac295753c7e7b9426fb2

Note that, if the Volatile aspect is specified for an object, then the Volatile_Components
aspect is also specified automatically — if it makes sense in the context, of course. In the
example above, even though Volatile_Components isn't specified in the declaration of the
Arr array , it's automatically set as well.

2.7.2 Independent

When you write code to access a single object in memory, you might actually be accessing
multiple objects at once. For example, when you declare types that make use of represen-
tation clauses — as we've seen in previous sections —, you might be accessing multiple
objects that are grouped together in a single storage unit. For example, if you have compo-
nents A and B stored in the same storage unit, you cannot update A without actually writing
(the same value) to B. Those objects aren't independently addressable because, in order to
access one of them, we have to actually address multiple objects at once.
When an object is independently addressable, we call it an independent object. In this
case, wemake sure that, when accessing that object, we won't be simultaneously accessing
another object. As a consequence, this feature limits the way objects can be represented
in memory, as we'll see next.
To indicate that an object is independent, we use the Independent aspect:

Listing 71: shared_var_types.ads
1 package Shared_Var_Types is
2

3 I : Integer with Independent;
(continues on next page)

124 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4

5 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Independent_Object

MD5: d90fef37584ca8802b8a3e3858c0095b

Similarly, we can use this aspect when declaring types:

Listing 72: shared_var_types.ads
1 package Shared_Var_Types is
2

3 type Independent_Boolean is new Boolean
4 with Independent;
5

6 type Flags is record
7 F1 : Independent_Boolean;
8 F2 : Independent_Boolean;
9 end record;
10

11 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Independent_Type

MD5: 7bcbee5b73067149b14c4b1b061f803c

In this example, we're declaring the Independent_Boolean type and using it in the decla-
ration of the Flag record type. Let's now derive the Flags type and use a representation
clause for the derived type:

Listing 73: shared_var_types-representation.ads
1 package Shared_Var_Types.Representation is
2

3 type Rep_Flags is new Flags;
4

5 for Rep_Flags use record
6 F1 at 0 range 0 .. 0;
7 F2 at 0 range 1 .. 1;
8 -- ^ ERROR: start position of
9 -- F2 is wrong!
10 -- ^ ERROR: F1 and F2 share the
11 -- same storage unit!
12 end record;
13

14 end Shared_Var_Types.Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Independent_Type

MD5: bb9d5badf33401660e7e20a7cd612dab

Build output

2.7. Shared variable control 125

Advanced Journey With Ada: A Flight In Progress

shared_var_types-representation.ads:6:26: error: size for independent "F1" must be␣
↪multiple of Storage_Unit

shared_var_types-representation.ads:7:21: error: position for independent "F2"␣
↪must be multiple of Storage_Unit

shared_var_types-representation.ads:7:26: error: size for independent "F2" must be␣
↪multiple of Storage_Unit

gprbuild: *** compilation phase failed

As you can see when trying to compile this example, the representation clause that we
used for Rep_Flags isn't following these limitations:
1. The size of each independent component must be a multiple of a storage unit.
2. The start position of each independent component must be a multiple of a storage
unit.

For example, for architectures that have a storage unit of one byte — such as standard
desktop computers—, this means that the size and the position of independent components
must be a multiple of a byte. Let's correct the issues in the code above by:
• setting the size of each independent component to correspond to Storage_Unit —
using a range between 0 and Storage_Unit - 1 —, and

• setting the start position to zero.
This is the corrected version:

Listing 74: shared_var_types-representation.ads
1 with System;
2

3 package Shared_Var_Types.Representation is
4

5 type Rep_Flags is new Flags;
6

7 for Rep_Flags use record
8 F1 at 0 range 0 .. System.Storage_Unit - 1;
9 F2 at 1 range 0 .. System.Storage_Unit - 1;
10 end record;
11

12 end Shared_Var_Types.Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Independent_Type

MD5: ed57e57cd746698909a4f7ce40a29dfc

Note that the representation that we're now using for Rep_Flags is most likely the repre-
sentation that the compiler would have chosen for this data type. We could, however, have
added an empty storage unit between F1 and F2 — by simply writing F2 at 2 ...:

Listing 75: shared_var_types-representation.ads
1 with System;
2

3 package Shared_Var_Types.Representation is
4

5 type Rep_Flags is new Flags;
6

7 for Rep_Flags use record
8 F1 at 0 range 0 .. System.Storage_Unit - 1;
9 F2 at 2 range 0 .. System.Storage_Unit - 1;

(continues on next page)

126 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10 end record;
11

12 end Shared_Var_Types.Representation;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Independent_Type

MD5: 71fedf8aac7c19bca1ba3b487efa9b17

As long as we follow the rules for independent objects, we're still allowed to use represen-
tation clauses that don't correspond to the one that the compiler might select.
For arrays, we can use the Independent_Components aspect:

Listing 76: shared_var_types.ads
1 package Shared_Var_Types is
2

3 Flags : array (1 .. 8) of Boolean
4 with Independent_Components;
5

6 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Independent_Components

MD5: b331d0a13adf45624b664839fe4ba42c

We've just seen in a previous example that some representation clauses might not work
with objects and types that have the Independent aspect. The same restrictions apply
when we use the Independent_Components aspect. For example, this aspect prevents that
array components are packed when the Pack aspect is used. Let's discuss the following
erroneous code example:

Listing 77: shared_var_types.ads
1 package Shared_Var_Types is
2

3 type Flags is
4 array (Positive range <>) of Boolean
5 with Independent_Components, Pack;
6

7 F : Flags (1 .. 8) with Size => 8;
8

9 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Packed_Independent_Components

MD5: dbaff4f2559ef8a449dad251f42cddc0

Build output

shared_var_types.ads:5:37: warning: cannot pack independent components (RM 13.2(7))
shared_var_types.ads:7:36: error: size for "F" too small, minimum allowed is 64
gprbuild: *** compilation phase failed

As expected, this code doesn't compile. Here, we can have either independent compo-
nents, or packed components. We cannot have both at the same time because packed

2.7. Shared variable control 127

Advanced Journey With Ada: A Flight In Progress

components aren't independently addressable. The compiler warns us that the Pack as-
pect won't have any effect on independent components. When we use the Size aspect in
the declaration of F, we confirm this limitation. If we remove the Size aspect, however, the
code is compiled successfully because the compiler ignores the Pack aspect and allocates
a larger size for F:

Listing 78: shared_var_types.ads
1 package Shared_Var_Types is
2

3 type Flags is
4 array (Positive range <>) of Boolean
5 with Independent_Components, Pack;
6

7 end Shared_Var_Types;

Listing 79: show_flags_size.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System;
3

4 with Shared_Var_Types; use Shared_Var_Types;
5

6 procedure Show_Flags_Size is
7 F : Flags (1 .. 8);
8 begin
9 Put_Line ("Flags'Size: "
10 & F'Size'Image & " bits");
11 Put_Line ("Flags (1)'Size: "
12 & F (1)'Size'Image & " bits");
13 Put_Line ("# storage units: "
14 & Integer'Image
15 (F'Size /
16 System.Storage_Unit));
17 end Show_Flags_Size;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Packed_Independent_Components

MD5: b96f921b08b1d8207749517f833fc121

Build output

show_flags_size.adb:7:04: warning: variable "F" is read but never assigned [-
↪gnatwv]

shared_var_types.ads:5:37: warning: cannot pack independent components (RM 13.2(7))

Runtime output

Flags'Size: 64 bits
Flags (1)'Size: 8 bits
storage units: 8

As you can see in the output of the application, even though we specify the Pack aspect for
the Flags type, the compiler allocates eight storage units, one per each component of the
F array.

128 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

2.7.3 Atomic

An atomic object is an object that only accepts atomic reads and updates. The Ada standard
specifies that "for an atomic object (including an atomic component), all reads and updates
of the object as a whole are indivisible." In this case, the compiler must generate Assembly
code in such a way that reads and updates of an atomic object must be done in a single
instruction, so that no other instruction could execute on that same object before the read
or update completes.

In other contexts
Generally, we can say that operations are said to be atomic when they can be completed
without interruptions. This is an important requirement when we're performing operations
on objects in memory that are shared between multiple processes.
This definition of atomicity above is used, for example, when implementing databases.
However, for this section, we're using the term "atomic" differently. Here, it really means
that reads and updates must be performed with a single Assembly instruction.
For example, if we have a 32-bit object composed of four 8-bit bytes, the compiler cannot
generate code to read or update the object using four 8-bit store / load instructions, or even
two 16-bit store / load instructions. In this case, in order to maintain atomicity, the compiler
must generate code using one 32-bit store / load instruction.
Because of this strict definition, we might have objects for which the Atomic aspect cannot
be specified. Lots of machines support integer types that are larger than the native word-
sized integer. For example, a 16-bit machine probably supports both 16-bit and 32-bit
integers, but only 16-bit integer objects can be marked as atomic — or, more generally,
only objects that fit into at most 16 bits.

Atomicity may be important, for example, when dealing with shared hardware registers.
In fact, for certain architectures, the hardware may require that memory-mapped registers
are handled atomically. In Ada, we can use the Atomic aspect to indicate that an object is
atomic. This is how we can use the aspect to declare a shared hardware register:

Listing 80: shared_var_types.ads
1 with System;
2

3 package Shared_Var_Types is
4

5 private
6 R : Integer
7 with Atomic,
8 Address =>
9 System'To_Address (16#FFFF00A0#);
10

11 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Atomic_Object

MD5: 5c2d8e0a9615084c2a15f896c61adaa6

Note that the Address aspect allows for assigning a variable to a specific location in the
memory. In this example, we're using this aspect to specify the address of the memory-
mapped register.
Later on, we talk again about the Address aspect (page 133) and the GNAT-specific Sys-
tem'To_Address attribute (page 134).

2.7. Shared variable control 129

Advanced Journey With Ada: A Flight In Progress

In addition to atomic objects, we can declare atomic types — similar to what we've seen
before for volatile objects. For example:

Listing 81: shared_var_types.ads
1 with System;
2

3 package Shared_Var_Types is
4

5 type Atomic_Integer is new Integer
6 with Atomic;
7

8 private
9 R : Atomic_Integer
10 with Address =>
11 System'To_Address (16#FFFF00A0#);
12

13 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Atomic_Types

MD5: 009632ba0155d70def8281ba590f3d12

In this example, we're declaring the Atomic_Integer type, which is an atomic type. Objects
of this type — such as R in this example — are automatically atomic.
We can also declare atomic array components:

Listing 82: shared_var_types.ads
1 package Shared_Var_Types is
2

3 private
4 Arr : array (1 .. 2) of Integer
5 with Atomic_Components;
6

7 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Atomic_Array_Components

MD5: 7501bdf618621a822d451da8d731ef75

This example shows the declaration of the Arr array, which has atomic components — the
atomicity of its components is indicated by the Atomic_Components aspect.
Note that if an object is atomic, it is also volatile and independent. In other words, these
type declarations are equivalent:

Listing 83: shared_var_types.ads
1 package Shared_Var_Types is
2

3 type Atomic_Integer_1 is new Integer
4 with Atomic;
5

6 type Atomic_Integer_2 is new Integer
7 with Atomic,
8 Volatile,
9 Independent;

(continues on next page)

130 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10

11 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_
↪Control.Atomic_Volatile_Independent

MD5: 3034c7a07698491f961d9b4fb74f03d8

A simular rule applies to components of an array. When we use the Atomic_Components,
the following aspects are implied: Volatile, Volatile_Components and Indepen-
dent_Components. For example, these array declarations are equivalent:

Listing 84: shared_var_types.ads
1 package Shared_Var_Types is
2

3 Arr_1 : array (1 .. 2) of Integer
4 with Atomic_Components;
5

6 Arr_2 : array (1 .. 2) of Integer
7 with Atomic_Components,
8 Volatile,
9 Volatile_Components,
10 Independent_Components;
11

12 end Shared_Var_Types;

2.8 Addresses

In other languages, such as C, the concept of pointers and addresses plays a prominent role.
(In fact, in C, many optimizations rely on the usage of pointer arithmetic.) The concept of
addresses does exist in Ada, but it's mainly reserved for very specific applications, mostly
related to low-level programming. In general, other approaches — such as using access
types — are more than sufficient. (We discuss access types (page 481) in another chapter.
Also, later on in that chapter, we discuss the relation between access types and addresses
(page 595).) In this section, we discuss some details about using addresses in Ada.
We make use of the Address type, which is defined in the System package, to handle ad-
dresses. In contrast to other programming languages (such as C or C++), an address in
Ada isn't an integer value: its definition depends on the compiler implementation, and it's
actually driven directly by the hardware. For now, let's consider it to usually be a private
type — this can be seen as an attempt to achieve application code portability, given the
variations in hardware that result in different definitions of what an address actually is.
The Address type has support for address comparison (page 135) and address arithmetic
(page 137) (also known as pointer arithmetic in C). We discuss these topics later in this
section. First, let's talk about the Address attribute and the Address aspect.

In the Ada Reference Manual
• 13.7 The Package System41

41 http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

2.8. Addresses 131

http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

Advanced Journey With Ada: A Flight In Progress

2.8.1 Address attribute

The Address attribute allows us to get the address of an object. For example:

Listing 85: use_address.adb
1 with System; use System;
2

3 procedure Use_Address is
4 I : aliased Integer := 5;
5 A : Address;
6 begin
7 A := I'Address;
8 end Use_Address;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Address_
↪Attribute

MD5: 1ee71b7cd3ed278647eb72f383da877f

Here, we're assigning the address of the I object to the A address.

In the GNAT toolchain
GNAT offers a very useful extension to the System package to retrieve a string for an ad-
dress: System.Address_Image. This is the function profile:

function System.Address_Image
(A : System.Address) return String;

We can use this function to display the address in an user message, for example:

Listing 86: show_address_attribute.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System.Address_Image;
3

4 procedure Show_Address_Attribute is
5 I : aliased Integer := 5;
6 begin
7 Put_Line ("Address : "
8 & System.Address_Image (I'Address));
9 end Show_Address_Attribute;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Show_
↪Address_Attribute

MD5: 72efddedc57701665594de5ee1939d3d

Runtime output

Address : 00007FFC1194DB04

In the Ada Reference Manual
• 13.3 Operational and Representation Attributes42

42 http://www.ada-auth.org/standards/22rm/html/RM-13-3.html

132 Chapter 2. Types and Representation

http://www.ada-auth.org/standards/22rm/html/RM-13-3.html

Advanced Journey With Ada: A Flight In Progress

• 13.7 The Package System43

2.8.2 Address aspect

Usually, we let the compiler select the address of an object in memory, or let it use a
register to store that object. However, we can specify the address of an object with the
Address aspect. In this case, the compiler won't select an address automatically, but use
the address that we're specifying. For example:

Listing 87: show_address.adb
1 with System; use System;
2 with System.Address_Image;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Address is
7

8 I_Main : aliased Integer;
9 I_Mapped : Integer
10 with Address => I_Main'Address;
11 begin
12 Put_Line ("I_Main'Address : "
13 & System.Address_Image
14 (I_Main'Address));
15 Put_Line ("I_Mapped'Address : "
16 & System.Address_Image
17 (I_Mapped'Address));
18 end Show_Address;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Address_
↪Aspect

MD5: 6339c743b1ca2b1adf58c977540b43d5

Runtime output

I_Main'Address : 00007FFD95171854
I_Mapped'Address : 00007FFD95171854

This approach allows us to create an overlay. For example:

Listing 88: simple_overlay.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Simple_Overlay is
4 type State is (Off, State_1, State_2)
5 with Size => Integer'Size;
6

7 for State use (Off => 0,
8 State_1 => 32,
9 State_2 => 64);
10

11 S : State;
12 I : Integer
13 with Address => S'Address, Import, Volatile;

(continues on next page)
43 http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

2.8. Addresses 133

http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14 begin
15 S := State_2;
16 Put_Line ("I = " & Integer'Image (I));
17 end Simple_Overlay;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Simple_
↪Overlay

MD5: a65057882518824d3ea173d193a7ae67

Runtime output

I = 64

Here, I is an overlay of S, as it uses S'Address. With this approach, we can either use the
enumeration directly (by using the S object of State type) or its integer representation (by
using the I variable).

In the GNAT toolchain
We could call the GNAT-specific System'To_Address attribute when using the Address as-
pect, as we did while talking about the Atomic (page 129) aspect:

Listing 89: shared_var_types.ads
1 with System;
2

3 package Shared_Var_Types is
4

5 private
6 R : Integer
7 with Atomic,
8 Address =>
9 System'To_Address (16#FFFF00A0#);
10

11 end Shared_Var_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Show_Access_
↪Address

MD5: 5c2d8e0a9615084c2a15f896c61adaa6

In this case, R will refer to the address in memory that we're specifying (16#FFFF00A0# in
this case).
As explained in the GNAT Reference Manual44, the System'To_Address attribute denotes
a function identical to To_Address (from the System.Storage_Elements package) except
that it is a static attribute. (We talk about the To_Address function (page 136) function later
on.)

In the Ada Reference Manual
• 13.3 Operational and Representation Attributes45

• 13.7 The Package System46

44 https://gcc.gnu.org/onlinedocs/gnat_rm/Attribute-To_005fAddress.html
45 http://www.ada-auth.org/standards/22rm/html/RM-13-3.html
46 http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

134 Chapter 2. Types and Representation

https://gcc.gnu.org/onlinedocs/gnat_rm/Attribute-To_005fAddress.html
http://www.ada-auth.org/standards/22rm/html/RM-13-3.html
http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

Advanced Journey With Ada: A Flight In Progress

• 13.7.1 The Package System.Storage_Elements47

2.8.3 Address comparison

We can compare addresses using the common comparison operators. For example:

Listing 90: show_address.adb
1 with System; use System;
2 with System.Address_Image;
3

4 with Ada.Text_IO; use Ada.Text_IO;
5

6 procedure Show_Address is
7

8 I, J : Integer;
9 begin
10 Put_Line ("I'Address : "
11 & System.Address_Image
12 (I'Address));
13 Put_Line ("J'Address : "
14 & System.Address_Image
15 (J'Address));
16

17 if I'Address = J'Address then
18 Put_Line ("I'Address = J'Address");
19 elsif I'Address < J'Address then
20 Put_Line ("I'Address < J'Address");
21 else
22 Put_Line ("I'Address > J'Address");
23 end if;
24 end Show_Address;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Address_
↪Aspect

MD5: 24ddb7d05159f26ef3b2ff6bcc2691e8

Runtime output

I'Address : 00007FFC9FF008AC
J'Address : 00007FFC9FF008A8
I'Address > J'Address

In this example, we compare the address of the I object with the address of the J object
using the =, < and > operators.

In the Ada Reference Manual
• 13.7 The Package System48

47 http://www.ada-auth.org/standards/22rm/html/RM-13-7-1.html
48 http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

2.8. Addresses 135

http://www.ada-auth.org/standards/22rm/html/RM-13-7-1.html
http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

Advanced Journey With Ada: A Flight In Progress

2.8.4 Address to integer conversion

The System.Storage_Elements package offers an integer representation of an address via
the Integer_Address type, which is an integer type unrelated to common integer types
such as Integer and Long_Integer. (The actual definition of Integer_Address is compiler-
dependent, and it can be a signed or modular integer subtype.)
We can convert between the Address and Integer_Address types by using the To_Address
and To_Integer functions. Let's see an example:

Listing 91: show_address.adb
1 with System; use System;
2

3 with System.Storage_Elements;
4 use System.Storage_Elements;
5

6 with System.Address_Image;
7

8 with Ada.Text_IO; use Ada.Text_IO;
9

10 procedure Show_Address is
11 I : Integer;
12 A1, A2 : Address;
13 IA : Integer_Address;
14 begin
15 A1 := I'Address;
16 IA := To_Integer (A1);
17 A2 := To_Address (IA);
18

19 Put_Line ("A1 : "
20 & System.Address_Image (A1));
21 Put_Line ("IA : "
22 & Integer_Address'Image (IA));
23 Put_Line ("A2 : "
24 & System.Address_Image (A2));
25 end Show_Address;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Pointer_
↪Arith_Ada

MD5: 69e053886fb8e8571d6c94247dc9f30f

Runtime output

A1 : 00007FFE6C199BFC
IA : 140730712038396
A2 : 00007FFE6C199BFC

Here, we retrieve the address of the I object and store it in the A1 address. Then, we convert
A1 to an integer address by calling To_Integer (and store it in IA). Finally, we convert this
integer address back to an actual address by calling To_Address.

In the Ada Reference Manual
• 13.7.1 The Package System.Storage_Elements49

49 http://www.ada-auth.org/standards/22rm/html/RM-13-7-1.html

136 Chapter 2. Types and Representation

http://www.ada-auth.org/standards/22rm/html/RM-13-7-1.html

Advanced Journey With Ada: A Flight In Progress

2.8.5 Address arithmetic

Although Ada supports address arithmetic, which we discuss in this section, it should be
reserved for very specific applications such as low-level programming. However, even in
situations that require close access to the underlying hardware, using address arithmetic
might not be the approach you should consider —make sure to evaluate other options first!
Ada supports address arithmetic via the System.Storage_Elements package, which in-
cludes operators such as + and - for addresses. Let's see a code example where we iterate
over an array by incrementing an address that points to each component in memory:

Listing 92: show_address.adb
1 with System; use System;
2

3 with System.Storage_Elements;
4 use System.Storage_Elements;
5

6 with System.Address_Image;
7

8 with Ada.Text_IO; use Ada.Text_IO;
9

10 procedure Show_Address is
11

12 Arr : array (1 .. 10) of Integer;
13 A : Address := Arr'Address;
14 -- ^^^^^^^^^^^
15 -- Initializing address object with
16 -- address of the first component of Arr.
17 --
18 -- We could write this as well:
19 -- ___ := Arr (1)'Address
20

21 begin
22 for I in Arr'Range loop
23 declare
24 Curr : Integer
25 with Address => A;
26 begin
27 Curr := I;
28 Put_Line ("Curr'Address : "
29 & System.Address_Image
30 (Curr'Address));
31 end;
32

33 --
34 -- Address arithmetic
35 --
36 A := A + Storage_Offset (Integer'Size)
37 / Storage_Unit;
38 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
39 -- Moving to next component
40 end loop;
41

42 for I in Arr'Range loop
43 Put_Line ("Arr ("
44 & Integer'Image (I)
45 & ") :"
46 & Integer'Image (Arr (I)));
47 end loop;
48 end Show_Address;

Code block metadata

2.8. Addresses 137

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Pointer_
↪Arith_Ada

MD5: 2c1cdd6874036fb9a527baae63a312d9

Runtime output

Curr'Address : 00007FFC306CD8F0
Curr'Address : 00007FFC306CD8F4
Curr'Address : 00007FFC306CD8F8
Curr'Address : 00007FFC306CD8FC
Curr'Address : 00007FFC306CD900
Curr'Address : 00007FFC306CD904
Curr'Address : 00007FFC306CD908
Curr'Address : 00007FFC306CD90C
Curr'Address : 00007FFC306CD910
Curr'Address : 00007FFC306CD914
Arr (1) : 1
Arr (2) : 2
Arr (3) : 3
Arr (4) : 4
Arr (5) : 5
Arr (6) : 6
Arr (7) : 7
Arr (8) : 8
Arr (9) : 9
Arr (10) : 10

In this example, we initialize the address A by retrieving the address of the first component
of the array Arr. (Note that we could have written Arr(1)'Address instead of Arr'Address.
In any case, the language guarantees that Arr'Address gives us the address of the first
component, i.e. Arr'Address = Arr(1)'Address.)
Then, in the loop, we declare an overlay Curr using the current value of the A address.
We can then operate on this overlay — here, we assign I to Curr. Finally, in the loop, we
increment address A and make it point to the next component in the Arr array — to do so,
we calculate the size of an Integer component in storage units. (For details on storage
units, see the section on storage size attribute (page 84).)

In other languages
The code example above corresponds (more or less) to the following C code:

Listing 93: main.c
1 #include <stdio.h>
2

3 int main(int argc, const char * argv[])
4 {
5 int i;
6 int arr[10];
7

8 int *a = arr;
9 /* int *a = &arr[0]; */
10

11 for (i = 0; i < 10; i++)
12 {
13 *a++ = i;
14 printf("curr address: %p\n", a);
15 }
16

17 for (i = 0; i < 10; i++)
(continues on next page)

138 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
18 {
19 printf("arr[%d]: %d\n", i, arr[i]);
20 }
21

22 return 0;
23 }

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Pointer_
↪Arith_C

MD5: 7aa709a4d7ed6ce2346dbabc853e28c0

Runtime output

curr address: 0x7fff85be73f4
curr address: 0x7fff85be73f8
curr address: 0x7fff85be73fc
curr address: 0x7fff85be7400
curr address: 0x7fff85be7404
curr address: 0x7fff85be7408
curr address: 0x7fff85be740c
curr address: 0x7fff85be7410
curr address: 0x7fff85be7414
curr address: 0x7fff85be7418
arr[0]: 0
arr[1]: 1
arr[2]: 2
arr[3]: 3
arr[4]: 4
arr[5]: 5
arr[6]: 6
arr[7]: 7
arr[8]: 8
arr[9]: 9

While pointer arithmetic is very common in C, using address arithmetic in Ada is far from
common, and it should be only used when it's really necessary to do so.

In the Ada Reference Manual
• 13.3 Operational and Representation Attributes50

• 13.7.1 The Package System.Storage_Elements51

50 http://www.ada-auth.org/standards/22rm/html/RM-13-3.html
51 http://www.ada-auth.org/standards/22rm/html/RM-13-7-1.html

2.8. Addresses 139

http://www.ada-auth.org/standards/22rm/html/RM-13-3.html
http://www.ada-auth.org/standards/22rm/html/RM-13-7-1.html

Advanced Journey With Ada: A Flight In Progress

2.9 Discarding names

As we know, we can use the Image attribute of a type to get a string associated with this
type. This is useful for example when wewant to display a user message for an enumeration
type:

Listing 94: show_enumeration_image.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Enumeration_Image is
4

5 type Months is
6 (January, February, March, April,
7 May, June, July, August, September,
8 October, November, December);
9

10 M : constant Months := January;
11 begin
12 Put_Line ("Month: "
13 & Months'Image (M));
14 end Show_Enumeration_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Discarding_Names.
↪Enumeration_Image

MD5: 3863c5e06641d96b59edb9e76daa7560

Runtime output

Month: JANUARY

This is similar to having this code:

Listing 95: show_enumeration_image.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Enumeration_Image is
4

5 type Months is
6 (January, February, March, April,
7 May, June, July, August, September,
8 October, November, December);
9

10 M : constant Months := January;
11

12 function Months_Image (M : Months)
13 return String is
14 begin
15 case M is
16 when January => return "JANUARY";
17 when February => return "FEBRUARY";
18 when March => return "MARCH";
19 when April => return "APRIL";
20 when May => return "MAY";
21 when June => return "JUNE";
22 when July => return "JULY";
23 when August => return "AUGUST";
24 when September => return "SEPTEMBER";

(continues on next page)

140 Chapter 2. Types and Representation

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
25 when October => return "OCTOBER";
26 when November => return "NOVEMBER";
27 when December => return "DECEMBER";
28 end case;
29 end Months_Image;
30

31 begin
32 Put_Line ("Month: "
33 & Months_Image (M));
34 end Show_Enumeration_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Discarding_Names.
↪Enumeration_Image

MD5: 2db86044d2045bd9d4c3998cca36d51c

Runtime output

Month: JANUARY

Here, the Months_Image function associates a string with each month of the Months enu-
meration. As expected, the compiler needs to store the strings used in the Months_Image
function when compiling this code. Similarly, the compiler needs to store strings for the
Months enumeration for the Image attribute.
Sometimes, we don't need to call the Image attribute for a type. In this case, we could
save some storage by eliminating the strings associated with the type. Here, we can use
the Discard_Names aspect to request the compiler to reduce — as much as possible — the
amount of storage used for storing names for this type. Let's see an example:

Listing 96: show_discard_names.adb
1 procedure Show_Discard_Names is
2 pragma Warnings (Off, "is not referenced");
3

4 type Months is
5 (January, February, March, April,
6 May, June, July, August, September,
7 October, November, December)
8 with Discard_Names;
9

10 M : constant Months := January;
11 begin
12 null;
13 end Show_Discard_Names;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Discarding_Names.
↪Discard_Names

MD5: 7891caac459a4be2096d443ca3190036

In this example, the compiler attempts to not store strings associated with the Months type
duration compilation.
Note that the Discard_Names aspect is available for enumerations, exceptions, and tagged
types.

In the GNAT toolchain

2.9. Discarding names 141

Advanced Journey With Ada: A Flight In Progress

If we add this statement to the Show_Discard_Names procedure above:

Put_Line ("Month: "
& Months'Image (M));

we see that the application displays "0" instead of "JANUARY". This is because GNAT doesn't
store the strings associated with the Months type when we use the Discard_Names aspect
for the Months type. (Therefore, the Months'Image attribute doesn't have that information.)
Instead, the compiler uses the integer value of the enumeration, so that Months'Image
returns the corresponding string for this integer value.

In the Ada Reference Manual
• Aspect Discard_Names52

52 http://www.ada-auth.org/standards/22rm/html/RM-C-5.html

142 Chapter 2. Types and Representation

http://www.ada-auth.org/standards/22rm/html/RM-C-5.html

CHAPTER

THREE

RECORDS

3.1 Default Initialization

As mentioned in the Introduction to Ada53 course, record components can have default
initial values. Also, we've seen that other kinds of types can have default values (page 63).
In the Ada Reference Manual, we refer to these default initial values as "default expressions
of record components." The term default expression indicates that we can use any kind of
expression for the default initialization of record components — which includes subprogram
calls for example:

Listing 1: show_default_initialization.ads
1 package Show_Default_Initialization is
2

3 function Init return Integer is
4 (42);
5

6 type Rec is record
7 A : Integer := Init;
8 end record;
9

10 end Show_Default_Initialization;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Simple_
↪Example

MD5: 6d06be7f087513b669ba5481d6ee5004

In this example, the A component is initialized by default by a call to the Init procedure.

In the Ada Reference Manual
• 3.8 Record Types54

53 https://learn.adacore.com/courses/intro-to-ada/chapters/records.html#intro-ada-record-default-values
54 http://www.ada-auth.org/standards/22rm/html/RM-3-8.html

143

https://learn.adacore.com/courses/intro-to-ada/chapters/records.html#intro-ada-record-default-values
http://www.ada-auth.org/standards/22rm/html/RM-3-8.html

Advanced Journey With Ada: A Flight In Progress

3.1.1 Dependencies

Default expressions cannot depend on other components. For example, if we have two
components A and B, we cannot initialize B based on the value that A has:

Listing 2: show_default_initialization_dependency.ads
1 package Show_Default_Initialization_Dependency is
2

3 function Init return Integer is
4 (42);
5

6 type Rec is record
7 A : Integer := Init;
8 B : Integer := Rec.A; -- Illegal!
9 end record;
10

11 end Show_Default_Initialization_Dependency;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.No_
↪Dependency

MD5: ca23cbd7e4a54d0b9c6974aed0ee77c8

Build output

show_default_initialization_dependency.ads:8:25: error: component "Rec.A" cannot␣
↪be used before end of record declaration

gprbuild: *** compilation phase failed

In this example, we cannot initialize the B component based on the value of the A compo-
nent. (In fact, the syntax Rec.A as a way to refer to the A component is only allowed in
predicates, not in the record component declaration.)

3.1.2 Initialization Order

The default initialization of record components is performed in arbitrary order. In fact, the
order is decided by the compiler, so we don't have control over it.
Let's see an example:

Listing 3: simple_recs.ads
1 package Simple_Recs is
2

3 function Init (S : String;
4 I : Integer)
5 return Integer;
6

7 type Rec is record
8 A : Integer := Init ("A", 1);
9 B : Integer := Init ("B", 2);
10 end record;
11

12 end Simple_Recs;

144 Chapter 3. Records

Advanced Journey With Ada: A Flight In Progress

Listing 4: simple_recs.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Simple_Recs is
4

5 function Init (S : String;
6 I : Integer)
7 return Integer is
8 begin
9 Put_Line (S & ": " & I'Image);
10 return I;
11 end Init;
12

13 end Simple_Recs;

Listing 5: show_initialization_order.adb
1 with Simple_Recs; use Simple_Recs;
2

3 procedure Show_Initialization_Order is
4 R : Rec;
5 begin
6 null;
7 end Show_Initialization_Order;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.
↪Initialization_Order

MD5: e3ab92ea9b2a99815cea8c2ea11cbbfb

Runtime output

A: 1
B: 2

When running this code example, you might see this:

A: 1
B: 2

However, the compiler is allowed to rearrange the operations, so this output is possible as
well:

B: 2
A: 1

Therefore, we must write the default expression of each individual record components in
such a way that the resulting initialization value is always correct, independently of the
order that those expressions are evaluated.

3.1. Default Initialization 145

Advanced Journey With Ada: A Flight In Progress

3.1.3 Evaluation

According to the Annotated Ada Reference Manual, the "default expression of a record com-
ponent is only evaluated upon the creation of a default-initialized object of the record type."
This means that the default expression is by itself not evaluated when we declare the record
type, but when we create an object of this type. It follows from this rule that the default
is only evaluated when necessary, i.e,, when an explicit initial value is not specified in the
object declaration.
Let's see an example:

Listing 6: show_initialization_order.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Simple_Recs; use Simple_Recs;
3

4 procedure Show_Initialization_Order is
5 begin
6 Put_Line ("Some processing first...");
7 Put_Line
8 ("Now, let's declare an object "
9 & "of the record type Rec...");
10

11 declare
12 R : Rec;
13 begin
14 Put_Line
15 ("An object of Rec type has "
16 & "just been created.");
17 end;
18

19 end Show_Initialization_Order;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.
↪Initialization_Order

MD5: 126e3edfe4cb8033f40b939ff9922958

Runtime output

Some processing first...
Now, let's declare an object of the record type Rec...
A: 1
B: 2
An object of Rec type has just been created.

Here, we only see the information displayed by the Init function — which is called to
initialize the A and B components of the R record — during the object creation. In other
words, the default expressions Init ("A", 1) and Init ("B", 2) are not evaluated when
we declare the R type, but when we create an object of this type.

In the Ada Reference Manual
• 3.8 Record Types55

55 http://www.ada-auth.org/standards/22aarm/html/AA-3-8.html

146 Chapter 3. Records

http://www.ada-auth.org/standards/22aarm/html/AA-3-8.html

Advanced Journey With Ada: A Flight In Progress

3.1.4 Defaults and object declaration

Note: This subsection was originally written by Robert A. Duff and published as Gem #12:
Limited Types in Ada 200556.

Consider the following type declaration:

Listing 7: type_defaults.ads
1 package Type_Defaults is
2 type Color_Enum is (Red, Blue, Green);
3

4 type T is private;
5 private
6 type T is
7 record
8 Color : Color_Enum := Red;
9 Is_Gnarly : Boolean := False;
10 Count : Natural;
11 end record;
12

13 procedure Do_Something;
14 end Type_Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_
↪Init

MD5: 218154278081f89595534bc02e34539b

If we want to say, "make Count equal 100, but initialize Color and Is_Gnarly to their
defaults", we can do this:

Listing 8: type_defaults.adb
1 package body Type_Defaults is
2

3 Object_100 : constant T :=
4 (Color => <>,
5 Is_Gnarly => <>,
6 Count => 100);
7

8 procedure Do_Something is null;
9

10 end Type_Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_
↪Init

MD5: e64f8881ee74b90dd6058ca8961aae31

Historically
Prior to Ada 2005, the following style was common:
56 https://www.adacore.com/gems/ada-gem-12

3.1. Default Initialization 147

https://www.adacore.com/gems/ada-gem-12
https://www.adacore.com/gems/ada-gem-12

Advanced Journey With Ada: A Flight In Progress

Listing 9: type_defaults.adb
1 package body Type_Defaults is
2

3 Object_100 : constant T :=
4 (Color => Red,
5 Is_Gnarly => False,
6 Count => 100);
7

8 procedure Do_Something is null;
9

10 end Type_Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_
↪Init

MD5: c1ddfae75d7f0c691356027903a6d144

Here, we only wanted Object_100 to be a default-initialized T, with Count equal to 100. It's
a little bit annoying that we had to write the default values Red and False twice. What if
we change our mind about Red, and forget to change it in all the relevant places? Since
Ada 2005, the <> notation comes to the rescue, as we've just seen.

On the other hand, if we want to say, "make Count equal 100, but initialize all other com-
ponents, including the ones we might add next week, to their defaults", we can do this:

Listing 10: type_defaults.adb
1 package body Type_Defaults is
2

3 Object_100 : constant T := (Count => 100,
4 others => <>);
5

6 procedure Do_Something is null;
7

8 end Type_Defaults;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_
↪Init

MD5: 93f5d71ae80ff0ebad54f2569539f536

Note that if we add a component Glorp : Integer; to type T, then the others case leaves
Glorp undefined just as this code would do:

Listing 11: type_defaults.adb
1 package body Type_Defaults is
2

3 procedure Do_Something is
4 Object_100 : T;
5 begin
6 Object_100.Count := 100;
7 end Do_Something;
8

9 end Type_Defaults;

Code block metadata

148 Chapter 3. Records

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_
↪Init

MD5: 6d328318e2695516794df33466fa5283

Therefore, you should be careful and think twice before using others.

3.1.5 Advanced Usages

In addition to expressions such as subprogram calls, we can use per-object expressions
(page 163) for the default value of a record component. (We discuss this topic later on in
more details.)
For example:

Listing 12: rec_per_object_expressions.ads
1 package Rec_Per_Object_Expressions is
2

3 type T (D : Positive) is private;
4

5 private
6

7 type T (D : Positive) is record
8 V : Natural := D - 1;
9 -- ^^^^^
10 -- Per-object expression
11 end record;
12

13 end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Per_Object_
↪Expressions

MD5: 92591ea482db2b009b8eeafe633ca6cd

In this example, component V is initialized by default with the per-object expression D - 1,
where D refers to the discriminant D.

3.2 Mutually dependent types

In this section, we discuss how to use incomplete types (page 34) to declare mutually
dependent types. Let's start with this example:

Listing 13: mutually_dependent.ads
1 package Mutually_Dependent is
2

3 type T1 is record
4 B : T2;
5 end record;
6

7 type T2 is record
8 A : T1;
9 end record;
10

11 end Mutually_Dependent;

3.2. Mutually dependent types 149

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Mutually_Dependent_Types.Mutually_
↪Dependent

MD5: ffa8d6ab83a1172dcbae0978952dacb2

Build output

mutually_dependent.ads:4:11: error: "T2" is undefined
gprbuild: *** compilation phase failed

When you try to compile this example, you get a compilation error. The first problem with
this code is that, in the declaration of the T1 record, the compiler doesn't know anything
about T2. We could solve this by declaring an incomplete type (type T2;) before the
declaration of T1. This, however, doesn't solve all the problems in the code: the compiler
still doesn't know the size of T2, so we cannot create a component of this type. We could,
instead, declare an access type and use it here. By doing this, even though the compiler
doesn't know the size of T2, it knows the size of an access type designating T2, so the
record component can be of such an access type.
To summarize, in order to solve the compilation error above, we need to:
• use at least one incomplete type;
• declare at least one component as an access to an object.

For example, we could declare an incomplete type T2 and then declare the component B of
the T1 record as an access to T2. This is the corrected version:

Listing 14: mutually_dependent.ads
1 package Mutually_Dependent is
2

3 type T2;
4 type T2_Access is access T2;
5

6 type T1 is record
7 B : T2_Access;
8 end record;
9

10 type T2 is record
11 A : T1;
12 end record;
13

14 end Mutually_Dependent;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Mutually_Dependent_Types.Mutually_
↪Dependent

MD5: 1ae10638624a97fa18b9d8f96bfa74ed

We could strive for consistency and declare two incomplete types and two accesses, but
this isn't strictly necessary in this case. Here's the adapted code:

Listing 15: mutually_dependent.ads
1 package Mutually_Dependent is
2

3 type T1;
4 type T1_Access is access T1;
5

6 type T2;
(continues on next page)

150 Chapter 3. Records

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 type T2_Access is access T2;
8

9 type T1 is record
10 B : T2_Access;
11 end record;
12

13 type T2 is record
14 A : T1_Access;
15 end record;
16

17 end Mutually_Dependent;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Mutually_Dependent_Types.Mutually_
↪Dependent

MD5: 9a9899cd0dd2525bd27d67d6629a0071

Later on, we'll see that these code examples can be written using anonymous access types
(page 624).

In the Ada Reference Manual
• 3.10.1 Incomplete Type Declarations57

3.3 Null records

A null record is a record that doesn't have any components. Consequently, it cannot store
any information. When declaring a null record, we simply write null instead of declaring
actual components, as we usually do for records. For example:

Listing 16: null_recs.ads
1 package Null_Recs is
2

3 type Null_Record is record
4 null;
5 end record;
6

7 end Null_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Null_Record
MD5: 3c82da822710342354134fa71a03452a

Note that the syntax can be simplified to is null record, which is much more common
than the previous form:

Listing 17: null_recs.ads
1 package Null_Recs is
2

3 type Null_Record is null record;
(continues on next page)

57 http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html

3.3. Null records 151

http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4

5 end Null_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Null_Record
MD5: 1da1746ce5b0a237276272d2b620e282

Although a null record doesn't have components, we can still specify subprograms for it.
For example, we could specify an addition operation for it:

Listing 18: null_recs.ads
1 package Null_Recs is
2

3 type Null_Record is null record;
4

5 function "+" (A, B : Null_Record)
6 return Null_Record;
7

8 end Null_Recs;

Listing 19: null_recs.adb
1 package body Null_Recs is
2

3 function "+" (A, B : Null_Record)
4 return Null_Record
5 is
6 pragma Unreferenced (A, B);
7 begin
8 return (null record);
9 end "+";
10

11 end Null_Recs;

Listing 20: show_null_rec.adb
1 with Null_Recs; use Null_Recs;
2

3 procedure Show_Null_Rec is
4 A, B : Null_Record;
5 begin
6 B := A + A;
7 A := A + B;
8 end Show_Null_Rec;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Null_Record
MD5: 3a1c2fbae75541dfb0b2ff4c14d22039

In the Ada Reference Manual
• 4.3.1 Record Aggregates58

58 http://www.ada-auth.org/standards/22rm/html/RM-4-3-1.html

152 Chapter 3. Records

http://www.ada-auth.org/standards/22rm/html/RM-4-3-1.html

Advanced Journey With Ada: A Flight In Progress

3.3.1 Simple Prototyping

A null record doesn't provide much functionality on itself, as we're not storing any informa-
tion in it. However, it's far from being useless. For example, we canmake use of null records
to design an API, which we can then use in an application without having to implement the
actual functionality of the API. This allows us to design a prototype without having to think
about all the implementation details of the API in the first stage.
Consider this example:

Listing 21: devices.ads
1 package Devices is
2

3 type Device is private;
4

5 function Create
6 (Active : Boolean)
7 return Device;
8

9 procedure Reset
10 (D : out Device) is null;
11

12 procedure Process
13 (D : in out Device) is null;
14

15 procedure Activate
16 (D : in out Device) is null;
17

18 procedure Deactivate
19 (D : in out Device) is null;
20

21 private
22

23 type Device is null record;
24

25 function Create (Active : Boolean)
26 return Device is
27 (null record);
28

29 end Devices;

Listing 22: show_device.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Devices; use Devices;
3

4 procedure Show_Device is
5 A : Device;
6 begin
7 Put_Line ("Creating device...");
8 A := Create (Active => True);
9

10 Put_Line ("Processing on device...");
11 Process (A);
12

13 Put_Line ("Deactivating device...");
14 Deactivate (A);
15

16 Put_Line ("Activating device...");
17 Activate (A);
18

(continues on next page)

3.3. Null records 153

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
19 Put_Line ("Resetting device...");
20 Reset (A);
21 end Show_Device;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Device
MD5: 7d2fce20ac33607f7081381b307a564a

Runtime output

Creating device...
Processing on device...
Deactivating device...
Activating device...
Resetting device...

In the Devices package, we're declaring the Device type and its primitive subprograms:
Create, Reset, Process, Activate and Deactivate. This is the API that we use in our
prototype. Note that, although the Device type is declared as a private type, it's still defined
as a null record in the full view.
In this example, the Create function, implemented as an expression function in the private
part, simply returns a null record. As expected, this null record returned by Creatematches
the definition of the Device type.
All procedures associated with the Device type are implemented as null procedures, which
means they don't actually have an implementation nor have any effect. We'll discuss this
topic later on in the course (page 392).
In the Show_Device procedure — which is an application that implements our prototype —,
we declare an object of Device type and call all subprograms associated with that type.

3.3.2 Extending the prototype

Because we're either using expression functions or null procedures in the specification of
the Devices package, we don't have a package body for it (as there's nothing to be imple-
mented). We could, however, move those user messages from the Show_Devices proce-
dure to a dummy implementation of the Devices package. This is the adapted code:

Listing 23: devices.ads
1 package Devices is
2

3 type Device is null record;
4

5 function Create (Active : Boolean)
6 return Device;
7

8 procedure Reset (D : out Device);
9

10 procedure Process (D : in out Device);
11

12 procedure Activate (D : in out Device);
13

14 procedure Deactivate (D : in out Device);
15

16 end Devices;

154 Chapter 3. Records

Advanced Journey With Ada: A Flight In Progress

Listing 24: devices.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Devices is
4

5 function Create (Active : Boolean)
6 return Device
7 is
8 pragma Unreferenced (Active);
9 begin
10 Put_Line ("Creating device...");
11 return (null record);
12 end Create;
13

14 procedure Reset (D : out Device)
15 is
16 pragma Unreferenced (D);
17 begin
18 Put_Line ("Processing on device...");
19 end Reset;
20

21 procedure Process (D : in out Device)
22 is
23 pragma Unreferenced (D);
24 begin
25 Put_Line ("Deactivating device...");
26 end Process;
27

28 procedure Activate (D : in out Device)
29 is
30 pragma Unreferenced (D);
31 begin
32 Put_Line ("Activating device...");
33 end Activate;
34

35 procedure Deactivate (D : in out Device)
36 is
37 pragma Unreferenced (D);
38 begin
39 Put_Line ("Resetting device...");
40 end Deactivate;
41

42 end Devices;

Listing 25: show_device.adb
1 with Devices; use Devices;
2

3 procedure Show_Device is
4 A : Device;
5 begin
6 A := Create (Active => True);
7 Process (A);
8 Deactivate (A);
9 Activate (A);
10 Reset (A);
11 end Show_Device;

Code block metadata

3.3. Null records 155

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Device
MD5: 1a21b41f3847f6c132ccbc9696ab7689

Runtime output

Creating device...
Deactivating device...
Resetting device...
Activating device...
Processing on device...

As we changed the specification of the Devices package to not use null procedures, we
now need a corresponding package body for it. In this package body, we implement the
operations on the Device type, which actually just display a user message indicating which
operation is being called.
Let's focus on this updated version of the Show_Device procedure. Now that we've removed
all those calls to Put_Line from this procedure and just have the calls to operations asso-
ciated with the Device type, it becomes more apparent that, even though Device is just a
null record, we can design an application with a sequence of various commands operating
on it. Also, when we just read the source-code of the Show_Device procedure, there's no
clear indication that the Device type doesn't actually hold any information.

3.3.3 More complex applications

As we've just seen, we can use null records like any other type and create complex proto-
types with them. We could, for instance, design an application that makes use of many null
records, or even have types that depend on or derive from null records. Let's see a simple
example:

Listing 26: many_devices.ads
1 package Many_Devices is
2

3 type Device is null record;
4

5 type Device_Config is null record;
6

7 function Create (Config : Device_Config)
8 return Device is
9 (null record);
10

11 type Derived_Device is new Device;
12

13 procedure Process (D : Derived_Device) is null;
14

15 end Many_Devices;

Listing 27: show_derived_device.adb
1 with Many_Devices; use Many_Devices;
2

3 procedure Show_Derived_Device is
4 A : Device;
5 B : Derived_Device;
6 C : Device_Config;
7 begin
8 A := Create (Config => C);
9 B := Create (Config => C);

(continues on next page)

156 Chapter 3. Records

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10

11 Process (B);
12 end Show_Derived_Device;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Derived_Device
MD5: 757a3def24c8333a27b64943727d8d4e

In this example, the Create function has a null record parameter (of Device_Config type)
and returns a null record (of Device type). Also, we derive the Derived_Device type from
the Device type. Consequently, Derived_Device is also a null record (since it's derived
from a null record). In the Show_Derived_Device procedure, we declare objects of those
types (A, B and C) and call primitive subprograms to operate on them.
This example shows that, even though the types we've declared are just null records, they
can still be used to represent dependencies in our application.

3.3.4 Implementing the API

Let's focus again on the previous example. After we have an initial prototype, we can start
implementing some of the functionality needed for the Device type. For example, we can
store information about the current activation state in the record:

Listing 28: devices.ads
1 package Devices is
2

3 type Device is private;
4

5 function Create (Active : Boolean)
6 return Device;
7

8 procedure Reset (D : out Device);
9

10 procedure Process (D : in out Device);
11

12 procedure Activate (D : in out Device);
13

14 procedure Deactivate (D : in out Device);
15

16 private
17

18 type Device is record
19 Active : Boolean;
20 end record;
21

22 end Devices;

Listing 29: devices.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Devices is
4

5 function Create (Active : Boolean)
6 return Device
7 is
8 pragma Unreferenced (Active);

(continues on next page)

3.3. Null records 157

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 begin
10 Put_Line ("Creating device...");
11 return (Active => Active);
12 end Create;
13

14 procedure Reset (D : out Device)
15 is
16 pragma Unreferenced (D);
17 begin
18 Put_Line ("Processing on device...");
19 end Reset;
20

21 procedure Process (D : in out Device)
22 is
23 pragma Unreferenced (D);
24 begin
25 Put_Line ("Deactivating device...");
26 end Process;
27

28 procedure Activate (D : in out Device)
29 is
30 begin
31 Put_Line ("Activating device...");
32 D.Active := True;
33 end Activate;
34

35 procedure Deactivate (D : in out Device)
36 is
37 begin
38 Put_Line ("Resetting device...");
39 D.Active := False;
40 end Deactivate;
41

42 end Devices;

Listing 30: show_device.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Devices; use Devices;
3

4 procedure Show_Device is
5 A : Device;
6 begin
7 A := Create (Active => True);
8 Process (A);
9 Deactivate (A);
10 Activate (A);
11 Reset (A);
12 end Show_Device;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Device
MD5: 348ce0c110b47a6b6fd1c9fe73ef0558

Build output

devices.adb:11:25: warning: pragma Unreferenced given for "Active" [enabled by␣
↪default]

Runtime output

158 Chapter 3. Records

Advanced Journey With Ada: A Flight In Progress

Creating device...
Deactivating device...
Resetting device...
Activating device...
Processing on device...

Now, the Device record contains an Active component, which is used in the updated ver-
sions of Create, Activate and Deactivate.
Note that we haven't done any change to the implementation of the Show_Device proce-
dure: it's still the same application as before. As we've been hinting in the beginning, using
null records makes it easy for us to first create a prototype — as we did in the Show_Device
procedure — and postpone the API implementation to a later phase of the project.

3.3.5 Tagged null records

A null record may be tagged, as we can see in this example:

Listing 31: null_recs.ads
1 package Null_Recs is
2

3 type Tagged_Null_Record is
4 tagged null record;
5

6 type Abstract_Tagged_Null_Record is
7 abstract tagged null record;
8

9 end Null_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Tagged_Null_Record
MD5: 918572d2c50911b84c80a9c601b75439

As we see in this example, a type can be tagged, or even abstract tagged. We discuss
abstract types later on in the course.
As expected, in addition to deriving from tagged types, we can also extend them. For
example:

Listing 32: devices.ads
1 package Devices is
2

3 type Device is private;
4

5 function Create (Active : Boolean)
6 return Device;
7

8 type Derived_Device is private;
9

10 private
11

12 type Device is tagged null record;
13

14 function Create (Active : Boolean)
15 return Device is
16 (null record);
17

(continues on next page)

3.3. Null records 159

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
18 type Derived_Device is new Device with record
19 Active : Boolean;
20 end record;
21

22 function Create (Active : Boolean)
23 return Derived_Device is
24 (Active => Active);
25

26 end Devices;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Extended_Device
MD5: 15e06a5115cbcb131477b5224a6594db

In this example, we derive Derived_Device from the Device type and extend it with the
Active component. (Because we have a type extension, we also need to override the
Create function.)
Since we're now introducing elements from object-oriented programming, we could con-
sider using interfaces instead of null records. We'll discuss this topic later on in the course.

3.4 Per-Object Expressions

In record type declarations, wemight want to define a component that makes use of a name
that refers to a discriminant of the record type, or to the record type itself. An expression
where we use such a name is called a per-object expression.
The term "per-object" comes from the fact that, in the component definition, we're referring
to a piece of information that will be known just when creating an object of that type. For
example, if the per-object expression refers to a discriminant of a type T, the actual value of
that discriminant will only be specified when we declare an object of type T. Therefore, the
component definition is specific for that individual object — but not necessarily for other
objects of the same type, as we might use different values for the discriminant.
The constraint that contains a per-object expression is called a per-object constraint. The
actual constraint of that component isn't completely known when we declare the record
type, but only later on when an object of that type is created. (Note that the syntax of a
constraint includes the parentheses or the keyword range.)
In addition to referring to discriminants, per-object expressions can also refer to the record
type itself, as we'll see later.
Let's start with a simple record declaration:

Listing 33: rec_per_object_expressions.ads
1 package Rec_Per_Object_Expressions is
2

3 type Stack (S : Positive) is private;
4

5 private
6

7 type Integer_Array is
8 array (Positive range <>) of Integer;
9

10 type Stack (S : Positive) is record
11 Arr : Integer_Array (1 .. S);
12 -- ^^^^^^

(continues on next page)

160 Chapter 3. Records

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
13 --
14 -- S
15 -- ^
16 -- Per-object expression
17 --
18 -- (1 .. S)
19 -- ^^^^^^^^
20 -- Per-object constraint
21

22 Top : Natural := 0;
23 end record;
24

25 end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_
↪Expression

MD5: e4012454ea886fd429d82159b8d344b7

In this example, we see the Stack record type with a discriminant S. In the declaration
of the Arr component of the that type, S is a per-object expression, as it refers to the S
discriminant. Also, (1 .. S) is a per-object constraint.
Let's look at another example using anonymous access types (page 601):

Listing 34: rec_per_object_expressions.ads
1 package Rec_Per_Object_Expressions is
2

3 type T is private;
4

5 type T_Processor (Selected_T : access T) is
6 private;
7

8 private
9

10 type T is null record;
11

12 type T_Container (Selected_T : access T) is
13 null record;
14

15 type T_Processor (Selected_T : access T) is
16 record
17 E : T_Container (Selected_T);
18 --
19 -- Selected_T
20 -- ^^^^^^^^^^
21 -- Per-object expression
22 --
23 -- (Selected_T)
24 -- ^^^^^^^^^^^^
25 -- Per-object constraint
26 end record;
27

28 end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_
↪Expression_Access_Discriminant

MD5: 8b404688be1e103773c28a6977785836

3.4. Per-Object Expressions 161

Advanced Journey With Ada: A Flight In Progress

Let's focus on the T_Processor type from this example. The Selected_T discriminant is
being used in the definition of the E component. The per-object constraint is (Selected_T).
Finally, per-object expressions can also refer to the record type we're declaring. For exam-
ple:

Listing 35: rec_per_object_expressions.ads
1 package Rec_Per_Object_Expressions is
2

3 type T is limited private;
4

5 private
6

7 type T_Processor (Selected_T : access T) is
8 null record;
9

10 type T is limited record
11 E : T_Processor (T'Access);
12 --
13 -- T'Access
14 -- ^^^^^^^^
15 -- Per-object expression
16 --
17 -- (T'Access)
18 -- ^^^^^^^^^^
19 -- Per-object constraint
20 end record;
21

22 end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_
↪Expression_Access_Discriminant

MD5: a67b3034008fdf2a8c5fd1b6da769128

In this example, when we write T'Access within the declaration of the T record type, the
actual value for the Access attribute will be known when an object of T type is created. In
that sense, T'Access is a per-object expression — (T'Access) is the corresponding per-
object constraint.
Note that T'Access is referring to the type within a type definition. This is generally treated
as a reference to the object being created, the so-called current instance.

Relevant topics
• 3.8 Record Types59

59 http://www.ada-auth.org/standards/22rm/html/RM-3-8.html

162 Chapter 3. Records

http://www.ada-auth.org/standards/22rm/html/RM-3-8.html

Advanced Journey With Ada: A Flight In Progress

3.4.1 Default value

We can also use per-object expressions to calculate the default value of a record component:

Listing 36: rec_per_object_expressions.ads
1 package Rec_Per_Object_Expressions is
2

3 type T (D : Positive) is private;
4

5 private
6

7 type T (D : Positive) is record
8 V : Natural := D - 1;
9 -- ^^^^^
10 -- Per-object expression
11

12 S : Natural := D'Size;
13 -- ^^^^^^
14 -- Per-object expression
15 end record;
16

17 end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_
↪Expression_Default_Value

MD5: 70454b0b116094a02b897d8d1d0080fb

Here, we calculate the default value of V using the per-object expression D - 1, and the
default of value of S using the per-object D'Size.
The default expression for a component of a discriminated record can be an arbitrary per-
object expression. (This contrasts with important restrictions (page 164) that exist for per-
object constraints, as we discuss later on.) Such expressions might include function calls
or uses of any defined operator. For this reason, the following code example is accepted by
the compiler:

Listing 37: rec_per_object_expressions.ads
1 package Rec_Per_Object_Expressions is
2

3 type Stack (S : Positive) is private;
4

5 private
6

7 type Integer_Array is
8 array (Positive range <>) of Integer;
9

10 type Stack (S : Positive) is record
11 Arr : Integer_Array (1 .. S);
12

13 Top : Natural := 0;
14

15 Overflow_Warning : Positive
16 := S * 9 / 10;
17 -- ^^^^^^^^^^
18 -- Per-object expression
19 -- using computation for
20 -- the default expression.
21 end record

(continues on next page)

3.4. Per-Object Expressions 163

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
22 with
23 Dynamic_Predicate =>
24 Overflow_Warning in
25 (S + 1) / 2 .. S - 1;
26 --
27 -- (S + 1) / 2
28 -- ^^^^^^^^^^^
29 -- Per-object expression
30 -- using computation.
31 --
32 -- S - 1
33 -- ^^^^^
34 -- Per-object expression
35 -- using computation.
36

37 end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_
↪Expression_Computation

MD5: 6783568fd3e76a85ca7c1cc65ba023c5

In this example, we can identify multiple per-object expressions that use a computation: S
* 9 / 10, (S + 1) / 2, and S - 1.

3.4.2 Restrictions

There are some important restrictions on per-object constraints:
Per-object range constraints such as 1 .. T'Size are not allowed.
• For example, the following code example doesn't compile:

Listing 38: rec_per_object_expressions.ads
1 package Rec_Per_Object_Expressions is
2

3 type Bit_Field is
4 array (Positive range <>) of Boolean
5 with Pack;
6

7 type T is record
8 Arr : Bit_Field (1 .. T'Size);
9 -- ^^^^^^
10 -- ERROR: per-object range constraint
11 -- using the Size attribute
12 -- is illegal.
13 end record;
14

15 end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_
↪Expressions.Per_Object_Expression_Range_Constraint

MD5: c2ac9588c1d1adac8c584a0e36a81342

Build output

164 Chapter 3. Records

Advanced Journey With Ada: A Flight In Progress

rec_per_object_expressions.ads:8:30: error: in a constraint the␣
↪current instance can only be used with an access attribute

gprbuild: *** compilation phase failed

1. Within a per-object index constraint or discriminant constraint, each per-object expres-
sion must be the name of a discriminant directly, without any further computation.
• Therefore, we're allowed to write (1 .. S)— as we've seen in a previous example
—. However, writing (1 .. S - 1) would be illegal.

• For example, the following adaptation to the previous code example doesn't com-
pile:

Listing 39: rec_per_object_expressions.ads
1 package Rec_Per_Object_Expressions is
2

3 type Stack (S : Positive) is private;
4

5 private
6

7 type Integer_Array is
8 array (Natural range <>) of Integer;
9

10 type Stack (S : Positive) is record
11 Arr : Integer_Array (0 .. S - 1);
12 -- ^^^^^
13 -- ERROR: computation in per-object
14 -- expression is illegal.
15

16 Top : Integer := -1;
17 end record;
18

19 end Rec_Per_Object_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_
↪Expressions.Per_Object_Expression_Range_Computation

MD5: 1224bb63f7953743d84a258226c35c50

Build output

rec_per_object_expressions.ads:11:33: error: discriminant in␣
↪constraint must appear alone

gprbuild: *** compilation phase failed

In this example, using the computation S - 1 to specify the range of Arr isn't
permitted. (Note that, as we've seen before (page 163), this restriction doesn't
apply when the computation is used in a per-object expression that calculates the
default value of a component.)

2. We can only use access attributes (T'Access and T'Unchecked_Access) in per-object
constraints.

3.4. Per-Object Expressions 165

Advanced Journey With Ada: A Flight In Progress

166 Chapter 3. Records

CHAPTER

FOUR

AGGREGATES

4.1 Container Aggregates

Note: This feature was introduced in Ada 2022.

A container aggregate is a list of elements — such as [1, 2, 3]— that we use to initialize
or assign to a container. For example:

Listing 1: show_container_aggregate.adb
1 pragma Ada_2022;
2

3 with Ada.Containers.Vectors;
4

5 procedure Show_Container_Aggregate is
6

7 package Float_Vec is new
8 Ada.Containers.Vectors (Positive, Float);
9

10 V : constant Float_Vec.Vector :=
11 [1.0, 2.0, 3.0];
12

13 pragma Unreferenced (V);
14 begin
15 null;
16 end Show_Container_Aggregate;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Container_Aggregates.Simple_
↪Container_Aggregate

MD5: ef13386fef0b7be0b3ea999a7752d5f1

In this example, [1.0, 2.0, 3.0] is a container aggregate that we use to initialize a vector
V.
We can specify container aggregates in three forms:
• as a null container aggregate, which indicates a container without any elements and
is represented by the [] syntax;

• as a positional container aggregate, where the elements are simply listed in a se-
quence (such as [1, 2]);

• as a named container aggregate, where a key is indicated for each element of the list
(such as [1 => 10, 2 => 15]).

Let's look at a complete example:

167

Advanced Journey With Ada: A Flight In Progress

Listing 2: show_container_aggregate.adb
1 pragma Ada_2022;
2

3 with Ada.Containers.Vectors;
4

5 procedure Show_Container_Aggregate is
6

7 package Float_Vec is new
8 Ada.Containers.Vectors (Positive, Float);
9

10 -- Null container aggregate
11 Null_V : constant Float_Vec.Vector :=
12 [];
13

14 -- Positional container aggregate
15 Pos_V : constant Float_Vec.Vector :=
16 [1.0, 2.0, 3.0];
17

18 -- Named container aggregate
19 Named_V : constant Float_Vec.Vector :=
20 [1 => 1.0,
21 2 => 2.0,
22 3 => 3.0];
23

24 pragma Unreferenced (Null_V, Pos_V, Named_V);
25 begin
26 null;
27 end Show_Container_Aggregate;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Container_Aggregates.Simple_
↪Container_Aggregate

MD5: 15ed6370377423044368a5d56402e940

In this example, we see the three forms of container aggregates. The difference between
positional and named container aggregates is that:
• for positional container aggregates, the vector index is implied by its position;

while
• for named container aggregates, the index (or key) of each element is explicitly indi-
cated.

Also, the named container aggregate in this example (Named_V) is using an index as the
name (i.e. it's an indexed aggregate). Another option is to use non-indexed aggregates,
where we use actual keys — as we do in maps. For example:

Listing 3: show_named_container_aggregate.adb
1 pragma Ada_2022;
2

3 with Ada.Containers.Vectors;
4 with Ada.Containers.Indefinite_Hashed_Maps;
5 with Ada.Strings.Hash;
6

7 procedure Show_Named_Container_Aggregate is
8

9 package Float_Vec is new
10 Ada.Containers.Vectors (Positive, Float);
11

(continues on next page)

168 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
12 package Float_Hashed_Maps is new
13 Ada.Containers.Indefinite_Hashed_Maps
14 (Key_Type => String,
15 Element_Type => Float,
16 Hash => Ada.Strings.Hash,
17 Equivalent_Keys => "=");
18

19 -- Named container aggregate
20 -- using an index
21 Indexed_Named_V : constant Float_Vec.Vector :=
22 [1 => 1.0,
23 2 => 2.0,
24 3 => 3.0];
25

26 -- Named container aggregate
27 -- using a key
28 Keyed_Named_V : constant
29 Float_Hashed_Maps.Map :=
30 ["Key_1" => 1.0,
31 "Key_2" => 2.0,
32 "Key_3" => 3.0];
33

34 pragma Unreferenced (Indexed_Named_V,
35 Keyed_Named_V);
36 begin
37 null;
38 end Show_Named_Container_Aggregate;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Container_Aggregates.Named_
↪Container_Aggregate

MD5: 2eabf312c243856dcb2d6884f71e19e2

In this example, Indexed_Named_V and Keyed_Named_V are both initialized with a named
container aggregate. However:
• the container aggregate for Indexed_Named_V is an indexed aggregate, so we use an
index for each element;

while
• the container aggregate for Keyed_Named_V has a key for each element.

Later on, we'll talk about the Aggregate aspect, which allows for defining custom container
aggregates for any record type.

In the Ada Reference Manual
• 4.3.5 Container Aggregates60

60 http://www.ada-auth.org/standards/22rm/html/RM-4-3-5.html

4.1. Container Aggregates 169

http://www.ada-auth.org/standards/22rm/html/RM-4-3-5.html

Advanced Journey With Ada: A Flight In Progress

4.2 Record aggregates

We've already seen record aggregates in the Introduction to Ada61 course, so this is just a
brief overview on the topic.
As we already know, record aggregates can have positional and named component associ-
ations. For example, consider this package:

Listing 4: points.ads
1 package Points is
2

3 type Point_3D is record
4 X, Y, Z : Integer;
5 end record;
6

7 procedure Display (P : Point_3D);
8

9 end Points;

Listing 5: points.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Points is
4

5 procedure Display (P : Point_3D) is
6 begin
7 Put_Line ("(X => "
8 & Integer'Image (P.X)
9 & ",");
10 Put_Line (" Y => "
11 & Integer'Image (P.Y)
12 & ",");
13 Put_Line (" Z => "
14 & Integer'Image (P.Z)
15 & ")");
16 end Display;
17

18 end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_
↪Rec_Aggregates

MD5: fd01961cf1da9b48d2a6150da30f7377

We can use positional or named record aggregates when assigning to an object P of
Point_3D type:

Listing 6: show_record_aggregates.adb
1 with Points; use Points;
2

3 procedure Show_Record_Aggregates is
4 P : Point_3D;
5 begin
6 -- Positional component association
7 P := (0, 1, 2);

(continues on next page)
61 https://learn.adacore.com/courses/intro-to-ada/chapters/records.html#intro-ada-record-aggregates

170 Chapter 4. Aggregates

https://learn.adacore.com/courses/intro-to-ada/chapters/records.html#intro-ada-record-aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8

9 Display (P);
10

11 -- Named component association
12 P := (X => 3,
13 Y => 4,
14 Z => 5);
15

16 Display (P);
17 end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_
↪Rec_Aggregates

MD5: fc4cff950e31a633ab4e2ae3d21ddc7b

Runtime output

(X => 0,
Y => 1,
Z => 2)
(X => 3,
Y => 4,
Z => 5)

Also, we can have a mixture of both:

Listing 7: show_record_aggregates.adb
1 with Points; use Points;
2

3 procedure Show_Record_Aggregates is
4 P : Point_3D;
5 begin
6 -- Positional and named component associations
7 P := (3, 4,
8 Z => 5);
9

10 Display (P);
11 end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_
↪Rec_Aggregates

MD5: 493a2a87b4b28dfb0882ad73acf84710

Runtime output

(X => 3,
Y => 4,
Z => 5)

In this case, only the Z component has a named association, while the other components
have a positional association.
Note that a positional association cannot follow a named association, so we cannot write
P := (3, Y => 4, 5);, for example. Once we start using a named association for a
component, we have to continue using it for the remaining components.

4.2. Record aggregates 171

Advanced Journey With Ada: A Flight In Progress

In addition, we can choose multiple components at once and assign the same value to
them. For that, we use the | syntax:

Listing 8: show_record_aggregates.adb
1 with Points; use Points;
2

3 procedure Show_Record_Aggregates is
4 P : Point_3D;
5 begin
6 -- Multiple component selection
7 P := (X | Y => 5,
8 Z => 6);
9

10 Display (P);
11 end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_
↪Rec_Aggregates

MD5: a4fde562fb60d290caf46d86b13e694b

Runtime output

(X => 5,
Y => 5,
Z => 6)

Here, we assign 5 to both X and Y.

In the Ada Reference Manual
• 4.3.1 Record Aggregates62

4.2.1 <>

We can use the <> syntax to tell the compiler to use the default value for specific compo-
nents. However, if there's no default value for specific components, that component isn't
initialized to a known value. For example:

Listing 9: show_record_aggregates.adb
1 with Points; use Points;
2

3 procedure Show_Record_Aggregates is
4 P : Point_3D;
5 begin
6 P := (0, 1, 2);
7 Display (P);
8

9 -- Specifying X component.
10 P := (X => 42,
11 Y => <>,
12 Z => <>);
13 Display (P);
14

(continues on next page)
62 http://www.ada-auth.org/standards/22rm/html/RM-4-3-1.html

172 Chapter 4. Aggregates

http://www.ada-auth.org/standards/22rm/html/RM-4-3-1.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
15 -- Specifying Y and Z components.
16 P := (X => <>,
17 Y => 10,
18 Z => 20);
19 Display (P);
20 end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_
↪Rec_Aggregates

MD5: 25145e7cba5a566c518ac4218e550899

Runtime output

(X => 0,
Y => 1,
Z => 2)
(X => 42,
Y => 1,
Z => 2)
(X => 42,
Y => 10,
Z => 20)

Here, as the components of Point_3D don't have a default value, those components that
have <> are not initialized:
• when we write (X => 42, Y => <>, Z => <>), only X is initialized;
• when we write (X => <>, Y => 10, Z => 20) instead, only X is uninitialized.

For further reading...
As we've just seen, all components that get a <> are uninitialized because the components
of Point_3D don't have a default value. As no initialization is taking place for those com-
ponents of the aggregate, the actual value that is assigned to the record is undefined. In
other words, the resulting behavior might dependent on the compiler's implementation.
When using GNAT, writing (X => 42, Y => <>, Z => <>) keeps the value of Y and Z intact,
while (X => <>, Y => 10, Z => 20) keeps the value of X intact.

If the components of Point_3D had default values, those would have been used. For ex-
ample, we may change the type declaration of Point_3D and use default values for each
component:

Listing 10: points.ads
1 package Points is
2

3 type Point_3D is record
4 X : Integer := 10;
5 Y : Integer := 20;
6 Z : Integer := 30;
7 end record;
8

9 procedure Display (P : Point_3D);
10

11 end Points;

Code block metadata

4.2. Record aggregates 173

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_
↪Rec_Aggregates

MD5: 8a716db129e6f231c4003b77d8b61ea3

Then, writing <> makes use of those default values we've just specified:

Listing 11: show_record_aggregates.adb
1 with Points; use Points;
2

3 procedure Show_Record_Aggregates is
4 P : Point_3D := (0, 0, 0);
5 begin
6 -- Using default value for
7 -- all components
8 P := (X => <>,
9 Y => <>,
10 Z => <>);
11 Display (P);
12 end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_
↪Rec_Aggregates

MD5: e64c6fe4e4b3dbaa084d9b97b4fb971f

Runtime output

(X => 10,
Y => 20,
Z => 30)

Now, as expected, the default values of each component (10, 20 and 30) are used when
we write <>.
Similarly, we can specify a default value for the type of each component. For example, let's
declare a Point_Value type with a default value — using the Default_Value aspect — and
use it in the Point_3D record type:

Listing 12: points.ads
1 package Points is
2

3 type Point_Value is new Float
4 with Default_Value => 99.9;
5

6 type Point_3D is record
7 X : Point_Value;
8 Y : Point_Value;
9 Z : Point_Value;
10 end record;
11

12 procedure Display (P : Point_3D);
13

14 end Points;

Listing 13: points.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

(continues on next page)

174 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 package body Points is
4

5 procedure Display (P : Point_3D) is
6 begin
7 Put_Line ("(X => "
8 & Point_Value'Image (P.X)
9 & ",");
10 Put_Line (" Y => "
11 & Point_Value'Image (P.Y)
12 & ",");
13 Put_Line (" Z => "
14 & Point_Value'Image (P.Z)
15 & ")");
16 end Display;
17

18 end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_
↪Aggregate_Default_Value

MD5: 508d7f5e7d02da1677485f7d588847f6

Then, writing <> makes use of the default value of the Point_Value type:

Listing 14: show_record_aggregates.adb
1 with Points; use Points;
2

3 procedure Show_Record_Aggregates is
4 P : Point_3D := (0.0, 0.0, 0.0);
5 begin
6 -- Using default value of Point_Value
7 -- for all components
8 P := (X => <>,
9 Y => <>,
10 Z => <>);
11 Display (P);
12 end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_
↪Aggregate_Default_Value

MD5: 895799077af4a295c250480c32954a2c

Runtime output

(X => 9.99000E+01,
Y => 9.99000E+01,
Z => 9.99000E+01)

In this case, the default value of the Point_Value type (99.9) is used for all components
when we write <>.

4.2. Record aggregates 175

Advanced Journey With Ada: A Flight In Progress

4.2.2 others

Also, we can use the others selector to assign a value to all components that aren't explic-
itly mentioned in the aggregate. For example:

Listing 15: show_record_aggregates.adb
1 with Points; use Points;
2

3 procedure Show_Record_Aggregates is
4 P : Point_3D;
5 begin
6 -- Specifying X component;
7 -- using 42 for all
8 -- other components.
9 P := (X => 42,
10 others => 100);
11 Display (P);
12

13 -- Specifying all components
14 P := (others => 256);
15 Display (P);
16 end Show_Record_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_
↪Rec_Aggregates

MD5: 3146363eb36ab4485c7755794fb78bbc

Runtime output

(X => 42,
Y => 100,
Z => 100)
(X => 256,
Y => 256,
Z => 256)

When we write P := (X => 42, others => 100), we're assigning 42 to X and 100 to all
other components (Y and Z in this case). Also, when we write P := (others => 256), all
components have the same value (256).
Note that writing a specific value in others— such as (others => 256)— only works when
all components have the same type. In this example, all components of Point_3D have the
same type: Integer. If we had components with different types in the components selected
by others, say Integer and Float, then (others => 256)would trigger a compilation error.
For example, consider this package:

Listing 16: custom_records.ads
1 package Custom_Records is
2

3 type Integer_Float is record
4 A, B : Integer := 0;
5 Y, Z : Float := 0.0;
6 end record;
7

8 end Custom_Records;

Code block metadata

176 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_
↪Aggregates_Others

MD5: 875e470aa2cbc5fcfefae649ed5528f6

If we had written an aggregate such as (others => 256) for an object of type Inte-
ger_Float, the value (256) would be OK for components A and B, but not for components
Y and Z:

Listing 17: show_record_aggregates_others.adb
1 with Custom_Records; use Custom_Records;
2

3 procedure Show_Record_Aggregates_Others is
4 Dummy : Integer_Float;
5 begin
6 -- ERROR: components selected by
7 -- others must be of same
8 -- type.
9 Dummy := (others => 256);
10 end Show_Record_Aggregates_Others;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_
↪Aggregates_Others

MD5: d543ee07e24caf63384ab0d140054be2

Build output

show_record_aggregates_others.adb:9:14: error: components in "others" choice must␣
↪have same type

show_record_aggregates_others.adb:9:24: error: expected type "Standard.Float"
show_record_aggregates_others.adb:9:24: error: found type universal integer
gprbuild: *** compilation phase failed

We can fix this compilation error by making sure that others only refers to components of
the same type:

Listing 18: show_record_aggregates_others.adb
1 with Custom_Records; use Custom_Records;
2

3 procedure Show_Record_Aggregates_Others is
4 Dummy : Integer_Float;
5 begin
6 -- OK: components selected by
7 -- others have Integer type.
8 Dummy := (Y | Z => 256.0,
9 others => 256);
10 end Show_Record_Aggregates_Others;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_
↪Aggregates_Others

MD5: d01977a49e08d2c6cb6b7788581ed56f

In any case, writing (others => <>) is always accepted by the compiler because it simply
selects the default value of each component, so the type of those values is unambiguous:

4.2. Record aggregates 177

Advanced Journey With Ada: A Flight In Progress

Listing 19: show_record_aggregates_others.adb
1 with Custom_Records; use Custom_Records;
2

3 procedure Show_Record_Aggregates_Others is
4 Dummy : Integer_Float;
5 begin
6 Dummy := (others => <>);
7 end Show_Record_Aggregates_Others;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_
↪Aggregates_Others

MD5: db9b72ffc933436e76305887276eeafd

This code compiles because <> uses the appropriate default value of each component.

4.2.3 Record discriminants

When a record type has discriminants, they must appear as components of an aggregate
of that type. For example, consider this package:

Listing 20: points.ads
1 package Points is
2

3 type Point_Dimension is (Dim_1, Dim_2, Dim_3);
4

5 type Point (D : Point_Dimension) is record
6 case D is
7 when Dim_1 =>
8 X1 : Integer;
9 when Dim_2 =>
10 X2, Y2 : Integer;
11 when Dim_3 =>
12 X3, Y3, Z3 : Integer;
13 end case;
14 end record;
15

16 procedure Display (P : Point);
17

18 end Points;

Listing 21: points.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Points is
4

5 procedure Display (P : Point) is
6 begin
7 Put_Line (Point_Dimension'Image (P.D));
8

9 case P.D is
10 when Dim_1 =>
11 Put_Line (" (X => "
12 & Integer'Image (P.X1)
13 & ")");

(continues on next page)

178 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14 when Dim_2 =>
15 Put_Line (" (X => "
16 & Integer'Image (P.X2)
17 & ",");
18 Put_Line (" Y => "
19 & Integer'Image (P.Y2)
20 & ")");
21 when Dim_3 =>
22 Put_Line (" (X => "
23 & Integer'Image (P.X3)
24 & ",");
25 Put_Line (" Y => "
26 & Integer'Image (P.Y3)
27 & ",");
28 Put_Line (" Z => "
29 & Integer'Image (P.Z3)
30 & ")");
31 end case;
32 end Display;
33

34 end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_
↪Aggregate_Discriminant

MD5: bd71322a65ca50e1eefa0aedd407931a

To write aggregates of the Point type, we have to specify the D discriminant as a component
of the aggregate. The discriminant must be included in the aggregate — and must be static
— because the compiler must be able to examine the aggregate to determine if it is both
complete and consistent. All components must be accounted for one way or another, as
usual — but, in addition, references to those components whose existence depends on
the discriminant's values must be consistent with the actual discriminant value used in
the aggregate. For example, for type Point, an aggregate can only reference the X3, Y3,
and Z3 components when Dim_3 is specified for the discriminant D; otherwise, those three
components don't exist in that aggregate. Also, the discriminant D must be the first one if
we use positional component association. For example:

Listing 22: show_rec_aggregate_discriminant.adb
1 with Points; use Points;
2

3 procedure Show_Rec_Aggregate_Discriminant is
4 -- Positional component association
5 P1 : constant Point := (Dim_1, 0);
6

7 -- Named component association
8 P2 : constant Point := (D => Dim_2,
9 X2 => 3,
10 Y2 => 4);
11

12 -- Positional / named component association
13 P3 : constant Point := (Dim_3,
14 X3 => 3,
15 Y3 => 4,
16 Z3 => 5);
17 begin
18 Display (P1);
19 Display (P2);

(continues on next page)

4.2. Record aggregates 179

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
20 Display (P3);
21 end Show_Rec_Aggregate_Discriminant;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_
↪Aggregate_Discriminant

MD5: d487e0c68ea69c3e0f2adb8ac958e31d

Runtime output

DIM_1
(X => 0)

DIM_2
(X => 3,
Y => 4)

DIM_3
(X => 3,
Y => 4,
Z => 5)

As we see in this example, we can use any component association in the aggregate, as long
as we make sure that the discriminants of the type appear as components — and are the
first components in the case of positional component association.

4.3 Full coverage rules for Aggregates

Note: This section was originally written by Robert A. Duff and published as Gem #1:
Limited Types in Ada 200563.

One interesting feature of Ada are the full coverage rules for aggregates. For example,
suppose we have a record type:

Listing 23: persons.ads
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 package Persons is
5 type Years is new Natural;
6

7 type Person is record
8 Name : Unbounded_String;
9 Age : Years;
10 end record;
11 end Persons;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.
↪Full_Coverage_Rules

MD5: 7755bffa8b4473c425ae5075e9c478e9

We can create an object of the type using an aggregate:
63 https://www.adacore.com/gems/gem-1

180 Chapter 4. Aggregates

https://www.adacore.com/gems/gem-1
https://www.adacore.com/gems/gem-1

Advanced Journey With Ada: A Flight In Progress

Listing 24: show_aggregate_init.adb
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 with Persons; use Persons;
5

6 procedure Show_Aggregate_Init is
7

8 X : constant Person :=
9 (Name =>
10 To_Unbounded_String ("John Doe"),
11 Age => 25);
12 begin
13 null;
14 end Show_Aggregate_Init;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.
↪Full_Coverage_Rules

MD5: 681e665b76265eff4c4d870ec011ba37

The full coverage rules say that every component of Person must be accounted for in the
aggregate. If we later modify type Person by adding a component:

Listing 25: persons.ads
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 package Persons is
5 type Years is new Natural;
6

7 type Person is record
8 Name : Unbounded_String;
9 Age : Natural;
10 Shoe_Size : Positive;
11 end record;
12 end Persons;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.
↪Full_Coverage_Rules

MD5: 5fc5b93748d92932bfc9e0f15c0228b7

and we forget to modify X accordingly, the compiler will remind us. Case statements also
have full coverage rules, which serve a similar purpose.
Of course, we can defeat the full coverage rules by using others (usually for array ag-
gregates (page 182) and case statements, but occasionally useful for record aggregates
(page 170)):

Listing 26: show_aggregate_init_others.adb
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 with Persons; use Persons;
5

6 procedure Show_Aggregate_Init_Others is
(continues on next page)

4.3. Full coverage rules for Aggregates 181

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7

8 X : constant Person :=
9 (Name =>
10 To_Unbounded_String ("John Doe"),
11 others => 25);
12 begin
13 null;
14 end Show_Aggregate_Init_Others;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.
↪Full_Coverage_Rules

MD5: 6d26de8dd6820682cb9150dcbb40f106

According to the Ada RM, others here means precisely the same thing as Age | Shoe_Size.
But that's wrong: what others really means is "all the other components, including the ones
we might add next week or next year". That means you shouldn't use others unless you're
pretty sure it should apply to all the cases that haven't been invented yet.
Later on, we'll discuss full coverage rules for limited types (page 700).

4.4 Array aggregates

We've already discussed array aggregates in the Introduction to Ada64 course. Therefore,
this section just presents some details about this topic.

In the Ada Reference Manual
• 4.3.3 Array Aggregates65

4.4.1 Positional and named array aggregates

Note: The array aggregate syntax using brackets (e.g.: [1, 2, 3]), which we mention in
this section, was introduced in Ada 2022.

Similar to record aggregates (page 170), array aggregates can be positional or named.
Consider this package:

Listing 27: points.ads
1 package Points is
2

3 type Point_3D is array (1 .. 3) of Integer;
4

5 procedure Display (P : Point_3D);
6

7 end Points;

64 https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-array-type-declaration
65 http://www.ada-auth.org/standards/22rm/html/RM-4-3-3.html

182 Chapter 4. Aggregates

https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-array-type-declaration
http://www.ada-auth.org/standards/22rm/html/RM-4-3-3.html

Advanced Journey With Ada: A Flight In Progress

Listing 28: points.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 package body Points is
6

7 procedure Display (P : Point_3D) is
8 begin
9 Put_Line ("(X => "
10 & Integer'Image (P (1))
11 & ",");
12 Put_Line (" Y => "
13 & Integer'Image (P (2))
14 & ",");
15 Put_Line (" Z => "
16 & Integer'Image (P (3))
17 & ")");
18 end Display;
19

20 end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates

MD5: 7ed70d1c9685bc36900e1713619f3321

We can write positional or named aggregates when assigning to an object P of Point_3D
type:

Listing 29: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Array_Aggregates is
6 P : Point_3D;
7 begin
8 -- Positional component association
9 P := [0, 1, 2];
10

11 Display (P);
12

13 -- Named component association
14 P := [1 => 3,
15 2 => 4,
16 3 => 5];
17

18 Display (P);
19 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates

MD5: 5913ef6f43ea873de4e3f0760265de4b

Runtime output

4.4. Array aggregates 183

Advanced Journey With Ada: A Flight In Progress

(X => 0,
Y => 1,
Z => 2)
(X => 3,
Y => 4,
Z => 5)

In this example, we assign a positional array aggregate ([1, 2, 3]) to P. Then, we assign
a named array aggregate ([1 => 3, 2 => 4, 3 => 5]) to P. In this case, the names are
the indices of the components we're assigning to.
We can also assign array aggregates to slices:

Listing 30: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Array_Aggregates is
6 P : Point_3D := [others => 0];
7 begin
8 -- Positional component association
9 P (2 .. 3) := [1, 2];
10

11 Display (P);
12

13 -- Named component association
14 P (2 .. 3) := [1 => 3,
15 2 => 4];
16

17 Display (P);
18 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates

MD5: 8b36bd7638bd765f45693b78c5c7b872

Runtime output

(X => 0,
Y => 1,
Z => 2)
(X => 0,
Y => 3,
Z => 4)

Note that, when using a named array aggregate, the index (name) that we use in the
aggregate doesn't have to match the slice. In this example, we're assigning the component
from index 1 of the aggregate to the component of index 2 of the array P (and so on).

Historically
In the first versions of Ada, we could only write array aggregates using parentheses.

Listing 31: show_array_aggregates.adb
1 pragma Ada_2012;
2

(continues on next page)

184 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 with Points; use Points;
4

5 procedure Show_Array_Aggregates is
6 P : Point_3D;
7 begin
8 -- Positional component association
9 P := (0, 1, 2);
10

11 Display (P);
12

13 -- Named component association
14 P := (1 => 3,
15 2 => 4,
16 3 => 5);
17

18 Display (P);
19 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.
↪Array_Aggregates

MD5: 3d9f1fda006f1d566ae2743240568879

Runtime output

(X => 0,
Y => 1,
Z => 2)
(X => 3,
Y => 4,
Z => 5)

This syntax is considered obsolescent since Ada 2022: brackets ([1, 2, 3])
should be used instead.

4.4.2 Null array aggregate

Note: This feature was introduced in Ada 2022.

We can also write null array aggregates: []. As the name implies, this kind of array aggre-
gate doesn't have any components.
Consider this package:

Listing 32: integer_arrays.ads
1 package Integer_Arrays is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 procedure Display (A : Integer_Array);
7

8 end Integer_Arrays;

4.4. Array aggregates 185

Advanced Journey With Ada: A Flight In Progress

Listing 33: integer_arrays.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 package body Integer_Arrays is
6

7 procedure Display (A : Integer_Array) is
8 begin
9 Put_Line ("Length = "
10 & A'Length'Image);
11

12 Put_Line ("(");
13 for I in A'Range loop
14 Put (" "
15 & I'Image
16 & " => "
17 & A (I)'Image);
18 if I /= A'Last then
19 Put_Line (",");
20 else
21 New_Line;
22 end if;
23 end loop;
24 Put_Line (")");
25 end Display;
26

27 end Integer_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates_2

MD5: 412ebe9de1dfb9157f5379d31162554d

We can initialize an object N of Integer_Array type with a null array aggregate:

Listing 34: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Integer_Arrays; use Integer_Arrays;
4

5 procedure Show_Array_Aggregates is
6 N : constant Integer_Array := [];
7 begin
8 Display (N);
9 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates_2

MD5: 8cdb9a004ea16f716bf2e2ad5a65358e

Runtime output

Length = 0
(
)

186 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

In this example, when we call the Display procedure, we confirm that N doesn't have any
components.

4.4.3 |, <>, others

We've seen the following syntactic elements when we were discussing record aggregates
(page 170): |, <> and others. We can apply them to array aggregates as well:

Listing 35: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Array_Aggregates is
6 P : Point_3D;
7 begin
8 -- All components have a value of zero.
9 P := [others => 0];
10

11 Display (P);
12

13 -- Both first and second components have
14 -- a value of three.
15 P := [1 | 2 => 3,
16 3 => 4];
17

18 Display (P);
19

20 -- The default value is used for the first
21 -- component, and all other components
22 -- have a value of five.
23 P := [1 => <>,
24 others => 5];
25

26 Display (P);
27 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates

MD5: 053d4f162cc676b61d8e8a720321d40f

Runtime output

(X => 0,
Y => 0,
Z => 0)
(X => 3,
Y => 3,
Z => 4)
(X => 1358105832,
Y => 5,
Z => 5)

In this example, we use the |, <> and others elements in a very similar way as we did with
record aggregates. (See the comments in the code example for more details.)
Note that, as for record aggregates, the <>makes use of the default value (if it is available).
We discuss this topic in more details later on (page 197).

4.4. Array aggregates 187

Advanced Journey With Ada: A Flight In Progress

4.4.4 ..

We can also use the range syntax (..) with array aggregates:

Listing 36: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Array_Aggregates is
6 P : Point_3D;
7 begin
8 -- All components have a value of zero.
9 P := [1 .. 3 => 0];
10

11 Display (P);
12

13 -- Both first and second components have
14 -- a value of three.
15 P := [1 .. 2 => 3,
16 3 => 4];
17

18 Display (P);
19

20 -- The default value is used for the first
21 -- component, and all other components
22 -- have a value of five.
23 P := [1 => <>,
24 2 .. 3 => 5];
25

26 Display (P);
27 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates

MD5: bb36de6dcddf4b0bdcd5aa730f0988b1

Runtime output

(X => 0,
Y => 0,
Z => 0)
(X => 3,
Y => 3,
Z => 4)
(X => -1004229096,
Y => 5,
Z => 5)

This example is a variation of the previous one. However, in this case, we're using ranges
instead of the | and others syntax.

188 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

4.4.5 Missing components

All aggregate components must have an associated value. If we don't specify a value for a
certain component, an exception is raised:

Listing 37: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Array_Aggregates is
6 P : Point_3D;
7 begin
8 P := [1 => 4];
9 -- ERROR: value of components at indices
10 -- 2 and 3 are missing
11

12 Display (P);
13 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates

MD5: 40d3a65f7fc0602782e548385ae07769

Build output

show_array_aggregates.adb:8:09: warning: too few elements for type "Point_3D"␣
↪defined at points.ads:3 [enabled by default]

show_array_aggregates.adb:8:09: warning: expected 3 elements; found 1 element␣
↪[enabled by default]

show_array_aggregates.adb:8:09: warning: Constraint_Error will be raised at run␣
↪time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_array_aggregates.adb:8 range check failed

We can use others to specify a value to all components that haven't been explicitly men-
tioned in the aggregate:

Listing 38: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Array_Aggregates is
6 P : Point_3D;
7 begin
8 P := [1 => 4, others => 0];
9 -- OK: unspecified components have a
10 -- value of zero
11

12 Display (P);
13 end Show_Array_Aggregates;

Code block metadata

4.4. Array aggregates 189

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates

MD5: 63b60de44e7c08eeae19a6a9117818f5

Runtime output

(X => 4,
Y => 0,
Z => 0)

However, others can only be used when the range is known — compilation fails otherwise:

Listing 39: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Integer_Arrays; use Integer_Arrays;
4

5 procedure Show_Array_Aggregates is
6 N1 : Integer_Array := [others => 0];
7 -- ERROR: range is unknown
8

9 N2 : Integer_Array (1 .. 3) := [others => 0];
10 -- OK: range is known
11 begin
12 Display (N1);
13 Display (N2);
14 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates_2

MD5: 65b457e017a4eca6051aac777cc429f4

Build output

show_array_aggregates.adb:6:27: error: "others" choice not allowed here
show_array_aggregates.adb:6:27: error: qualify the aggregate with a constrained␣

↪subtype to provide bounds for it
gprbuild: *** compilation phase failed

Of course, we could fix the declaration of N1 by specifying a range — e.g. N1 : Inte-
ger_Array (1 .. 10) := [others => 0];.

4.4.6 Iterated component association

Note: This feature was introduced in Ada 2022.

We can use an iterated component association to specify an aggregate. This is the general
syntax:

-- All components have a value of zero
P := [for I in 1 .. 3 => 0];

Let's see a complete example:

190 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

Listing 40: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Array_Aggregates is
6 P : Point_3D;
7 begin
8 -- All components have a value of zero
9 P := [for I in 1 .. 3 => 0];
10

11 Display (P);
12

13 -- Both first and second components have
14 -- a value of three
15 P := [for I in 1 .. 3 =>
16 (if I = 1 or I = 2
17 then 3
18 else 4)];
19

20 Display (P);
21

22 -- The first component has a value of 99
23 -- and all other components have a value
24 -- that corresponds to its index
25 P := [1 => 99,
26 for I in 2 .. 3 => I];
27

28 Display (P);
29 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates

MD5: f11b3119e3fc1ece08f0b01d7e02576d

Runtime output

(X => 0,
Y => 0,
Z => 0)
(X => 3,
Y => 3,
Z => 4)
(X => 99,
Y => 2,
Z => 3)

In this example, we use iterated component associations in different ways:
1. We write a simple iteration ([for I in 1 .. 3 => 0]).
2. We use a conditional expression in the iteration: [for I in 1 .. 3 => (if I = 1

or I = 2 then 3 else 4)].
3. We use a named association for the first element, and then iterated component asso-
ciation for the remaining components: [1 => 99, for I in 2 .. 3 => I].

So far, we've used a discrete choice list (in the for I in Range form) in the iterated
component association. We could use an iterator (in the for E of form) instead. For
example:

4.4. Array aggregates 191

Advanced Journey With Ada: A Flight In Progress

Listing 41: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Array_Aggregates is
6 P : Point_3D := [for I in Point_3D'Range => I];
7 begin
8 -- Each component is doubled
9 P := [for E of P => E * 2];
10

11 Display (P);
12

13 -- Each component is increased
14 -- by one
15 P := [for E of P => E + 1];
16

17 Display (P);
18 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates

MD5: b8c1878c1fa516005d1861f1a37c4fb0

Runtime output

(X => 2,
Y => 4,
Z => 6)
(X => 3,
Y => 5,
Z => 7)

In this example, we use iterators in different ways:
1. We write [for E of P => E * 2] to double the value of each component.
2. We write [for E of P => E + 1] to increase the value of each component by one.

Of course, we could write more complex operations on E in the iterators.

4.4.7 Multidimensional array aggregates

So far, we've discussed one-dimensional array aggregates. We can also use the same
constructs when dealing withmultidimensional arrays. Consider, for example, this package:

Listing 42: matrices.ads
1 package Matrices is
2

3 type Matrix is array (Positive range <>,
4 Positive range <>)
5 of Integer;
6

7 procedure Display (M : Matrix);
8

9 end Matrices;

192 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

Listing 43: matrices.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 package body Matrices is
6

7 procedure Display (M : Matrix) is
8

9 procedure Display_Row (M : Matrix;
10 I : Integer) is
11 begin
12 Put_Line (" (");
13 for J in M'Range (2) loop
14 Put (" "
15 & J'Image
16 & " => "
17 & M (I, J)'Image);
18 if J /= M'Last (2) then
19 Put_Line (",");
20 else
21 New_Line;
22 end if;
23 end loop;
24 Put (")");
25 end Display_Row;
26

27 begin
28 Put_Line ("Length (1) = "
29 & M'Length (1)'Image);
30 Put_Line ("Length (2) = "
31 & M'Length (2)'Image);
32

33 Put_Line ("(");
34 for I in M'Range (1) loop
35 Display_Row (M, I);
36 if I /= M'Last (1) then
37 Put_Line (",");
38 else
39 New_Line;
40 end if;
41 end loop;
42 Put_Line (")");
43

44 end Display;
45

46 end Matrices;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Matrix_
↪Aggregates

MD5: 748c7c695dfef43d7d4926edf5ddd3ae

We can assign multidimensional aggregates to a matrix M using positional or named com-
ponent association:

4.4. Array aggregates 193

Advanced Journey With Ada: A Flight In Progress

Listing 44: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Matrices; use Matrices;
4

5 procedure Show_Array_Aggregates is
6 M : Matrix (1 .. 2, 1 .. 3);
7 begin
8 -- Positional component association
9 M := [[0, 1, 2],
10 [3, 4, 5]];
11

12 Display (M);
13

14 -- Named component association
15 M := [[1 => 3,
16 2 => 4,
17 3 => 5],
18 [1 => 6,
19 2 => 7,
20 3 => 8]];
21

22 Display (M);
23

24 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Matrix_
↪Aggregates

MD5: 78e1fad3b90c4f4d0f9d45f299e5ae10

Runtime output

Length (1) = 2
Length (2) = 3
(
(

1 => 0,
2 => 1,
3 => 2

),
(

1 => 3,
2 => 4,
3 => 5

)
)
Length (1) = 2
Length (2) = 3
(
(

1 => 3,
2 => 4,
3 => 5

),
(

1 => 6,
2 => 7,
3 => 8

)
(continues on next page)

194 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
)

The first aggregate we use in this example is [[0, 1, 2], [3, 4, 5]]. Here, [0, 1,
2] and [3, 4, 5] are subaggregates of the multidimensional aggregate. Subaggregates
don't have a type themselves, but are rather just considered part of a multidimensional
aggregate (which, of course, has an array type). In this sense, a subaggregate such as [0,
1, 2] is different from a one-dimensional aggregate (such as [0, 1, 2]), even though
they are written in the same way.

Strings in subaggregates

In the case of matrices using characters, we can use strings in the corresponding array
aggregates. Consider this package:

Listing 45: string_lists.ads
1 package String_Lists is
2

3 type String_List is array (Positive range <>,
4 Positive range <>)
5 of Character;
6

7 procedure Display (SL : String_List);
8

9 end String_Lists;

Listing 46: string_lists.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 package body String_Lists is
6

7 procedure Display (SL : String_List) is
8

9 procedure Display_Row (SL : String_List;
10 I : Integer) is
11 begin
12 Put (" (");
13 for J in SL'Range (2) loop
14 Put (SL (I, J));
15 end loop;
16 Put (")");
17 end Display_Row;
18

19 begin
20 Put_Line ("Length (1) = "
21 & SL'Length (1)'Image);
22 Put_Line ("Length (2) = "
23 & SL'Length (2)'Image);
24

25 Put_Line ("(");
26 for I in SL'Range (1) loop
27 Display_Row (SL, I);
28 if I /= SL'Last (1) then
29 Put_Line (",");
30 else
31 New_Line;

(continues on next page)

4.4. Array aggregates 195

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
32 end if;
33 end loop;
34 Put_Line (")");
35 end Display;
36

37 end String_Lists;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.String_
↪Aggregates

MD5: 87b2e593cab823218a39c07d85f40c22

Then, when assigning to an object SL of String_List type, we can use strings in the ag-
gregates:

Listing 47: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with String_Lists; use String_Lists;
4

5 procedure Show_Array_Aggregates is
6 SL : String_List (1 .. 2, 1 .. 3);
7 begin
8 -- Positional component association
9 SL := ["ABC",
10 "DEF"];
11

12 Display (SL);
13

14 -- Named component associations
15 SL := [[1 => 'A',
16 2 => 'B',
17 3 => 'C'],
18 [1 => 'D',
19 2 => 'E',
20 3 => 'F']];
21

22 Display (SL);
23

24 SL := [[1 => 'X',
25 2 => 'Y',
26 3 => 'Z'],
27 [others => ' ']];
28

29 Display (SL);
30 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.String_
↪Aggregates

MD5: 82e376269e3be935d5cbd66202f26ec7

Runtime output

Length (1) = 2
Length (2) = 3
(
(ABC),

(continues on next page)

196 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
(DEF)

)
Length (1) = 2
Length (2) = 3
(
(ABC),
(DEF)

)
Length (1) = 2
Length (2) = 3
(
(XYZ),
()

)

In the first assignment to SL, we have the aggregate ["ABC", "DEF"], which uses strings
as subaggregates. (Of course, we can use a named aggregate and assign characters to the
individual components.)

4.4.8 <> and default values

As we indicated earlier, the <> syntax sets a component to its default value — if such
a default value is available. If a default value isn't defined, however, the component will
remain uninitialized, so that the behavior is undefined. Let's look at more complex example
to illustrate this situation. Consider this package, for example:

Listing 48: points.ads
1 package Points is
2

3 subtype Point_Value is Integer;
4

5 type Point_3D is record
6 X, Y, Z : Point_Value;
7 end record;
8

9 procedure Display (P : Point_3D);
10

11 type Point_3D_Array is
12 array (Positive range <>) of Point_3D;
13

14 procedure Display (PA : Point_3D_Array);
15

16 end Points;

Listing 49: points.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Points is
4

5 procedure Display (P : Point_3D) is
6 begin
7 Put (" (X => "
8 & Point_Value'Image (P.X)
9 & ",");
10 New_Line;
11 Put (" Y => "

(continues on next page)

4.4. Array aggregates 197

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
12 & Point_Value'Image (P.Y)
13 & ",");
14 New_Line;
15 Put (" Z => "
16 & Point_Value'Image (P.Z)
17 & ")");
18 end Display;
19

20 procedure Display (PA : Point_3D_Array) is
21 begin
22 Put_Line ("(");
23 for I in PA'Range (1) loop
24 Put_Line (" "
25 & Integer'Image (I)
26 & " =>");
27 Display (PA (I));
28 if I /= PA'Last (1) then
29 Put_Line (",");
30 else
31 New_Line;
32 end if;
33 end loop;
34 Put_Line (")");
35 end Display;
36

37 end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Rec_Array_
↪Aggregates

MD5: ffaf3745621a30362c6aadaec2c3cef2

Then, let's use <> for the array components:

Listing 50: show_record_aggregates.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Record_Aggregates is
6 PA : Point_3D_Array (1 .. 2);
7 begin
8 PA := [(X => 3,
9 Y => 4,
10 Z => 5),
11 (X => 6,
12 Y => 7,
13 Z => 8)];
14 Display (PA);
15

16 -- Array components are
17 -- uninitialized.
18 PA := [1 => <>,
19 2 => <>];
20 Display (PA);
21 end Show_Record_Aggregates;

Code block metadata

198 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Rec_Array_
↪Aggregates

MD5: 1dee9505222fe9837cd5aa3bf119ee3a

Runtime output

(
1 =>

(X => 3,
Y => 4,
Z => 5),

2 =>
(X => 6,
Y => 7,
Z => 8)

)
(

1 =>
(X => 0,
Y => 0,
Z => -278340979),

2 =>
(X => 32609,
Y => -276826432,
Z => 32609)

)

Because the record components (of the Point_3D type) don't have default values, they
remain uninitialized when we write [1 => <>, 2 => <>]. (In fact, you may see garbage in
the values displayed by the Display procedure.)
When a default value is specified, it is used whenever <> is specified. For example, we
could use a type that has the Default_Value aspect in its specification:

Listing 51: integer_arrays.ads
1 package Integer_Arrays is
2

3 type Value is new Integer
4 with Default_Value => 99;
5

6 type Integer_Array is
7 array (Positive range <>) of Value;
8

9 procedure Display (A : Integer_Array);
10

11 end Integer_Arrays;

Listing 52: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Integer_Arrays; use Integer_Arrays;
4

5 procedure Show_Array_Aggregates is
6 N : Integer_Array (1 .. 4);
7 begin
8 N := [for I in N'Range => Value (I)];
9 Display (N);
10

11 N := [others => <>];
12 Display (N);

(continues on next page)

4.4. Array aggregates 199

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
13 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates_2

MD5: 17641d696172b052925d5549f53b9712

Runtime output

Length = 4
(

1 => 1,
2 => 2,
3 => 3,
4 => 4

)
Length = 4
(

1 => 99,
2 => 99,
3 => 99,
4 => 99

)

When writing an aggregate for the Point_3D type, any component that has <> gets the
default value of the Point type (99):

For further reading...
Similarly, we could specify the Default_Component_Value aspect (which we discussed ear-
lier on (page 64)) in the declaration of the array type:

Listing 53: integer_arrays.ads
1 package Integer_Arrays is
2

3 type Value is new Integer;
4

5 type Integer_Array is
6 array (Positive range <>) of Value
7 with Default_Component_Value => 9999;
8

9 procedure Display (A : Integer_Array);
10

11 end Integer_Arrays;

Listing 54: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Integer_Arrays; use Integer_Arrays;
4

5 procedure Show_Array_Aggregates is
6 N : Integer_Array (1 .. 4);
7 begin
8 N := [for I in N'Range => Value (I)];
9 Display (N);
10

11 N := [others => <>];
(continues on next page)

200 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
12 Display (N);
13 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates_2

MD5: c6b38711937a1a7bbb92ddb4c207404e

Runtime output

Length = 4
(

1 => 1,
2 => 2,
3 => 3,
4 => 4

)
Length = 4
(

1 => 9999,
2 => 9999,
3 => 9999,
4 => 9999

)

In this case, when writing <> for a component, the value specified in the De-
fault_Component_Value aspect is used.
Finally, we might want to use both Default_Value (which we discussed previously
(page 63)) and Default_Component_Value aspects at the same time. In this case, the
value specified in the Default_Component_Value aspect has higher priority:

Listing 55: integer_arrays.ads
1 package Integer_Arrays is
2

3 type Value is new Integer
4 with Default_Value => 99;
5

6 type Integer_Array is
7 array (Positive range <>) of Value
8 with Default_Component_Value => 9999;
9

10 procedure Display (A : Integer_Array);
11

12 end Integer_Arrays;

Listing 56: show_array_aggregates.adb
1 pragma Ada_2022;
2

3 with Integer_Arrays; use Integer_Arrays;
4

5 procedure Show_Array_Aggregates is
6 N : Integer_Array (1 .. 4);
7 begin
8 N := [for I in N'Range => Value (I)];
9 Display (N);
10

11 N := [others => <>];
(continues on next page)

4.4. Array aggregates 201

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
12 Display (N);
13 end Show_Array_Aggregates;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_
↪Aggregates_2

MD5: c5b6d45576d59e2d3ba1634953c58b02

Runtime output

Length = 4
(

1 => 1,
2 => 2,
3 => 3,
4 => 4

)
Length = 4
(

1 => 9999,
2 => 9999,
3 => 9999,
4 => 9999

)

Here, 9999 is used when we specify <> for a component.

4.5 Extension Aggregates

Extension aggregates provide a convenient way to express an aggregate for a type that
extends — adds components to — some existing type (the "ancestor"). Although mainly a
matter of convenience, an extension aggregate is essential when we want to express an
aggregate for an extension of a private ancestor type, that is, when we don't have compile-
time visibility to the ancestor type's components.

In the Ada Reference Manual
• 4.3.2 Extension Aggregates66

4.5.1 Assignments to objects of derived types

Before we discuss extension aggregates in more detail, though, let's start with a simple
use-case. Let's say we have:
• an object A of tagged type T1, and
• an object B of tagged type T2, which extends T1.

We can initialize object B by:
• copying the T1 specific information from A to B, and
• initializing the T2 specific components of B.

66 http://www.ada-auth.org/standards/22rm/html/RM-4-3-2.html

202 Chapter 4. Aggregates

http://www.ada-auth.org/standards/22rm/html/RM-4-3-2.html

Advanced Journey With Ada: A Flight In Progress

We can translate the description above to the following code:

A : T1;
B : T2;

begin
T1 (B) := A;

B.Extended_Component_1 := Some_Value;
-- [...]

Here, we use T1 (B) to select the ancestor view of object B, and we copy all the information
from A to this part of B. Then, we initialize the remaining components of B. We'll elaborate
on this kind of assignments later on.

4.5.2 Example: Points

To present a more concrete example, let's start with a package that defines one, two and
three-dimensional point types:

Listing 57: points.ads
1 package Points is
2

3 type Point_1D is tagged record
4 X : Float;
5 end record;
6

7 procedure Display (P : Point_1D);
8

9 type Point_2D is new Point_1D with record
10 Y : Float;
11 end record;
12

13 procedure Display (P : Point_2D);
14

15 type Point_3D is new Point_2D with record
16 Z : Float;
17 end record;
18

19 procedure Display (P : Point_3D);
20

21 end Points;

Listing 58: points.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Points is
4

5 procedure Display (P : Point_1D) is
6 begin
7 Put_Line ("(X => " & P.X'Image & ")");
8 end Display;
9

10 procedure Display (P : Point_2D) is
11 begin
12 Put_Line ("(X => " & P.X'Image
13 & ", Y => " & P.Y'Image & ")");
14 end Display;
15

(continues on next page)

4.5. Extension Aggregates 203

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
16 procedure Display (P : Point_3D) is
17 begin
18 Put_Line ("(X => " & P.X'Image
19 & ", Y => " & P.Y'Image
20 & ", Z => " & P.Z'Image & ")");
21 end Display;
22

23 end Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_
↪Aggregate_Points

MD5: 0acc05ae2310ab4ba038dfdb6bae0495

Let's now focus on the Show_Points procedure below, where we initialize a two-dimensional
point using a one-dimensional point.

Listing 59: show_points.adb
1 with Points; use Points;
2

3 procedure Show_Points is
4 P_1D : Point_1D;
5 P_2D : Point_2D;
6 begin
7 P_1D := (X => 0.5);
8 Display (P_1D);
9

10 Point_1D (P_2D) := P_1D;
11 -- Equivalent to: "P_2D.X := P_1D.X;"
12

13 P_2D.Y := 0.7;
14

15 Display (P_2D);
16 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_
↪Aggregate_Points

MD5: 68ae6fa8e6f779aebea97085bd75e082

Runtime output

(X => 5.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01)

In this example, we're initializing P_2D using the information stored in P_1D. By writing
Point_1D (P_2D) on the left side of the assignment, we specify that we want to limit our
focus on the Point_1D view of the P_2D object. Then, we assign P_1D to the Point_1D
view of the P_2D object. This assignment initializes the X component of the P_2D object.
The Point_2D specific components are not changed by this assignment. (In other words,
this is equivalent to just writing P_2D.X := P_1D.X, as the Point_1D type only has the X
component.) Finally, in the next line, we initialize the Y component with 0.7.

204 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

4.5.3 Using extension aggregates

Note that, in the assignment to P_1D, we use a record aggregate. Extension aggregates
are similar to record aggregates, but they include the with keyword — for example: (Obj1
with Y => 0.5). This allows us to assign to an object with information from another object
Obj1 of a parent type and, in the same expression, set the value of the Y component of the
type extension.
Let's rewrite the previous Show_Points procedure using extension aggregates:

Listing 60: show_points.adb
1 with Points; use Points;
2

3 procedure Show_Points is
4 P_1D : Point_1D;
5 P_2D : Point_2D;
6 begin
7 P_1D := (X => 0.5);
8 Display (P_1D);
9

10 P_2D := (P_1D with Y => 0.7);
11 Display (P_2D);
12 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_
↪Aggregate_Points

MD5: 4d03f6a565126b602d6f21fe5ee6dd27

Runtime output

(X => 5.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01)

When we write P_2D := (P_1D with Y => 0.7), we're initializing P_2D using:
• the information from the P_1D object — of Point_1D type, which is an ancestor of the
Point_2D type —, and

• the information from the record component association list for the remaining com-
ponents of the Point_2D type. (In this case, the only remaining component of the
Point_2D type is Y.)

We could also specify the type of the extension aggregate. For example, in the previous as-
signment to P_2D, we could write Point_2D'(...) to indicate that we expect the Point_2D
type for the extension aggregate.

-- Explicitly state that the type of the
-- extension aggregate is Point_2D:

P_2D := Point_2D'(P_1D with Y => 0.7);

Also, we don't have to use named association in extension aggregates. We could just use
positional association instead. Therefore, we could simplify the assignment to P_2D in the
previous example by just writing:

P_2D := (P_1D with 0.7);

4.5. Extension Aggregates 205

Advanced Journey With Ada: A Flight In Progress

4.5.4 More extension aggregates

We can use extension aggregates for descendants of the Point_2D type as well. For exam-
ple, let's extend our previous code example by declaring an object of Point_3D type (called
P_3D) and use extension aggregates in assignments to this object:

Listing 61: show_points.adb
1 with Points; use Points;
2

3 procedure Show_Points is
4 P_1D : Point_1D;
5 P_2D : Point_2D;
6 P_3D : Point_3D;
7 begin
8 P_1D := (X => 0.5);
9 Display (P_1D);
10

11 P_2D := (P_1D with Y => 0.7);
12 Display (P_2D);
13

14 P_3D := (P_2D with Z => 0.3);
15 Display (P_3D);
16

17 P_3D := (P_1D with Y | Z => 0.1);
18 Display (P_3D);
19 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_
↪Aggregate_Points

MD5: 2ec6831557c43f697bffce8496962b53

Runtime output

(X => 5.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 5.00000E-01, Y => 1.00000E-01, Z => 1.00000E-01)

In the first assignment to P_3D in the example above, we're initializing this object with
information from P_2D and specifying the value of the Z component. Then, in the next
assignment to the P_3D object, we're using an aggregate with information from P_1 and
specifying values for the Y and Z components. (Just as a reminder, we can write Y | Z =>
0.1 to assign 0.1 to both Y and Z components.)

4.5.5 with others

Other versions of extension aggregates are possible as well. For example, we can combine
keywords and write with others to focus on all remaining components of an extension
aggregate.

Listing 62: show_points.adb
1 with Points; use Points;
2

3 procedure Show_Points is
4 P_1D : Point_1D;
5 P_2D : Point_2D;

(continues on next page)

206 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 P_3D : Point_3D;
7 begin
8 P_1D := (X => 0.5);
9 P_2D := (P_1D with Y => 0.7);
10

11 -- Initialize P_3D with P_1D and set other
12 -- components to 0.6.
13 --
14 P_3D := (P_1D with others => 0.6);
15 Display (P_3D);
16

17 -- Initialize P_3D with P_2D, and other
18 -- components with their default value.
19 --
20 P_3D := (P_2D with others => <>);
21 Display (P_3D);
22 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_
↪Aggregate_Points

MD5: 0594586fc59ead106258cef8682927e9

Runtime output

(X => 5.00000E-01, Y => 6.00000E-01, Z => 6.00000E-01)
(X => 5.00000E-01, Y => 7.00000E-01, Z => 5.93170E-39)

In this example, the first assignment to P_3D has an aggregate with information from P_1D,
while the remaining components — in this case, Y and Z — are just set to 0.6.
Continuing with this example, in the next assignment to P_3D, we're using information from
P_2 in the extension aggregate. This covers the Point_2D part of the P_3D object — compo-
nents X and Y, to bemore specific. The Point_3D specific components of P_3D—component
Z in this case — receive their corresponding default value. In this specific case, however,
we haven't specified a default value for component Z in the declaration of the Point_3D
type, so we cannot rely on any specific value being assigned to that component when using
others => <>.

4.5.6 with null record

We can also use extension aggregates with null records. Let's focus on the P_3D_Ext object
of Point_3D_Ext type. This object is declared in the Show_Points procedure of the next
code example.

Listing 63: points-extensions.ads
1 package Points.Extensions is
2

3 type Point_3D_Ext is new
4 Point_3D with null record;
5

6 end Points.Extensions;

4.5. Extension Aggregates 207

Advanced Journey With Ada: A Flight In Progress

Listing 64: show_points.adb
1 with Points; use Points;
2 with Points.Extensions; use Points.Extensions;
3

4 procedure Show_Points is
5 P_3D : Point_3D;
6 P_3D_Ext : Point_3D_Ext;
7 begin
8 P_3D := (X => 0.0, Y => 0.5, Z => 0.4);
9

10 P_3D_Ext := (P_3D with null record);
11 Display (P_3D_Ext);
12 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_
↪Aggregate_Points

MD5: 8ec3ddb3a1f2a6e550ac4d622e97124c

Runtime output

(X => 0.00000E+00, Y => 5.00000E-01, Z => 4.00000E-01)

The P_3D_Ext object is of Point_3D_Ext type, which is declared in the Points.Extensions
package and derived from the Point_3D type. Note that we're not extending Point_3D_Ext
with new components, but using a null record instead in the declaration. Therefore, as the
Point_3D_Ext type doesn't own any new components, we just write (P_3D with null
record) to initialize the P_3D_Ext object.

4.5.7 Extension aggregates and descendent types

In the examples above, we've been initializing objects of descendent types by using objects
of ascending types in extension aggregates. We could, however, do the opposite and initial-
ize objects of ascending types using objects of descendent type in extension aggregates.
Consider this code example:

Listing 65: show_points.adb
1 with Points; use Points;
2

3 procedure Show_Points is
4 P_2D : Point_2D;
5 P_3D : Point_3D;
6 begin
7 P_3D := (X => 0.5, Y => 0.7, Z => 0.3);
8 Display (P_3D);
9

10 P_2D := (Point_1D (P_3D) with Y => 0.3);
11 Display (P_2D);
12 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_
↪Aggregate_Points

MD5: ae5e88a36c58b1eb495d5ba8752e50e7

Runtime output

208 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(X => 5.00000E-01, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 5.00000E-01, Y => 3.00000E-01)

Here, we're using Point_1D (P_3D) to select the Point_1D view of an object of Point_3D
type. At this point, we have specified the Point_1D part of the aggregate, so we still have
to specify the remaining components of the Point_2D type — the Y component, to be more
specific. When we do that, we get the appropriate aggregate for the Point_2D type. In
summary, by carefully selecting the appropriate view, we're able to initialize an object of
ascending type (Point_2D), which contains less components, using an object of a descen-
dent type (Point_3D), which contains more components.

4.6 Delta Aggregates

Note: This feature was introduced in Ada 2022.

Previously, we've discussed extension aggregates (page 205), which are used to assign an
object Obj_From of a tagged type to an object Obj_To of a descendent type.
Wemay want also to assign an object Obj_From of to an object Obj_To of the same type, but
change some of the components in this assignment. To do this, we use delta aggregates.

4.6.1 Delta Aggregates for Tagged Records

Let's reuse the Points package from a previous example:

Listing 66: points.ads
1 package Points is
2

3 type Point_1D is tagged record
4 X : Float;
5 end record;
6

7 type Point_2D is new Point_1D with record
8 Y : Float;
9 end record;
10

11 type Point_3D is new Point_2D with record
12 Z : Float;
13 end record;
14

15 procedure Display (P : Point_3D);
16

17 end Points;

Listing 67: points.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Points is
4

5 procedure Display (P : Point_3D) is
6 begin
7 Put_Line ("(X => " & P.X'Image
8 & ", Y => " & P.Y'Image

(continues on next page)

4.6. Delta Aggregates 209

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 & ", Z => " & P.Z'Image & ")");
10 end Display;
11

12 end Points;

Listing 68: show_points.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Points is
6 P1, P2, P3 : Point_3D;
7 begin
8 P1 := (X => 0.5, Y => 0.7, Z => 0.3);
9 Display (P1);
10

11 P2 := (P1 with delta X => 1.0);
12 Display (P2);
13

14 P3 := (P1 with delta X => 0.2, Y => 0.3);
15 Display (P3);
16 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_
↪Aggregates_Tagged

MD5: affbd4304a683699de48fc44db44f09e

Runtime output

(X => 5.00000E-01, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 1.00000E+00, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 2.00000E-01, Y => 3.00000E-01, Z => 3.00000E-01)

Here, we assign P1 to P2, but change the X component. Also, we assign P1 to P3, but change
the X and Y components.
We can use class-wide types with delta aggregates. Consider this example:

Listing 69: show_points.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Points is
6

7 P_3D : Point_3D;
8

9 function Reset (P_2D : Point_2D'Class)
10 return Point_2D'Class is
11 ((P_2D with delta X | Y => 0.0));
12

13 begin
14 P_3D := [X => 0.1, Y => 0.2, Z => 0.3];
15 Display (P_3D);
16

17 P_3D := Point_3D (Reset (P_3D));
18 Display (P_3D);

(continues on next page)

210 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
19

20 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_
↪Aggregates_Tagged

MD5: 30e62d564d1b35829a5002223966c101

Runtime output

(X => 1.00000E-01, Y => 2.00000E-01, Z => 3.00000E-01)
(X => 0.00000E+00, Y => 0.00000E+00, Z => 3.00000E-01)

In this example, the Reset function returns an object of Point_2D'Class where all compo-
nents of Point_2D'Class type are zero. We call the Reset function for the P_3D object of
Point_3D type, so that only the Z component remains untouched.
Note that we use the syntax X | Y in the body of the Reset function and assign the same
value to both components.

For further reading...
We could have implemented Reset as a procedure — in this case, without using delta ag-
gregates:

Listing 70: show_points.adb
1 with Points; use Points;
2

3 procedure Show_Points is
4

5 P_3D : Point_3D;
6

7 procedure Reset
8 (P_2D : in out Point_2D'Class) is
9 begin
10 Point_2D (P_2D) := (others => 0.0);
11 end Reset;
12

13 begin
14 P_3D := (X => 0.1, Y => 0.2, Z => 0.3);
15 Display (P_3D);
16

17 Reset (P_3D);
18 Display (P_3D);
19

20 end Show_Points;

4.6. Delta Aggregates 211

Advanced Journey With Ada: A Flight In Progress

4.6.2 Delta Aggregates for Non-Tagged Records

The examples above use tagged types. We can also use delta aggregates with non-tagged
types. Let's rewrite the Points package and convert Point_3D to a non-tagged record type.

Listing 71: points.ads
1 package Points is
2

3 type Point_3D is record
4 X : Float;
5 Y : Float;
6 Z : Float;
7 end record;
8

9 procedure Display (P : Point_3D);
10

11 end Points;

Listing 72: points.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Points is
4

5 procedure Display (P : Point_3D) is
6 begin
7 Put_Line ("(X => " & P.X'Image
8 & ", Y => " & P.Y'Image
9 & ", Z => " & P.Z'Image & ")");
10 end Display;
11

12 end Points;

Listing 73: show_points.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Points is
6 P1, P2, P3 : Point_3D;
7 begin
8 P1 := (X => 0.5, Y => 0.7, Z => 0.3);
9 Display (P1);
10

11 P2 := (P1 with delta X => 1.0);
12 Display (P2);
13

14 P3 := (P1 with delta X => 0.2, Y => 0.3);
15 Display (P3);
16 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_
↪Aggregates_Non_Tagged

MD5: 71a3b76ee1988ddea7246d0b8f897865

Runtime output

212 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

(X => 5.00000E-01, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 1.00000E+00, Y => 7.00000E-01, Z => 3.00000E-01)
(X => 2.00000E-01, Y => 3.00000E-01, Z => 3.00000E-01)

In this example, Point_3D is a non-tagged type. Note that we haven't changed anything in
the Show_Points procedure: it still works as it did with tagged types.

4.6.3 Delta Aggregates for Arrays

We can use delta aggregates for arrays. Let's change the declaration of Point_3D and use
an array to represent a 3-dimensional point:

Listing 74: points.ads
1 package Points is
2

3 type Float_Array is
4 array (Positive range <>) of Float;
5

6 type Point_3D is new Float_Array (1 .. 3);
7

8 procedure Display (P : Point_3D);
9

10 end Points;

Listing 75: points.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Points is
4

5 procedure Display (P : Point_3D) is
6 begin
7 Put ("(");
8 for I in P'Range loop
9 Put (I'Image
10 & " => "
11 & P (I)'Image);
12 end loop;
13 Put_Line (")");
14 end Display;
15

16 end Points;

Listing 76: show_points.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Points is
6 P1, P2, P3 : Point_3D;
7 begin
8 P1 := [0.5, 0.7, 0.3];
9 Display (P1);
10

11 P2 := [P1 with delta 1 => 1.0];
12 Display (P2);
13

(continues on next page)

4.6. Delta Aggregates 213

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14 P3 := [P1 with delta 1 => 0.2, 2 => 0.3];
15 -- Alternatively:
16 -- P3 := [P1 with delta 1 .. 2 => 0.2, 0.3];
17

18 Display (P3);
19 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_
↪Aggregates_Array

MD5: d32ba51746d7db9cd30f183e64ab0017

Runtime output

(1 => 5.00000E-01 2 => 7.00000E-01 3 => 3.00000E-01)
(1 => 1.00000E+00 2 => 7.00000E-01 3 => 3.00000E-01)
(1 => 2.00000E-01 2 => 3.00000E-01 3 => 3.00000E-01)

The implementation of Show_Points in this example is very similar to the version where
use a record type. In this case, we:
• assign P1 to P2, but change the first component, and
• we assign P1 to P3, but change the first and second components.

Using slices

In the assignment to P3, we can either specify each component of the delta individually or
use a slice: both forms are equivalent. Also, we can use slices to assign the same number
to multiple components:

Listing 77: show_points.adb
1 pragma Ada_2022;
2

3 with Points; use Points;
4

5 procedure Show_Points is
6 P1, P3 : Point_3D;
7 begin
8 P1 := [0.5, 0.7, 0.3];
9 Display (P1);
10

11 P3 := [P1 with delta
12 P3'First + 1 .. P3'Last => 0.0];
13 Display (P3);
14 end Show_Points;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_
↪Aggregates_Array

MD5: 6d1db1634c42a885f7bfce7f7eecc359

Runtime output

(1 => 5.00000E-01 2 => 7.00000E-01 3 => 3.00000E-01)
(1 => 5.00000E-01 2 => 0.00000E+00 3 => 0.00000E+00)

214 Chapter 4. Aggregates

Advanced Journey With Ada: A Flight In Progress

In this example, we're assigning P1 to P3, but resetting all components of the array starting
by the second one.

Multiple components

We can also assign multiple components or slices:

Listing 78: float_arrays.ads
1 package Float_Arrays is
2

3 type Float_Array is
4 array (Positive range <>) of Float;
5

6 procedure Display (P : Float_Array);
7

8 end Float_Arrays;

Listing 79: float_arrays.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Float_Arrays is
4

5 procedure Display (P : Float_Array) is
6 begin
7

8 Put ("(");
9 for I in P'Range loop
10 Put (I'Image
11 & " => "
12 & P (I)'Image);
13 end loop;
14 Put_Line (")");
15

16 end Display;
17

18 end Float_Arrays;

Listing 80: show_multiple_delta_slices.adb
1 pragma Ada_2022;
2

3 with Float_Arrays; use Float_Arrays;
4

5 procedure Show_Multiple_Delta_Slices is
6

7 P1, P2 : Float_Array (1 .. 5);
8

9 begin
10 P1 := [1.0, 2.0, 3.0, 4.0, 5.0];
11 Display (P1);
12

13 P2 := [P1 with delta
14 P2'First + 1 .. P2'Last - 2 => 0.0,
15 P2'Last - 1 .. P2'Last => 0.2];
16 Display (P2);
17 end Show_Multiple_Delta_Slices;

Code block metadata

4.6. Delta Aggregates 215

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_
↪Aggregates_Array

MD5: 4c2860616777428618d1100280699ec2

Runtime output

(1 => 1.00000E+00 2 => 2.00000E+00 3 => 3.00000E+00 4 => 4.00000E+00 5 => 5.
↪00000E+00)

(1 => 1.00000E+00 2 => 0.00000E+00 3 => 0.00000E+00 4 => 2.00000E-01 5 => 2.
↪00000E-01)

In this example, we have two arrays P1 and P2 of Float_Array type. We assign P1 to P2,
but change:
• the second to the last-but-two components to 0.0, and
• the last-but-one and last components to 0.2.

In the Ada Reference Manual
• Delta Aggregates67

67 http://www.ada-auth.org/standards/22rm/html/RM-4-3-4.html

216 Chapter 4. Aggregates

http://www.ada-auth.org/standards/22rm/html/RM-4-3-4.html

CHAPTER

FIVE

ARRAYS

5.1 Unconstrained Arrays

In the Introduction to Ada course68, we've seen that we can declare array types whose
bounds are not fixed: in that case, the bounds are provided when creating objects of those
types. For example:

Listing 1: measurement_defs.ads
1 package Measurement_Defs is
2

3 type Measurements is
4 array (Positive range <>) of Float;
5 -- ^ Bounds are of type Positive,
6 -- but not known at this point.
7

8 end Measurement_Defs;

Listing 2: show_measurements.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Measurement_Defs; use Measurement_Defs;
4

5 procedure Show_Measurements is
6 M : Measurements (1 .. 10);
7 -- ^ Providing bounds here!
8 begin
9 Put_Line ("First index: " & M'First'Image);
10 Put_Line ("Last index: " & M'Last'Image);
11 end Show_Measurements;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Unconstrained_Arrays.Unconstrained_
↪Array_Example

MD5: a5cdc74dd61e36476431cf675452d1d5

Build output

show_measurements.adb:6:04: warning: variable "M" is read but never assigned [-
↪gnatwv]

Runtime output
68 https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-unconstrained-array-types

217

https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-unconstrained-array-types

Advanced Journey With Ada: A Flight In Progress

First index: 1
Last index: 10

In this example, the Measurements array type from the Measurement_Defs package is un-
constrained. In the Show_Measurements procedure, we declare a constrained object (M) of
this type.
The Introduction to Ada course69 also highlights the fact that the bounds are fixed once an
object is declared:

Although different instances of the same unconstrained array type can have dif-
ferent bounds, a specific instance has the same bounds throughout its lifetime.
This allows Ada to implement unconstrained arrays efficiently; instances can be
stored on the stack and do not require heap allocation as in languages like Java.

In the Show_Measurements procedure above, once we declare M, its bounds are fixed for
the whole lifetime of M. We cannot add another component to this array. In other words, M
will have 10 components for its whole lifetime.

In the Ada Reference Manual
• 3.6 Array Types70

5.1.1 Unconstrained Arrays vs. Vectors

If you need, however, the flexibility of increasing the length of an array, you could use
vectors instead. This is how we could rewrite the previous example using vectors:

Listing 3: measurement_defs.ads
1 with Ada.Containers; use Ada.Containers;
2 with Ada.Containers.Vectors;
3

4 package Measurement_Defs is
5

6 package Vectors is new Ada.Containers.Vectors
7 (Index_Type => Positive,
8 Element_Type => Float);
9

10 subtype Measurements is Vectors.Vector;
11

12 end Measurement_Defs;

Listing 4: show_measurements.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Measurement_Defs; use Measurement_Defs;
4

5 procedure Show_Measurements is
6 use Measurement_Defs.Vectors;
7

8 M : Measurements := To_Vector (10);
9 -- ^ Creating 10-element
10 -- vector.
11 begin

(continues on next page)
69 https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-unconstrained-array-type-instance-bound
70 http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

218 Chapter 5. Arrays

https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-unconstrained-array-type-instance-bound
http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
12 Put_Line ("First index: "
13 & M.First_Index'Image);
14 Put_Line ("Last index: "
15 & M.Last_Index'Image);
16

17 Put_Line ("Adding element...");
18 M.Append (1.0);
19

20 Put_Line ("First index: "
21 & M.First_Index'Image);
22 Put_Line ("Last index: "
23 & M.Last_Index'Image);
24 end Show_Measurements;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Unconstrained_Arrays.Unconstrained_
↪Array_Example

MD5: afec7a4b898392be4dd1f60e1519da88

Runtime output

First index: 1
Last index: 10
Adding element...
First index: 1
Last index: 11

In the declaration of M in this example, we're creating a 10-element vector by calling
To_Vector and specifying the element count. Later on, with the call to Append, we're in-
creasing the length of the M to 11 elements.
As you might expect, the flexibility of vectors comes with a price: every time we add an
element that doesn't fit in the current capacity of the vector, the container has to reallocate
memory in the background due to that new element. Therefore, arrays are more efficient,
as the memory allocation only happens once for each object.

In the Ada Reference Manual
• 3.6 Array Types71

• A.18.2 The Generic Package Containers.Vectors72

5.2 Multidimensional Arrays

So far, we've discussed unidimensional arrays, since they are very common in Ada. How-
ever, Ada also supports multidimensional arrays using the same facilities as for unidimen-
sional arrays. For example, we can use the First, Last, Range and Length attributes for
each dimension of a multidimensional array. This section presents more details on this
topic.
To create a multidimensional array, we simply separate the ranges of each dimension
with a comma. The following example presents the one-dimensional array A1, the two-
dimensional array A2 and the three-dimensional array A3:
71 http://www.ada-auth.org/standards/22rm/html/RM-3-6.html
72 http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html

5.2. Multidimensional Arrays 219

http://www.ada-auth.org/standards/22rm/html/RM-3-6.html
http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html

Advanced Journey With Ada: A Flight In Progress

Listing 5: multidimensional_arrays_decl.ads
1 package Multidimensional_Arrays_Decl is
2

3 A1 : array (1 .. 10) of Float;
4 A2 : array (1 .. 5, 1 .. 10) of Float;
5 -- ^ first dimension
6 -- ^ second dimension
7 A3 : array (1 .. 2, 1 .. 5, 1 .. 10) of Float;
8 -- ^ first dimension
9 -- ^ second dimension
10 -- ^ third dimension
11 end Multidimensional_Arrays_Decl;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.
↪Multidimensional_Arrays

MD5: 928243b293c67a078d729c3cac68bb92

The two-dimensional array A2 has 5 components in the first dimension and 10 components
in the second dimension. The three-dimensional array A3 has 2 components in the first
dimension, 5 components in the second dimension, and 10 components in the third dimen-
sion. Note that the ranges we've selected for A1, A2 and A3 are completely arbitrary. You
may select ranges for each dimension that are the most appropriate in the context of your
application. Also, the number of dimensions is not limited to three, so you could declare
higher-dimensional arrays if needed.
We can use the Length attribute to retrieve the length of each dimension. We use an integer
value in parentheses to specify which dimension we're referring to. For example, if we write
A'Length (2), we're referring to the length of the second dimension of a multidimensional
array A. Note that A'Length is equivalent to A'Length (1). The same equivalence applies
to other array-related attributes such as First, Last and Range.
Let's use the Length attribute for the arrays we declared in the Multidimen-
sional_Arrays_Decl package:

Listing 6: show_multidimensional_arrays.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Multidimensional_Arrays_Decl;
4 use Multidimensional_Arrays_Decl;
5

6 procedure Show_Multidimensional_Arrays is
7 begin
8 Put_Line ("A1'Length: "
9 & A1'Length'Image);
10 Put_Line ("A1'Length (1): "
11 & A1'Length (1)'Image);
12 Put_Line ("A2'Length (1): "
13 & A2'Length (1)'Image);
14 Put_Line ("A2'Length (2): "
15 & A2'Length (2)'Image);
16 Put_Line ("A3'Length (1): "
17 & A3'Length (1)'Image);
18 Put_Line ("A3'Length (2): "
19 & A3'Length (2)'Image);
20 Put_Line ("A3'Length (3): "
21 & A3'Length (3)'Image);
22 end Show_Multidimensional_Arrays;

220 Chapter 5. Arrays

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.
↪Multidimensional_Arrays

MD5: 70b9b8df7e46302b92613fa484ef71ca

Runtime output

A1'Length: 10
A1'Length (1): 10
A2'Length (1): 5
A2'Length (2): 10
A3'Length (1): 2
A3'Length (2): 5
A3'Length (3): 10

As this simple example shows, we can easily retrieve the length of each dimension. Also,
as we've just mentioned, A1'Length is equal to A1'Length (1).
Let's consider an application where we make hourly measurements for the first 12 hours
of the day, on each day of the week. We can create a two-dimensional array type called
Measurements to store this data. Also, we can have three procedures for this array:
• Show_Indices, which presents the indices (days and hours) of the two-dimensional
array;

• Show_Values, which presents the values stored in the array; and
• Reset, which resets each value of the array.

This is the complete code for this application:

Listing 7: measurement_defs.ads
1 package Measurement_Defs is
2

3 type Days is
4 (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
5

6 type Hours is range 0 .. 11;
7

8 subtype Measurement is Float;
9

10 type Measurements is
11 array (Days, Hours) of Measurement;
12

13 procedure Show_Indices (M : Measurements);
14

15 procedure Show_Values (M : Measurements);
16

17 procedure Reset (M : out Measurements);
18

19 end Measurement_Defs;

Listing 8: measurement_defs.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Measurement_Defs is
4

5 procedure Show_Indices (M : Measurements) is
6 begin
7 Put_Line ("---- Indices ----");
8

(continues on next page)

5.2. Multidimensional Arrays 221

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 for D in M'Range (1) loop
10 Put (D'Image & " ");
11

12 for H in M'First (2) ..
13 M'Last (2) - 1
14 loop
15 Put (H'Image & " ");
16 end loop;
17 Put_Line (M'Last (2)'Image);
18 end loop;
19 end Show_Indices;
20

21 procedure Show_Values (M : Measurements) is
22 package H_IO is
23 new Ada.Text_IO.Integer_IO (Hours);
24 package M_IO is
25 new Ada.Text_IO.Float_IO (Measurement);
26

27 procedure Set_IO_Defaults is
28 begin
29 H_IO.Default_Width := 5;
30

31 M_IO.Default_Fore := 1;
32 M_IO.Default_Aft := 2;
33 M_IO.Default_Exp := 0;
34 end Set_IO_Defaults;
35 begin
36 Set_IO_Defaults;
37

38 Put_Line ("---- Values ----");
39 Put (" ");
40 for H in M'Range (2) loop
41 H_IO.Put (H);
42 end loop;
43 New_Line;
44

45 for D in M'Range (1) loop
46 Put (D'Image & " ");
47

48 for H in M'Range (2) loop
49 M_IO.Put (M (D, H));
50 Put (" ");
51 end loop;
52 New_Line;
53 end loop;
54 end Show_Values;
55

56 procedure Reset (M : out Measurements) is
57 begin
58 M := (others => (others => 0.0));
59 end Reset;
60

61 end Measurement_Defs;

Listing 9: show_measurements.adb
1 with Measurement_Defs; use Measurement_Defs;
2

3 procedure Show_Measurements is
4 M : Measurements;
5 begin

(continues on next page)

222 Chapter 5. Arrays

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 Reset (M);
7 Show_Indices (M);
8 Show_Values (M);
9 end Show_Measurements;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.
↪Multidimensional_Measurements

MD5: bcffa3913007bd9152149ad9616842b8

Runtime output

---- Indices ----
MON 0 1 2 3 4 5 6 7 8 9 10 11
TUE 0 1 2 3 4 5 6 7 8 9 10 11
WED 0 1 2 3 4 5 6 7 8 9 10 11
THU 0 1 2 3 4 5 6 7 8 9 10 11
FRI 0 1 2 3 4 5 6 7 8 9 10 11
SAT 0 1 2 3 4 5 6 7 8 9 10 11
SUN 0 1 2 3 4 5 6 7 8 9 10 11
---- Values ----

0 1 2 3 4 5 6 7 8 9 10 11
MON 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TUE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WED 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
THU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FRI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SAT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SUN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

We recommend that you spend some time analyzing this example. Also, we'd like to high-
light the following aspects:
• We access a value from a multidimensional array by using commas to separate the
index values within the parentheses. For example: M (D, H) allows us to access the
value on day D and hour H from the multidimensional array M.

• To loop over the multidimensional array M, we write for D in M'Range (1) loop and
for H in M'Range (2) loop for the first and second dimensions, respectively.

• To reset all values of the multidimensional array, we use an aggregate with this form:
(others => (others => 0.0)).

In the Ada Reference Manual
• 3.6 Array Types73

73 http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

5.2. Multidimensional Arrays 223

http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

Advanced Journey With Ada: A Flight In Progress

5.2.1 Unconstrained Multidimensional Arrays

Previously, we've discussed unconstrained arrays for the unidimensional case. It's possible
to declare unconstrained multidimensional arrays as well. For example:

Listing 10: multidimensional_arrays_decl.ads
1 package Multidimensional_Arrays_Decl is
2

3 type F1 is array (Positive range <>) of Float;
4 type F2 is array (Positive range <>,
5 Positive range <>) of Float;
6 type F3 is array (Positive range <>,
7 Positive range <>,
8 Positive range <>) of Float;
9

10 end Multidimensional_Arrays_Decl;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.
↪Unconstrained_Multidimensional_Arrays

MD5: 8637e93db355fddafa3ffa5ce453a0e1

Here, we're declaring the one-dimensional type F1, the two-dimensional type F2 and the
three-dimensional type F3.
As is the case with unidimensional arrays, we must specify the bounds when declaring
objects of unconstrained multidimensional array types:

Listing 11: show_multidimensional_arrays.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Multidimensional_Arrays_Decl;
4 use Multidimensional_Arrays_Decl;
5

6 procedure Show_Multidimensional_Arrays is
7 A1 : F1 (1 .. 2);
8 A2 : F2 (1 .. 4, 10 .. 20);
9 A3 : F3 (2 .. 3, 1 .. 5, 1 .. 2);
10 begin
11 Put_Line ("A1'Length (1): "
12 & A1'Length (1)'Image);
13 Put_Line ("A2'Length (1): "
14 & A2'Length (1)'Image);
15 Put_Line ("A2'Length (2): "
16 & A2'Length (2)'Image);
17 Put_Line ("A3'Length (1): "
18 & A3'Length (1)'Image);
19 Put_Line ("A3'Length (2): "
20 & A3'Length (2)'Image);
21 Put_Line ("A3'Length (3): "
22 & A3'Length (3)'Image);
23 end Show_Multidimensional_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.
↪Unconstrained_Multidimensional_Arrays

MD5: 9fb007abbfe238345d80cb315bb834c9

Build output

224 Chapter 5. Arrays

Advanced Journey With Ada: A Flight In Progress

show_multidimensional_arrays.adb:7:04: warning: variable "A1" is read but never␣
↪assigned [-gnatwv]

show_multidimensional_arrays.adb:8:04: warning: variable "A2" is read but never␣
↪assigned [-gnatwv]

show_multidimensional_arrays.adb:9:04: warning: variable "A3" is read but never␣
↪assigned [-gnatwv]

Runtime output

A1'Length (1): 2
A2'Length (1): 4
A2'Length (2): 11
A3'Length (1): 2
A3'Length (2): 5
A3'Length (3): 2

5.2.2 Arrays of arrays

It's important to distinguish between multidimensional arrays and arrays of arrays. Both
are supported in Ada, but they're very distinct from each other. We can create an array of
an array by first specifying a one-dimensional array type T1, and then specifying another
one-dimensional array type T2 where each component of T2 is of T1 type:

Listing 12: array_of_arrays_decl.ads
1 package Array_Of_Arrays_Decl is
2

3 type T1 is
4 array (Positive range <>) of Float;
5

6 type T2 is
7 array (Positive range <>) of T1 (1 .. 10);
8 -- ^^^^^^^
9 -- bounds must be set!
10

11 end Array_Of_Arrays_Decl;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Array_Of_Arrays.Array_Of_Arrays
MD5: fd67739bb21f202615180aa02f5284aa

Note that, in the declaration of T2, we must set the bounds for the T1 type. This is a major
difference to multidimensional arrays, which allow for unconstrained ranges in multiple
dimensions.
We can rewrite the previous application for measurements using arrays of arrays. This is
the adapted code:

Listing 13: measurement_defs.ads
1 package Measurement_Defs is
2

3 type Days is
4 (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
5

6 type Hours is range 0 .. 11;
7

8 subtype Measurement is Float;
(continues on next page)

5.2. Multidimensional Arrays 225

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9

10 type Hourly_Measurements is
11 array (Hours) of Measurement;
12

13 type Measurements is
14 array (Days) of Hourly_Measurements;
15

16 procedure Show_Indices (M : Measurements);
17

18 procedure Show_Values (M : Measurements);
19

20 procedure Reset (M : out Measurements);
21

22 end Measurement_Defs;

Listing 14: measurement_defs.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Measurement_Defs is
4

5 procedure Show_Indices (M : Measurements) is
6 begin
7 Put_Line ("---- Indices ----");
8

9 for D in M'Range loop
10 Put (D'Image & " ");
11

12 for H in M (D)'First ..
13 M (D)'Last - 1
14 loop
15 Put (H'Image & " ");
16 end loop;
17 Put_Line (M (D)'Last'Image);
18 end loop;
19 end Show_Indices;
20

21 procedure Show_Values (M : Measurements) is
22 package H_IO is
23 new Ada.Text_IO.Integer_IO (Hours);
24 package M_IO is
25 new Ada.Text_IO.Float_IO (Measurement);
26

27 procedure Set_IO_Defaults is
28 begin
29 H_IO.Default_Width := 5;
30

31 M_IO.Default_Fore := 1;
32 M_IO.Default_Aft := 2;
33 M_IO.Default_Exp := 0;
34 end Set_IO_Defaults;
35 begin
36 Set_IO_Defaults;
37

38 Put_Line ("---- Values ----");
39 Put (" ");
40 for H in M (M'First)'Range loop
41 H_IO.Put (H);
42 end loop;
43 New_Line;
44

(continues on next page)

226 Chapter 5. Arrays

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
45 for D in M'Range loop
46 Put (D'Image & " ");
47

48 for H in M (D)'Range loop
49 M_IO.Put (M (D) (H));
50 Put (" ");
51 end loop;
52 New_Line;
53 end loop;
54 end Show_Values;
55

56 procedure Reset (M : out Measurements) is
57 begin
58 M := (others => (others => 0.0));
59 end Reset;
60

61 end Measurement_Defs;

Listing 15: show_measurements.adb
1 with Measurement_Defs; use Measurement_Defs;
2

3 procedure Show_Measurements is
4 M : Measurements;
5 begin
6 Reset (M);
7 Show_Indices (M);
8 Show_Values (M);
9 end Show_Measurements;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Arrays.Array_Of_Arrays.Multidimensional_
↪Measurements

MD5: 5cb66bbb1890787b7c023406b2cafb4d

Runtime output

---- Indices ----
MON 0 1 2 3 4 5 6 7 8 9 10 11
TUE 0 1 2 3 4 5 6 7 8 9 10 11
WED 0 1 2 3 4 5 6 7 8 9 10 11
THU 0 1 2 3 4 5 6 7 8 9 10 11
FRI 0 1 2 3 4 5 6 7 8 9 10 11
SAT 0 1 2 3 4 5 6 7 8 9 10 11
SUN 0 1 2 3 4 5 6 7 8 9 10 11
---- Values ----

0 1 2 3 4 5 6 7 8 9 10 11
MON 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TUE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WED 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
THU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FRI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SAT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SUN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Again, we recommend that you spend some time analyzing this example and comparing it
to the previous version that uses multidimensional arrays. Also, we'd like to highlight the
following aspects:
• We access a value from an array of arrays by specifying the index of each array sep-
arately. For example: M (D) (H) allows us to access the value on day D and hour H

5.2. Multidimensional Arrays 227

Advanced Journey With Ada: A Flight In Progress

from the array of arrays M.
• To loop over an array of arrays M, we write for D in M'Range loop for the first level
of M and for H in M (D)'Range loop for the second level of M.

• Resetting all values of an array of arrays is very similar to how we do it for multidi-
mensional arrays. In fact, we can still use an aggregate with this form: (others =>
(others => 0.0)).

228 Chapter 5. Arrays

CHAPTER

SIX

STRINGS

6.1 Wide and Wide-Wide Strings

We've seen many source-code examples so far that includes strings. In most of them, we
were using the standard string type: String. This type is useful for the common use-
case of displaying messages or dealing with information in plain English. Here, we define
"plain English" as the use of the language that avoids French accents or German umlaut,
for example, and doesn't make use of any characters in non-Latin alphabets.
There are two additional string types in Ada: Wide_String, and Wide_Wide_String. These
types are particularly important when dealing with textual information in non-standard En-
glish, or in various other languages, non-Latin alphabets and special symbols.
These string types use different bit widths for their characters. This becomesmore apparent
when looking at the type definitions:

type String is
array (Positive range <>) of Character;

type Wide_String is
array (Positive range <>) of Wide_Character;

type Wide_Wide_String is
array (Positive range <>) of

Wide_Wide_Character;

The following table shows the typical bit-width of each character of the string types:

Character Type Width

Character 8 bits
Wide_Character 16 bits
Wide_Wide_Character 32 bits

We can see that when running this example:

Listing 1: show_wide_char_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Wide_Char_Types is
4 begin
5 Put_Line ("Character'Size: "
6 & Integer'Image
7 (Character'Size));
8 Put_Line ("Wide_Character'Size: "

(continues on next page)

229

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 & Integer'Image
10 (Wide_Character'Size));
11 Put_Line ("Wide_Wide_Character'Size: "
12 & Integer'Image
13 (Wide_Wide_Character'Size));
14 end Show_Wide_Char_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Wide_Char_
↪Types

MD5: a0e9fb9e8d43e9fa707dc8c57f7562f8

Runtime output

Character'Size: 8
Wide_Character'Size: 16
Wide_Wide_Character'Size: 32

Let's look at another example, this time using wide strings:

Listing 2: show_wide_string_types.adb
1 with Ada.Text_IO;
2 with Ada.Wide_Text_IO;
3 with Ada.Wide_Wide_Text_IO;
4

5 procedure Show_Wide_String_Types is
6 package TI renames Ada.Text_IO;
7 package WTI renames Ada.Wide_Text_IO;
8 package WWTI renames Ada.Wide_Wide_Text_IO;
9

10 S : constant String := "hello";
11 WS : constant Wide_String := "hello";
12 WWS : constant Wide_Wide_String := "hello";
13 begin
14 TI.Put_Line ("String: " & S);
15 TI.Put_Line ("Length: "
16 & Integer'Image (S'Length));
17 TI.Put_Line ("Size: "
18 & Integer'Image (S'Size));
19 TI.Put_Line ("Component_Size: "
20 & Integer'Image
21 (S'Component_Size));
22 TI.Put_Line ("------------------------");
23

24 WTI.Put_Line ("Wide string: " & WS);
25 TI.Put_Line ("Length: "
26 & Integer'Image (WS'Length));
27 TI.Put_Line ("Size: "
28 & Integer'Image (WS'Size));
29 TI.Put_Line ("Component_Size: "
30 & Integer'Image
31 (WS'Component_Size));
32 TI.Put_Line ("------------------------");
33

34 WWTI.Put_Line ("Wide-wide string: " & WWS);
35 TI.Put_Line ("Length: "
36 & Integer'Image (WWS'Length));
37 TI.Put_Line ("Size: "
38 & Integer'Image (WWS'Size));

(continues on next page)

230 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
39 TI.Put_Line ("Component_Size: "
40 & Integer'Image
41 (WWS'Component_Size));
42 TI.Put_Line ("------------------------");
43 end Show_Wide_String_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Wide_
↪String_Types

MD5: 137816c6fd78add34287a72e45cf4fb7

Runtime output

String: hello
Length: 5
Size: 40
Component_Size: 8

Wide string: hello
Length: 5
Size: 80
Component_Size: 16

Wide-wide string: hello
Length: 5
Size: 160
Component_Size: 32

Here, all strings (S, WS and WWS) have the same length of 5 characters. However, the size
of each character is different — thus, each string has a different overall size.
The recommendation is to use the String type when the textual information you're pro-
cessing is in standard English. In case any kind of internationalization is needed, using
Wide_Wide_String is probably the best choice, as it covers all possible use-cases.

In the Ada Reference Manual
• 3.6.3 String Types74

6.1.1 Text I/O

Note that, in the previous example, we were using different versions of the Ada.Text_IO
package depending on the string type we were using:
• Ada.Text_IO for objects of String type,
• Ada.Wide_Text_IO for objects of Wide_String type,
• Ada.Wide_Wide_Text_IO for objects of Wide_Wide_String type.

In that example, we were also using package renaming to differentiate among those pack-
ages.
Similarly, there are different versions of text I/O packages for individual types. For example,
if we want to display the value of a Long_Integer variable based on the Wide_Wide_String
74 http://www.ada-auth.org/standards/22rm/html/RM-3-6-3.html

6.1. Wide and Wide-Wide Strings 231

http://www.ada-auth.org/standards/22rm/html/RM-3-6-3.html

Advanced Journey With Ada: A Flight In Progress

type, we can select the Ada.Long_Integer_Wide_Wide_Text_IO package. In fact, the list
of packages resulting from the combination of those types is quite long:

Scalar Type Text I/O Packages

Integer • Ada.Integer_Text_IO
• Ada.Integer_Wide_Text_IO
• Ada.Integer_Wide_Wide_Text_IO

Long_Integer • Ada.Long_Integer_Text_IO
• Ada.Long_Integer_Wide_Text_IO
• Ada.Long_Integer_Wide_Wide_Text_IO

Long_Long_Integer • Ada.Long_Long_Integer_Text_IO
• Ada.Long_Long_Integer_Wide_Text_IO
• Ada.Long_Long_Integer_Wide_Wide_Text_IO

Float
• Ada.Float_Text_IO
• Ada.Float_Wide_Text_IO
• Ada.Float_Wide_Wide_Text_IO

Long_Float
• Ada.Long_Float_Text_IO
• Ada.Long_Float_Wide_Text_IO
• Ada.Long_Float_Wide_Wide_Text_IO

Long_Long_Float
• Ada.Long_Long_Float_Text_IO
• Ada.Long_Long_Float_Wide_Text_IO
• Ada.Long_Long_Float_Wide_Wide_Text_IO

Also, there are different versions of the generic packages Integer_IO and Float_IO:

Scalar Type Text I/O Packages

Integer types • Ada.Text_IO.Integer_IO
• Ada.Wide_Text_IO.Integer_IO
• Ada.Wide_Wide_Text_IO.
Integer_IO

Real types
• Ada.Text_IO.Float_IO
• Ada.Wide_Text_IO.Float_IO
• Ada.Wide_Wide_Text_IO.Float_IO

In the Ada Reference Manual
• A.10 Text Input-Output75

75 http://www.ada-auth.org/standards/22rm/html/RM-A-10.html

232 Chapter 6. Strings

http://www.ada-auth.org/standards/22rm/html/RM-A-10.html

Advanced Journey With Ada: A Flight In Progress

• A.10.1 The Package Text_IO76

• A.10.8 Input-Output for Integer Types77

• A.10.9 Input-Output for Real Types78

• A.11 Wide Text Input-Output and Wide Wide Text Input-Output79

6.1.2 Wide and Wide-Wide String Handling

As we've just seen, we have different versions of the Ada.Text_IO package. The same
applies to string handling packages. As we've seen in the Introduction to Ada course80, we
can use the Ada.Strings.Fixed and Ada.Strings.Maps packages for string handling. For
other formats, we have these packages:
• Ada.Strings.Wide_Fixed,
• Ada.Strings.Wide_Wide_Fixed,
• Ada.Strings.Wide_Maps,
• Ada.Strings.Wide_Wide_Maps.

Let's look at this example81 from the Introduction to Ada course, which we adapted for
wide-wide strings:

Listing 3: show_find_words.adb
1 with Ada.Strings; use Ada.Strings;
2

3 with Ada.Strings.Wide_Wide_Fixed;
4 use Ada.Strings.Wide_Wide_Fixed;
5

6 with Ada.Strings.Wide_Wide_Maps;
7 use Ada.Strings.Wide_Wide_Maps;
8

9 with Ada.Wide_Wide_Text_IO;
10 use Ada.Wide_Wide_Text_IO;
11

12 procedure Show_Find_Words is
13

14 S : constant Wide_Wide_String :=
15 "Hello" & 3 * " World";
16 F : Positive;
17 L : Natural;
18 I : Natural := 1;
19

20 Whitespace : constant
21 Wide_Wide_Character_Set :=
22 To_Set (' ');
23 begin
24 Put_Line ("String: " & S);
25 Put_Line ("String length: "
26 & Integer'Wide_Wide_Image

(continues on next page)
76 http://www.ada-auth.org/standards/22rm/html/RM-A-10-1.html
77 http://www.ada-auth.org/standards/22rm/html/RM-A-10-8.html
78 http://www.ada-auth.org/standards/22rm/html/RM-A-10-9.html
79 http://www.ada-auth.org/standards/22rm/html/RM-A-11.html
80 https://learn.adacore.com/courses/intro-to-ada/chapters/standard_library_strings.html#
intro-ada-string-operations
81 https://learn.adacore.com/courses/intro-to-ada/chapters/standard_library_strings.html#
intro-ada-string-operations-show-find-words

6.1. Wide and Wide-Wide Strings 233

http://www.ada-auth.org/standards/22rm/html/RM-A-10-1.html
http://www.ada-auth.org/standards/22rm/html/RM-A-10-8.html
http://www.ada-auth.org/standards/22rm/html/RM-A-10-9.html
http://www.ada-auth.org/standards/22rm/html/RM-A-11.html
https://learn.adacore.com/courses/intro-to-ada/chapters/standard_library_strings.html#intro-ada-string-operations
https://learn.adacore.com/courses/intro-to-ada/chapters/standard_library_strings.html#intro-ada-string-operations-show-find-words

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
27 (S'Length));
28

29 while I in S'Range loop
30 Find_Token
31 (Source => S,
32 Set => Whitespace,
33 From => I,
34 Test => Outside,
35 First => F,
36 Last => L);
37

38 exit when L = 0;
39

40 Put_Line ("Found word instance at position "
41 & F'Wide_Wide_Image
42 & ": '" & S (F .. L) & "'");
43

44 I := L + 1;
45 end loop;
46

47 end Show_Find_Words;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Wide_Wide_
↪String_Handling

MD5: 3b5a4d61e6dc5bd16e85f85580ad82ae

Runtime output

String: Hello World World World
String length: 23
Found word instance at position 1: 'Hello'
Found word instance at position 7: 'World'
Found word instance at position 13: 'World'
Found word instance at position 19: 'World'

In this example, we're using the Find_Token procedure to find the words from the phrase
stored in the S constant. All the operations we're using here are similar to the ones for
String type, but making use of the Wide_Wide_String type instead. (We talk about the
Wide_Wide_Image attribute later on (page 248).)

In the Ada Reference Manual
• A.4.6 String-Handling Sets and Mappings82

• A.4.7 Wide_String Handling83

• A.4.8 Wide_Wide_String Handling84

82 http://www.ada-auth.org/standards/22rm/html/RM-A-4-6.html
83 http://www.ada-auth.org/standards/22rm/html/RM-A-4-7.html
84 http://www.ada-auth.org/standards/22rm/html/RM-A-4-8.html

234 Chapter 6. Strings

http://www.ada-auth.org/standards/22rm/html/RM-A-4-6.html
http://www.ada-auth.org/standards/22rm/html/RM-A-4-7.html
http://www.ada-auth.org/standards/22rm/html/RM-A-4-8.html

Advanced Journey With Ada: A Flight In Progress

6.1.3 Bounded and Unbounded Wide and Wide-Wide Strings

We've seen in the Introduction to Ada course that other kinds of String types are available.
For example, we can use bounded85 and unbounded strings86 — those correspond to the
Bounded_String and Unbounded_String types.
Those kinds of string types are available for Wide_String, and Wide_Wide_String. The
following table shows the available types and corresponding packages:

Type Package

Bounded_Wide_String Ada.Strings.Wide_Bounded
Bounded_Wide_Wide_String Ada.Strings.Wide_Wide_Bounded
Unbounded_Wide_String Ada.Strings.Wide_Unbounded
Unbounded_Wide_Wide_String Ada.Strings.Wide_Wide_Unbounded

The same applies to text I/O for those strings. For the standard case, we have Ada.
Text_IO.Bounded_IO for the Bounded_String type and Ada.Text_IO.Unbounded_IO for
the Unbounded_String type.
For wider string types, we have:

Type Text I/O Package

Bounded_Wide_String Ada.Wide_Text_IO.Wide_Bounded_IO
Bounded_Wide_Wide_String Ada.Wide_Wide_Text_IO.Wide_Wide_Bounded_IO
Unbounded_Wide_String Ada.Wide_Text_IO.Wide_Unbounded_IO
Unbounded_Wide_Wide_String Ada.Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO

Let's look at a simple example:

Listing 4: show_unbounded_wide_wide_string.adb
1 with Ada.Strings.Wide_Wide_Unbounded;
2 use Ada.Strings.Wide_Wide_Unbounded;
3

4 with Ada.Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO;
5 use Ada.Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO;
6

7 procedure Show_Unbounded_Wide_Wide_String is
8 S : Unbounded_Wide_Wide_String
9 := To_Unbounded_Wide_Wide_String ("Hello");
10 begin
11 S := S & Wide_Wide_String'(" hello");
12 Put_Line ("Unbounded wide-wide string: " & S);
13 end Show_Unbounded_Wide_Wide_String;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Unbounded_
↪Wide_Wide_String

MD5: 0d369270e2408b3f1cc8284c13fca806

Runtime output
85 https://learn.adacore.com/courses/intro-to-ada/chapters/standard_library_strings.html#
intro-ada-bounded-strings
86 https://learn.adacore.com/courses/intro-to-ada/chapters/standard_library_strings.html#
intro-ada-unbounded-strings

6.1. Wide and Wide-Wide Strings 235

https://learn.adacore.com/courses/intro-to-ada/chapters/standard_library_strings.html#intro-ada-bounded-strings
https://learn.adacore.com/courses/intro-to-ada/chapters/standard_library_strings.html#intro-ada-unbounded-strings

Advanced Journey With Ada: A Flight In Progress

Unbounded wide-wide string: Hello hello

In this example, we're declaring a variable S and initializing it with the word "Hello." Then,
we're concatenating it with " hello" and displaying it. All the operations we're using here
are similar to the ones for Unbounded_String type, but they've been adapted for the Un-
bounded_Wide_Wide_String type.

In the Ada Reference Manual
• A.4.7 Wide_String Handling87

• A.4.8 Wide_Wide_String Handling88

• A.11 Wide Text Input-Output and Wide Wide Text Input-Output89

6.2 String Encoding

Unicode is one of the most widespread standards for encoding writing systems other than
the Latin alphabet. It defines a format called Unicode Transformation Format (UTF)90 in
various versions, which vary according to the underlying precision, support for backwards-
compatibility and other requirements.

In the Ada Reference Manual
• A.4.11 String Encoding91

6.2.1 UTF-8 encoding and decoding

A common UTF format is UTF-8, which encodes strings using up to four (8-bit) bytes and is
backwards-compatible with the ASCII format. While encoding of ASCII characters requires
only one byte, Chinese characters require three bytes, for example.
In Ada applications, UTF-8 strings are indicated by using the UTF_8_String from the Ada.
Strings.UTF_Encoding package. In order to encode from and to UTF-8 strings, we can use
the Encode and Decode functions. Those functions are specified in the child packages of the
Ada.Strings.UTF_Encoding package. We select the appropriate child package depending on
the string type we're using, as you can see in the following table:

Child Package of Ada.Strings.UTF_Encoding Convert from / to
.Strings String type
.Wide_Strings Wide_String type
.Wide_Wide_Strings Wide_Wide_String type

Let's look at an example:
87 http://www.ada-auth.org/standards/22rm/html/RM-A-4-7.html
88 http://www.ada-auth.org/standards/22rm/html/RM-A-4-8.html
89 http://www.ada-auth.org/standards/22rm/html/RM-A-11.html
90 https://unicode.org/faq/utf_bom.html#gen2
91 http://www.ada-auth.org/standards/22rm/html/RM-A-4-11.html

236 Chapter 6. Strings

http://www.ada-auth.org/standards/22rm/html/RM-A-4-7.html
http://www.ada-auth.org/standards/22rm/html/RM-A-4-8.html
http://www.ada-auth.org/standards/22rm/html/RM-A-11.html
https://unicode.org/faq/utf_bom.html#gen2
http://www.ada-auth.org/standards/22rm/html/RM-A-4-11.html

Advanced Journey With Ada: A Flight In Progress

Listing 5: show_ww_utf_string.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Strings.UTF_Encoding;
4 use Ada.Strings.UTF_Encoding;
5

6 with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
7 use Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
8

9 with Ada.Strings.Wide_Wide_Unbounded;
10 use Ada.Strings.Wide_Wide_Unbounded;
11

12 procedure Show_WW_UTF_String is
13

14 function To_UWWS
15 (Source : Wide_Wide_String)
16 return Unbounded_Wide_Wide_String
17 renames To_Unbounded_Wide_Wide_String;
18

19 function To_WWS
20 (Source : Unbounded_Wide_Wide_String)
21 return Wide_Wide_String
22 renames To_Wide_Wide_String;
23

24 Hello_World_Arabic : constant
25 UTF_8_String := مرحبا" يا ;عالم"
26 WWS_Hello_World_Arabic : constant
27 Wide_Wide_String :=
28 Decode (Hello_World_Arabic);
29

30 UWWS : Unbounded_Wide_Wide_String;
31 begin
32 UWWS := "Hello World: "
33 & To_UWWS (WWS_Hello_World_Arabic);
34

35 Show_WW_String : declare
36 WWS : constant Wide_Wide_String :=
37 To_WWS (UWWS);
38 begin
39 Put_Line ("Wide_Wide_String Length: "
40 & WWS'Length'Image);
41 Put_Line ("Wide_Wide_String Size: "
42 & WWS'Size'Image);
43 end Show_WW_String;
44

45 Put_Line
46 ("---------------------------------------");
47 Put_Line
48 ("Converting Wide_Wide_String to UTF-8...");
49

50 Show_UTF_8_String : declare
51 S_UTF_8 : constant UTF_8_String :=
52 Encode (To_WWS (UWWS));
53 begin
54 Put_Line ("UTF-8 String: "
55 & S_UTF_8);
56 Put_Line ("UTF-8 String Length: "
57 & S_UTF_8'Length'Image);
58 Put_Line ("UTF-8 String Size: "
59 & S_UTF_8'Size'Image);
60 end Show_UTF_8_String;

(continues on next page)

6.2. String Encoding 237

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
61

62 end Show_WW_UTF_String;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WW_UTF_String
MD5: cecfb420bb804f42e7a65b793abcbef5

Runtime output

Wide_Wide_String Length: 26
Wide_Wide_String Size: 832

Converting Wide_Wide_String to UTF-8...
UTF-8 String: Hello World: مرحبا يا عالم
UTF-8 String Length: 37
UTF-8 String Size: 296

In this application, we start by storing a string in Arabic in the Hello_World_Arabic con-
stant. We then use the Decode function to convert that string from UTF_8_String type to
Wide_Wide_String type — we store it in the WWS_Hello_World_Arabic constant.
We use a variable of type Unbounded_Wide_Wide_String (UWWS) to manipulate strings: we
append the string in Arabic to the "Hello World: " string and store it in UWWS.
In the Show_WW_String block, we convert the string — stored in UWWS — from the Un-
bounded_Wide_Wide_String type to the Wide_Wide_String type and display the length
and size of the string. We do something similar in the Show_UTF_8_String block, but there,
we convert to the UTF_8_String type.
Also, in the Show_UTF_8_String block, we use the Encode function to convert that string
from Wide_Wide_String type to then UTF_8_String type — we store it in the S_UTF_8
constant.

6.2.2 UTF-8 size and length

As you can see when running the last code example from the previous subsection, we have
different sizes and lengths depending on the string type:

String type Size Length
Wide_Wide_String 832 26
UTF_8_String 296 37

The size needed for storing the string when using the Wide_Wide_String type is bigger than
the one when using the UTF_8_String type. This is expected, as the Wide_Wide_String
uses 32-bit characters, while the UTF_8_String type uses 8-bit codes to store the string in
a more efficient way (memory-wise).
The length of the string using the Wide_Wide_String type is equivalent to the number
of symbols we have in the original string: 26 characters / symbols. When using UTF-8,
however, we may need more 8-bit codes to represent one symbol from the original string,
so we may end up with a length value that is bigger than the actual number of symbols
from the original string — as it is the case in this source-code example.
This difference in sizesmight not always be the case. In fact, the sizesmatch when encoding
a symbol in UTF-8 that requires four 8-bit codes. For example:

238 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

Listing 6: show_utf_8.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Strings.UTF_Encoding;
4 use Ada.Strings.UTF_Encoding;
5

6 with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
7 use Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
8

9 procedure Show_UTF_8 is
10

11 Symbol_UTF_8 : constant UTF_8_String := "𝚡";
12 Symbol_WWS : constant Wide_Wide_String :=
13 Decode (Symbol_UTF_8);
14

15 begin
16 Put_Line ("Wide_Wide_String Length: "
17 & Symbol_WWS'Length'Image);
18 Put_Line ("Wide_Wide_String Size: "
19 & Symbol_WWS'Size'Image);
20 Put_Line ("UTF-8 String Length: "
21 & Symbol_UTF_8'Length'Image);
22 Put_Line ("UTF-8 String Size: "
23 & Symbol_UTF_8'Size'Image);
24 New_Line;
25 Put_Line ("UTF-8 String: "
26 & Symbol_UTF_8);
27 end Show_UTF_8;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8
MD5: 67653dfd377f04b32421cf09b25939fe

Runtime output

Wide_Wide_String Length: 1
Wide_Wide_String Size: 32
UTF-8 String Length: 4
UTF-8 String Size: 32

UTF-8 String: 𝚡

In this case, both strings — using the Wide_Wide_String type or the UTF_8_String type
— have the same size: 32 bits. (Here, we're using the 𝚡 symbol from the Mathematical
Alphanumeric Symbols block92, not the standard "x" from the Basic Latin block93.)
92 https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols
93 https://en.wikipedia.org/wiki/Basic_Latin_(Unicode_block)

6.2. String Encoding 239

https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols
https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols
https://en.wikipedia.org/wiki/Basic_Latin_(Unicode_block)

Advanced Journey With Ada: A Flight In Progress

6.2.3 UTF-8 encoding in source-code files

In the past, it was common to use different character sets in text files when writing in
different (human) languages. By default, Ada source-code files are expected to use the
Latin-1 coding, which is a 8-bit character set.
Nowadays, however, using UTF-8 coding for text files — including source-code files — is
very common. If your Ada code only uses standard ASCII characters, but you're saving it
in a UTF-8 coded file, there's no need to worry about character sets, as UTF-8 is backwards
compatible with ASCII.
However, you might want to use Unicode symbols in your Ada source code to declare con-
stants — as we did in the previous sections — and store the source code in a UTF-8 coded
file. In this case, you need be careful about how this file is parsed by the compiler.
Let's look at this source-code example:

Listing 7: show_utf_8_strings.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Strings.UTF_Encoding;
4 use Ada.Strings.UTF_Encoding;
5

6 procedure Show_UTF_8_Strings is
7

8 Symbols_UTF_8 : constant
9 UTF_8_String := "♥♫";
10

11 begin
12 Put_Line ("UTF_8_String: "
13 & Symbols_UTF_8);
14

15 Put_Line ("Length: "
16 & Symbols_UTF_8'Length'Image);
17

18 end Show_UTF_8_Strings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8_Strings
MD5: fd1aaff161a33365d15adca5bea7b277

Runtime output

UTF_8_String: ♥♫
Length: 6

Here, we're using Unicode symbols to initialize the Symbols_UTF_8 constant of
UTF_8_String type.
Now, let's assume this source-code example is stored in a UTF-8 coded file. Because the
"♥♫" string makes use of non-ASCII Unicode symbols, representing this string in UTF-8 for-
mat will require more than 2 bytes. In fact, each one of those Unicode symbols requires 2
bytes to be encoded in UTF-8. (Keep in mind that Unicode symbols may require between
1 to 4 bytes94 to be encoded in UTF-8 format.) Also, in this case, the UTF-8 encoding pro-
cess is using two additional bytes. Therefore, the total length of the string is six, which
matches what we see when running the Show_UTF_8_Strings procedure. In other words,
the length of the Symbols_UTF_8 string doesn't refer to those two characters ("♥♫") that
we were using in the constant declaration, but the length of the encoded bytes in its UTF-8
representation.
94 https://en.wikipedia.org/wiki/UTF-8

240 Chapter 6. Strings

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8

Advanced Journey With Ada: A Flight In Progress

The UTF-8 format is very useful for storing and transmitting texts. However, if we want to
process Unicode symbols, it's probably better to use string types with 32-bit characters —
such as Wide_Wide_String. For example, let's say we want to use the "♥♫" string again to
initialize a constant of Wide_Wide_String type:

Listing 8: show_wws_strings.adb
1 with Ada.Text_IO;
2 with Ada.Wide_Wide_Text_IO;
3

4 procedure Show_WWS_Strings is
5

6 package TIO renames Ada.Text_IO;
7 package WWTIO renames Ada.Wide_Wide_Text_IO;
8

9 Symbols_WWS : constant
10 Wide_Wide_String := "♥♫";
11

12 begin
13 WWTIO.Put_Line ("Wide_Wide_String: "
14 & Symbols_WWS);
15

16 TIO.Put_Line ("Length: "
17 & Symbols_WWS'Length'Image);
18

19 end Show_WWS_Strings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WWS_Strings_W8
MD5: 1e5e38e62b412de48d3fa4271bb48bf1

Runtime output

Wide_Wide_String: ♥♫
Length: 2

In this case, as mentioned above, if we store this source code in a text file using UTF-
8 format, we need to ensure that the UTF-8 coded symbols are correctly interpreted by
the compiler when it parses the text file. Otherwise, we might get unexpected behavior.
(Interpreting the characters in UTF-8 format as Latin-1 format is certainly an example of
what we want to avoid here.)

In the GNAT toolchain
You can use UTF-8 coding in your source-code file and initialize strings of 32-bit characters.
However, as we just mentioned, you need to make sure that the UTF-8 coded symbols are
correctly interpreted by the compiler when dealing with types such as Wide_Wide_String.
For this case, GNAT offers the -gnatW8 switch. Let's run the previous example using this
switch:

Listing 9: show_wws_strings.adb
1 with Ada.Text_IO;
2 with Ada.Wide_Wide_Text_IO;
3

4 procedure Show_WWS_Strings is
5

6 package TIO renames Ada.Text_IO;
7 package WWTIO renames Ada.Wide_Wide_Text_IO;
8

(continues on next page)

6.2. String Encoding 241

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 Symbols_WWS : constant
10 Wide_Wide_String := "♥♫";
11

12 begin
13 WWTIO.Put_Line ("Wide_Wide_String: "
14 & Symbols_WWS);
15

16 TIO.Put_Line ("Length: "
17 & Symbols_WWS'Length'Image);
18

19 end Show_WWS_Strings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WWS_Strings_W8
MD5: 1e5e38e62b412de48d3fa4271bb48bf1

Runtime output

Wide_Wide_String: ♥♫
Length: 2

Because the Wide_Wide_String type has 32-bit characters. we expect the length of
the string to match the number of symbols that we're using. Indeed, when running the
Show_WWS_Strings procedure, we see that the Symbols_WWS string has a length of two
characters, which matches the number of characters of the "♥♫" string.
When we use the -gnatW8 switch, GNAT converts the UTF-8-coded string ("♥♫") to UTF-32
format, so we get two 32-bit characters. It then uses the UTF-32-coded string to initialize
the Symbols_WWS string.
If we don't use the -gnatW8 switch, however, we get wrong results. Let's look at the same
example again without the switch:

Listing 10: show_wws_strings.adb
1 with Ada.Text_IO;
2 with Ada.Wide_Wide_Text_IO;
3

4 procedure Show_WWS_Strings is
5

6 package TIO renames Ada.Text_IO;
7 package WWTIO renames Ada.Wide_Wide_Text_IO;
8

9 Symbols_WWS : constant
10 Wide_Wide_String := "♥♫";
11

12 begin
13 WWTIO.Put_Line ("Wide_Wide_String: "
14 & Symbols_WWS);
15

16 TIO.Put_Line ("Length: "
17 & Symbols_WWS'Length'Image);
18

19 end Show_WWS_Strings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WWS_Strings_No_W8
MD5: 1e5e38e62b412de48d3fa4271bb48bf1

Runtime output

242 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

Wide_Wide_String: ♥♫
Length: 6

Now, the "♥♫" string is being interpreted as a string of six 8-bit characters. (In other words,
the UTF-8-coded string isn't converted to the UTF-32 format.) Each of those 8-bit characters
is then stored in a 32-bit character of the Wide_Wide_String type. This explains why the
Show_WWS_Strings procedure reports a length of 6 components for the Symbols_WWS string.

Portability of UTF-8 in source-code files

In a previous code example, we were assuming that the format that we use for the source-
code file is UTF-8. This allows us to simply use Unicode symbols directly in strings:

Symbol_UTF_8 : constant UTF_8_String := "★";

This approach, however, might not be portable. For example, if the compiler uses a different
string encoding for source-code files, it might interpret that Unicode character as something
else — or just throw a compilation error.
If you're afraid that format mismatches might happen in your compilation environment, you
may want to write strings in your code in a completely portable fashion, which consists in
entering the exact sequence of codes in bytes — using the Character'Val function — for
the symbols you want to use.
We can reuse parts of the previous example and replace the UTF-8 character with the cor-
responding UTF-8 code:

Listing 11: show_utf_8.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Strings.UTF_Encoding;
4 use Ada.Strings.UTF_Encoding;
5

6 procedure Show_UTF_8 is
7

8 Symbol_UTF_8 : constant
9 UTF_8_String :=
10 Character'Val (16#e2#)
11 & Character'Val (16#98#)
12 & Character'Val (16#85#);
13

14 begin
15 Put_Line ("UTF-8 String: "
16 & Symbol_UTF_8);
17 end Show_UTF_8;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8
MD5: 8ff02bc1793c0c5ac1ff24f62941af73

Runtime output

UTF-8 String: ★

Here, we use a sequence of three calls to the Character'Val(code) function for the UTF-8
code that corresponds to the "★" symbol.

6.2. String Encoding 243

Advanced Journey With Ada: A Flight In Progress

6.2.4 UTF-16 encoding and decoding

So far, we've discussed the UTF-8 encoding scheme. However, other encoding schemes
exist and are supported as well. In fact, the Ada.Strings.UTF_Encoding package defines
three encoding schemes:

type Encoding_Scheme is (UTF_8,
UTF_16BE,
UTF_16LE);

For example, instead of using UTF-8 encoding, we can use UTF-16 encoding — either in
the big-endian or in the little-endian version. To convert between UTF-8 and UTF-16 en-
coding schemes, we can make use of the conversion functions from the Ada.Strings.
UTF_Encoding.Conversions package.
To declare a UTF-16 encoded string, we can use one of the following data types:
• the 8-bit-character based UTF_String type, or
• the 16-bit-character based UTF_16_Wide_String type.

When using the 8-bit version, though, we have to specify the input and output schemes
when converting between UTF-8 and UTF-16 encoding schemes.
Let's see a code example that makes use of both UTF_String and UTF_16_Wide_String
types:

Listing 12: show_utf16_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Strings.UTF_Encoding;
4 use Ada.Strings.UTF_Encoding;
5

6 with Ada.Strings.UTF_Encoding.Conversions;
7 use Ada.Strings.UTF_Encoding.Conversions;
8

9 procedure Show_UTF16_Types is
10 Symbols_UTF_8 : constant
11 UTF_8_String := "♥♫";
12

13 Symbols_UTF_16 : constant
14 UTF_16_Wide_String :=
15 Convert (Symbols_UTF_8);
16 -- ^ Calling Convert for UTF_8_String
17 -- to UTF_16_Wide_String conversion.
18

19 Symbols_UTF_16BE : constant
20 UTF_String :=
21 Convert (Item => Symbols_UTF_8,
22 Input_Scheme => UTF_8,
23 Output_Scheme => UTF_16BE);
24 -- ^ Calling Convert for UTF_8_String
25 -- to UTF_String conversion in UTF-16BE
26 -- encoding.
27 begin
28 Put_Line ("UTF_8_String: "
29 & Symbols_UTF_8);
30

31 Put_Line ("UTF_16_Wide_String: "
32 & Convert (Symbols_UTF_16));
33 -- ^ Calling Convert for
34 -- the UTF_16_Wide_String to

(continues on next page)

244 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
35 -- UTF_8_String conversion.
36

37 Put_Line
38 ("UTF_String / UTF_16BE: "
39 & Convert
40 (Item => Symbols_UTF_16BE,
41 Input_Scheme => UTF_16BE,
42 Output_Scheme => UTF_8));
43 end Show_UTF16_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_16_Types
MD5: 905e20e83a6199fdc91a6b15bb71bb01

Runtime output

UTF_8_String: ♥♫
UTF_16_Wide_String: ♥♫
UTF_String / UTF_16BE: ♥♫

In this example, we're declaring a UTF-8 encoded string and storing it in the Symbols_UTF_8
constant. Then, we're calling the Convert functions to convert between UTF-8 and UTF-16
encoding schemes. We're using two versions of this function:
• the Convert function that returns an object of UTF_16_Wide_String type for an input
of UTF_8_String type, and

• the Convert function that returns an object of UTF_String type for an input of
UTF_8_String type.
– In this case, we need to specify the input and output schemes (see Input_Scheme
and Output_Scheme parameters in the code example).

Previously, we've seen that the Ada.Strings.UTF_Encoding.Wide_Wide_Strings package
offers functions to convert between UTF-8 and the Wide_Wide_String type. The same kind
of conversion functions exist for UTF-16 strings as well. Let's look at this code example:

Listing 13: show_ww_utf16_string.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Strings.UTF_Encoding;
4 use Ada.Strings.UTF_Encoding;
5

6 with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
7 use Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
8

9 with Ada.Strings.UTF_Encoding.Conversions;
10 use Ada.Strings.UTF_Encoding.Conversions;
11

12 procedure Show_WW_UTF16_String is
13 Symbols_UTF_16 : constant
14 UTF_16_Wide_String :=
15 Wide_Character'Val (16#2665#) &
16 Wide_Character'Val (16#266B#);
17 -- ^ Calling Wide_Character'Val
18 -- to specify the UTF-16 BE code
19 -- for "♥" and "♫".
20

21 Symbols_WWS : constant
22 Wide_Wide_String :=

(continues on next page)

6.2. String Encoding 245

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
23 Decode (Symbols_UTF_16);
24 -- ^ Calling Decode for UTF_16_Wide_String
25 -- to Wide_Wide_String conversion.
26 begin
27 Put_Line ("UTF_16_Wide_String: "
28 & Convert (Symbols_UTF_16));
29 -- ^ Calling Convert for the
30 -- UTF_16_Wide_String to
31 -- UTF_8_String conversion.
32

33 Put_Line ("Wide_Wide_String: "
34 & Encode (Symbols_WWS));
35 -- ^ Calling Encode for the
36 -- Wide_Wide_String to
37 -- UTF_8_String conversion.
38 end Show_WW_UTF16_String;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WW_UTF_16_String
MD5: 900af8f5c6aad7303c3e49c1c4a68d73

Runtime output

UTF_16_Wide_String: ♥♫
Wide_Wide_String: ♥♫

In this example, we're calling the Wide_Character'Val function to specify the UTF-16 BE
code of the "♥" and "♫" symbols. We're then using the Decode function to convert between
the UTF_16_Wide_String and the Wide_Wide_String types.

6.3 Image attribute

6.3.1 Overview

In the Introduction to Ada95 course, we've seen that the Image attribute returns a string
that contains a textual representation of an object. For example, we write Integer'Image
(V) to get a string for the integer variable V:

Listing 14: show_simple_image.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Image is
4 V : Integer;
5 begin
6 V := 10;
7 Put_Line ("V: " & Integer'Image (V));
8 end Show_Simple_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Simple_Image
MD5: e38f6f1a0808f12bd53c1f3cf4983353

95 https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#
intro-ada-image-attribute

246 Chapter 6. Strings

https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-image-attribute

Advanced Journey With Ada: A Flight In Progress

Runtime output

V: 10

Naturally, we can use the Image attribute with other scalar types. For example:

Listing 15: show_simple_image.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Image is
4 type Status is (Unknown, Off, On);
5

6 V : Float;
7 S : Status;
8 begin
9 V := 10.0;
10 S := Unknown;
11

12 Put_Line ("V: " & Float'Image (V));
13 Put_Line ("S: " & Status'Image (S));
14 end Show_Simple_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Simple_Image
MD5: d3369518b610b7bf6c8dcefdecdb0c44

Runtime output

V: 1.00000E+01
S: UNKNOWN

In this example, we retrieve a string representing the floating-point variable V. Also, we use
Status'Image (V) to retrieve a string representing the textual version of the Status.

In the Ada Reference Manual
• Image Attributes96

6.3.2 Type'Image and Obj'Image

We can also apply the Image attribute to an object directly:

Listing 16: show_simple_image.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Simple_Image is
4 V : Integer;
5 begin
6 V := 10;
7 Put_Line ("V: " & V'Image);
8

9 -- Equivalent to:
10 -- Put_Line ("V: " & Integer'Image (V));
11 end Show_Simple_Image;

96 http://www.ada-auth.org/standards/22rm/html/RM-4-10.html

6.3. Image attribute 247

http://www.ada-auth.org/standards/22rm/html/RM-4-10.html

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Simple_Image
MD5: c8b2e458de47b403568dd795b3d3fc24

Runtime output

V: 10

In this example, the Integer'Image (V) and V'Image forms are equivalent.

6.3.3 Wider versions of Image

Although we've been talking only about the Image attribute, it's important to mention that
each of the wider versions of the string types also has a corresponding Image attribute. In
fact, this is the attribute for each string type:

Attribute Type of Returned String
Image String
Wide_Image Wide_String
Wide_Wide_Image Wide_Wide_String

Let's see a simple example:

Listing 17: show_wide_wide_image.adb
1 with Ada.Wide_Wide_Text_IO;
2 use Ada.Wide_Wide_Text_IO;
3

4 procedure Show_Wide_Wide_Image is
5 F : Float;
6 begin
7 F := 100.0;
8 Put_Line ("F = "
9 & F'Wide_Wide_Image);
10 end Show_Wide_Wide_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Wide_Wide_Image
MD5: ff542ef93286529343466c27935d5c21

Runtime output

F = 1.00000E+02

In this example, we use the Wide_Wide_Image attribute to retrieve a string of
Wide_Wide_String type for the floating-point variable F.

248 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

6.3.4 Image attribute for non-scalar types

Note: This feature was introduced in Ada 2022.

In the previous code examples, we were using the Image attribute with scalar types, but
it isn't restricted to those types. In fact, we can also use this attribute when dealing with
non-scalar types. For example:

Listing 18: simple_records.ads
1 package Simple_Records is
2

3 type Rec is limited private;
4

5 type Rec_Access is access Rec;
6

7 function Init return Rec;
8

9 type Null_Rec is null record;
10

11 private
12

13 type Rec is limited record
14 F : Float;
15 I : Integer;
16 end record;
17

18 function Init return Rec is
19 ((F => 10.0, I => 4));
20

21 end Simple_Records;

Listing 19: show_non_scalar_image.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4 with Ada.Unchecked_Deallocation;
5

6 with Simple_Records;
7 use Simple_Records;
8

9 procedure Show_Non_Scalar_Image is
10

11 procedure Free is
12 new Ada.Unchecked_Deallocation
13 (Object => Rec,
14 Name => Rec_Access);
15

16 R_A : Rec_Access :=
17 new Rec'(Init);
18

19 N_R : Null_Rec :=
20 (null record);
21 begin
22 R_A := new Rec'(Init);
23 N_R := (null record);
24

25 Put_Line ("R_A: " & R_A'Image);
26 Put_Line ("R_A.all: " & R_A.all'Image);

(continues on next page)

6.3. Image attribute 249

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
27 Put_Line ("N_R: " & N_R'Image);
28

29 Free (R_A);
30 Put_Line ("R_A: " & R_A'Image);
31 end Show_Non_Scalar_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Non_Scalar_Image
MD5: d7d15e96a03c882995262a5cfca5e771

Runtime output

R_A: (access ea02c0)
R_A.all:
(F => 1.00000E+01,
I => 4)
N_R: (NULL RECORD)
R_A: null

In the Show_Non_Scalar_Image procedure from this example, we display the access value
of R_A and the contents of the dereferenced access object (R_A.all). Also, we see the
indication that N_R is a null record and R_A is null after the call to Free.

Historically
Since Ada 2022, the Image attribute is available for all types. Prior to this version of the
language, it was only available for scalar types. (For other kind of types, programmers had
to use the Image attribute for each component of a record, for example.)
In fact, prior to Ada 2022, the Image attribute was described in the 3.5 Scalar Types97 section
of the Ada Reference Manual, as it was only applied to those types. Now, it is part of the
new Image Attributes98 section.

Let's see another example, this time with arrays:

Listing 20: show_array_image.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Array_Image is
6

7 type Float_Array is
8 array (Positive range <>) of Float;
9

10 FA_3C : Float_Array (1 .. 3);
11 FA_Null : Float_Array (1 .. 0);
12

13 begin
14 FA_3C := [1.0, 3.0, 2.0];
15 FA_Null := [];
16

17 Put_Line ("FA_3C: " & FA_3C'Image);
18 Put_Line ("FA_Null: " & FA_Null'Image);
19 end Show_Array_Image;

97 http://www.ada-auth.org/standards/22rm/html/RM-3-5.html
98 http://www.ada-auth.org/standards/22rm/html/RM-4-10.html

250 Chapter 6. Strings

http://www.ada-auth.org/standards/22rm/html/RM-3-5.html
http://www.ada-auth.org/standards/22rm/html/RM-4-10.html

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Array_Image
MD5: 2d3fcdd5e57451f08185618d357b705f

Runtime output

FA_3C:
[1.00000E+00, 3.00000E+00, 2.00000E+00]
FA_Null:
[]

In this example, we display the values of the three components of the FA_3C array. Also,
we display the null array FA_Null.

6.3.5 Image attribute for tagged types

In addition to untagged types, we can also use the Image attribute with tagged types. For
example:

Listing 21: simple_records.ads
1 package Simple_Records is
2

3 type Rec is tagged limited private;
4

5 function Init return Rec;
6

7 type Rec_Child is new Rec with private;
8

9 overriding function Init return Rec_Child;
10

11 private
12

13 type Status is (Unknown, Off, On);
14

15 type Rec is tagged limited record
16 F : Float;
17 I : Integer;
18 end record;
19

20 function Init return Rec is
21 ((F => 10.0, I => 4));
22

23 type Rec_Child is new Rec with record
24 Z : Status;
25 end record;
26

27 function Init return Rec_Child is
28 (Rec'(Init) with Z => Off);
29

30 end Simple_Records;

Listing 22: show_tagged_image.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Simple_Records; use Simple_Records;
(continues on next page)

6.3. Image attribute 251

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6

7 procedure Show_Tagged_Image is
8 R : constant Rec := Init;
9 R_Class : constant Rec'Class := Rec'(Init);
10 R_C : constant Rec_Child := Init;
11 begin
12 Put_Line ("R: " & R'Image);
13 Put_Line ("R_Class: " & R_Class'Image);
14 Put_Line ("R_A: " & R_C'Image);
15 end Show_Tagged_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Tagged_Image
MD5: 164bd17c99115acafb09c99f40c1578c

Runtime output

R: {SIMPLE_RECORDS.RECobject}
R_Class: SIMPLE_RECORDS.REC'{SIMPLE_RECORDS.RECobject}
R_A: {SIMPLE_RECORDS.REC_CHILDobject}

In the Show_Tagged_Image procedure from this example, we display the contents of the R
object of Rec type and the R_Class object of Rec'Class type. Also, we display the contents
of the R_C object of the Rec_Child type, which is derived from the Rec type.

6.3.6 Image attribute for task and protected types

We can also apply the Image attribute to protected objects and tasks:

Listing 23: simple_tasking.ads
1 package Simple_Tasking is
2

3 protected type Protected_Float (I : Integer) is
4

5 private
6 V : Float := Float (I);
7 end Protected_Float;
8

9 protected type Protected_Null is
10 private
11 end Protected_Null;
12

13 task type T is
14 entry Start;
15 end T;
16

17 end Simple_Tasking;

Listing 24: simple_tasking.adb
1 package body Simple_Tasking is
2

3 protected body Protected_Float is
4

5 end Protected_Float;
6

7 protected body Protected_Null is
(continues on next page)

252 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8

9 end Protected_Null;
10

11 task body T is
12 begin
13 accept Start;
14 end T;
15

16 end Simple_Tasking;

Listing 25: show_protected_task_image.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Simple_Tasking; use Simple_Tasking;
6

7 procedure Show_Protected_Task_Image is
8

9 PF : Protected_Float (0);
10 PN : Protected_Null;
11 T1 : T;
12

13 begin
14 Put_Line ("PF: " & PF'Image);
15 Put_Line ("PN: " & PN'Image);
16 Put_Line ("T1: " & T1'Image);
17

18 T1.Start;
19 end Show_Protected_Task_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Protected_Task_
↪Image

MD5: 9d8c667015878eb14e5b3950a70b86b1

Runtime output

PF: (protected object)
PN: (protected object)
T1: (task t1_0000000000E94090)

In this example, we display information about the protected object PF, the componentless
protected object PN and the task T1.

6.4 Put_Image aspect

Note: This feature was introduced in Ada 2022.

6.4. Put_Image aspect 253

Advanced Journey With Ada: A Flight In Progress

6.4.1 Overview

In the previous section, we discussed many details about the Image attribute. In the code
examples from that section, we've seen the default behavior of this attribute: the string
returned by the calls to Image was always in the format defined by the Ada standard.
In some situations, however, we might want to customize the string that is returned by the
Image attribute of a type T. Ada allows us to do that via the Put_Image aspect. This is what
we have to do:
1. Specify the Put_Image aspect for the type T and indicate a procedure with a specific
parameter profile — let's say, for example, a procedure named P.

2. Implement the procedure P and write the information we want to use into a buffer (by
calling the routines defined for Root_Buffer_Type, such as the Put procedure).

We can see these steps performed in the code example below:

Listing 26: show_put_image.ads
1 pragma Ada_2022;
2

3 with Ada.Strings.Text_Buffers;
4

5 package Show_Put_Image is
6

7 type T is null record
8 with Put_Image => Put_Image_T;
9 -- ^ Custom version of Put_Image
10

11 use Ada.Strings.Text_Buffers;
12

13 procedure Put_Image_T
14 (Buffer : in out Root_Buffer_Type'Class;
15 Arg : T);
16

17 end Show_Put_Image;

Listing 27: show_put_image.adb
1 package body Show_Put_Image is
2

3 procedure Put_Image_T
4 (Buffer : in out Root_Buffer_Type'Class;
5 Arg : T) is
6 pragma Unreferenced (Arg);
7 begin
8 -- Call Put with customized
9 -- information
10 Buffer.Put ("<custom info>");
11 end Put_Image_T;
12

13 end Show_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Simple_Put_Image
MD5: cbdd77a9e6cc30f3604c0901536d87aa

In the Show_Put_Image package, we use the Put_Image aspect in the declaration of the
T type. There, we indicate that the Image attribute shall use the Put_Image_T procedure
instead of the default version.

254 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

In the body of the Put_Image_T procedure, we implement our custom version of the Image
attribute. We do that by calling the Put procedure with the information we want to provide
in the Image attribute. Here, we access a buffer of Root_Buffer_Type type, which is defined
in the Ada.Strings.Text_Buffers package. (We discuss more about this package later on
(page 261).)

In the Ada Reference Manual
• Image Attributes99

6.4.2 Complete Example of Put_Image

Let's see a complete example in which we use the Put_Image aspect and write useful in-
formation to the buffer:

Listing 28: custom_numerics.ads
1 pragma Ada_2022;
2

3 with Ada.Strings.Text_Buffers;
4

5 package Custom_Numerics is
6

7 type Float_Integer is record
8 F : Float := 0.0;
9 I : Integer := 0;
10 end record
11 with Dynamic_Predicate =>
12 Integer (Float_Integer.F) =
13 Float_Integer.I,
14 Put_Image => Put_Float_Integer;
15 -- ^ Custom version of Put_Image
16

17 use Ada.Strings.Text_Buffers;
18

19 procedure Put_Float_Integer
20 (Buffer : in out Root_Buffer_Type'Class;
21 Arg : Float_Integer);
22

23 end Custom_Numerics;

Listing 29: custom_numerics.adb
1 package body Custom_Numerics is
2

3 procedure Put_Float_Integer
4 (Buffer : in out Root_Buffer_Type'Class;
5 Arg : Float_Integer) is
6 begin
7 -- Call Wide_Wide_Put with customized
8 -- information
9 Buffer.Wide_Wide_Put
10 ("(F : " & Arg.F'Wide_Wide_Image & ", "
11 & "I : " & Arg.I'Wide_Wide_Image & ")");
12 end Put_Float_Integer;
13

14 end Custom_Numerics;

99 http://www.ada-auth.org/standards/22rm/html/RM-4-10.html

6.4. Put_Image aspect 255

http://www.ada-auth.org/standards/22rm/html/RM-4-10.html

Advanced Journey With Ada: A Flight In Progress

Listing 30: show_put_image.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Custom_Numerics; use Custom_Numerics;
6

7 procedure Show_Put_Image is
8 V : Float_Integer;
9 begin
10 V := (F => 100.2,
11 I => 100);
12 Put_Line ("V = "
13 & V'Image);
14 end Show_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Put_Image_Custom_
↪Numerics

MD5: 18d31150d7a9ff9af0359495543c011f

Runtime output

V = (F : 1.00200E+02, I : 100)

In the Custom_Numerics package of this example, we specify the Put_Image aspect and
indicate the Put_Float_Integer procedure. In that procedure, we display the information
of components F and I. Then, in the Show_Put_Image procedure, we use the Image attribute
for the V variable and see the information in the exact format we specified. (If you like to
see the default version of the Put_Image instead, you may comment out the Put_Image
aspect part in the declaration of Float_Integer.)

6.4.3 Relation to the Image attribute

Note that we cannot override the Image attribute directly — there's no Image aspect that
we could specify. However, as we've just seen, we can do this indirectly by using our own
version of the Put_Image procedure for a type T.
The Image attribute of a type T makes use of the procedure indicated in the Put_Image
aspect. Let's say we have the following declaration:

type T is null record
with Put_Image => Put_Image_T;

When we then use the T'Image attribute in our code, the custom Put_Image_T procedure is
automatically called. This is a simplified example of how the Image function is implemented:

function Image (V : T)
return String is

Buffer : Custom_Buffer;
-- ^ of Root_Buffer_Type'Class

begin
-- Calling Put_Image procedure
-- for type T
Put_Image_T (Buffer, V);

-- Retrieving the text from the
(continues on next page)

256 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
-- buffer as a string
return Buffer.Get;

end Image;

In other words, the Image attribute basically:
• calls the Put_Image procedure specified in the Put_Image aspect of type T's declara-
tion and passes a buffer;

and
• retrieves the contents of the buffer as a string and returns it.

If the Put_Image aspect of type T isn't specified, the default version is used. (We've seen
the default version of various types in the previous section (page 246) about the Image
attribute.)

6.4.4 Put_Image and derived types

Types that were derived from untagged types (or null extensions) make use of the
Put_Image procedure that was specified for their parent type — either a custom proce-
dure indicated in the Put_Image aspect or the default one. Naturally, if a derived type has
the Put_Image aspect, the procedure indicated in the aspect is used instead. For example:

Listing 31: untagged_put_image.ads
1 pragma Ada_2022;
2

3 with Ada.Strings.Text_Buffers;
4

5 package Untagged_Put_Image is
6

7 use Ada.Strings.Text_Buffers;
8

9 type T is null record
10 with Put_Image => Put_Image_T;
11

12 procedure Put_Image_T
13 (Buffer : in out Root_Buffer_Type'Class;
14 Arg : T);
15

16 type T_Derived_1 is new T;
17

18 type T_Derived_2 is new T
19 with Put_Image => Put_Image_T_Derived_2;
20

21 procedure Put_Image_T_Derived_2
22 (Buffer : in out Root_Buffer_Type'Class;
23 Arg : T_Derived_2);
24

25 end Untagged_Put_Image;

Listing 32: untagged_put_image.adb
1 package body Untagged_Put_Image is
2

3 procedure Put_Image_T
4 (Buffer : in out Root_Buffer_Type'Class;
5 Arg : T) is
6 pragma Unreferenced (Arg);

(continues on next page)

6.4. Put_Image aspect 257

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 begin
8 Buffer.Wide_Wide_Put ("Put_Image_T");
9 end Put_Image_T;
10

11 procedure Put_Image_T_Derived_2
12 (Buffer : in out Root_Buffer_Type'Class;
13 Arg : T_Derived_2) is
14 pragma Unreferenced (Arg);
15 begin
16 Buffer.Wide_Wide_Put
17 ("Put_Image_T_Derived_2");
18 end Put_Image_T_Derived_2;
19

20 end Untagged_Put_Image;

Listing 33: show_untagged_put_image.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Untagged_Put_Image; use Untagged_Put_Image;
6

7 procedure Show_Untagged_Put_Image is
8 Obj_T : T;
9 Obj_T_Derived_1 : T_Derived_1;
10 Obj_T_Derived_2 : T_Derived_2;
11 begin
12 Put_Line ("T'Image : "
13 & Obj_T'Image);
14 Put_Line ("T_Derived_1'Image : "
15 & Obj_T_Derived_1'Image);
16 Put_Line ("T_Derived_2'Image : "
17 & Obj_T_Derived_2'Image);
18 end Show_Untagged_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Untagged_Put_Image
MD5: b0a115967ec5f2deaea19967d22266b4

Runtime output

T'Image : Put_Image_T
T_Derived_1'Image : Put_Image_T
T_Derived_2'Image : Put_Image_T_Derived_2

In this example, we declare the type T and its derived types T_Derived_1 and T_Derived_2.
When running this code, we see that:
• T_Derived_1 makes use of the Put_Image_T procedure from its parent.

– Note that, if we remove the Put_Image aspect from the declaration of T, the de-
fault version of the Put_Image procedure is used for both T and T_Derived_1
types.

• T_Derived_2 makes use of the Put_Image_T_Derived_2 procedure, which was indi-
cated in the Put_Image aspect of that type, instead of its parent's procedure.

258 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

6.4.5 Put_Image and tagged types

Types that are derived from a tagged typemay also inherit the Put_Image aspect. However,
there are a couple of small differences in comparison to untagged types, as we can see in
the following example:

Listing 34: tagged_put_image.ads
1 pragma Ada_2022;
2

3 with Ada.Strings.Text_Buffers;
4

5 package Tagged_Put_Image is
6

7 use Ada.Strings.Text_Buffers;
8

9 type T is tagged record
10 I : Integer := 0;
11 end record
12 with Put_Image => Put_Image_T;
13

14 procedure Put_Image_T
15 (Buffer : in out Root_Buffer_Type'Class;
16 Arg : T);
17

18 type T_Child_1 is new T with record
19 I1 : Integer;
20 end record;
21

22 type T_Child_2 is new T with null record;
23

24 type T_Child_3 is new T with record
25 I3 : Integer := 0;
26 end record
27 with Put_Image => Put_Image_T_Child_3;
28

29 procedure Put_Image_T_Child_3
30 (Buffer : in out Root_Buffer_Type'Class;
31 Arg : T_Child_3);
32

33 end Tagged_Put_Image;

Listing 35: tagged_put_image.adb
1 package body Tagged_Put_Image is
2

3 procedure Put_Image_T
4 (Buffer : in out Root_Buffer_Type'Class;
5 Arg : T) is
6 pragma Unreferenced (Arg);
7 begin
8 Buffer.Wide_Wide_Put ("Put_Image_T");
9 end Put_Image_T;
10

11 procedure Put_Image_T_Child_3
12 (Buffer : in out Root_Buffer_Type'Class;
13 Arg : T_Child_3) is
14 pragma Unreferenced (Arg);
15 begin
16 Buffer.Wide_Wide_Put
17 ("Put_Image_T_Child_3");
18 end Put_Image_T_Child_3;

(continues on next page)

6.4. Put_Image aspect 259

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
19

20 end Tagged_Put_Image;

Listing 36: show_tagged_put_image.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Tagged_Put_Image; use Tagged_Put_Image;
6

7 procedure Show_Tagged_Put_Image is
8 Obj_T : T;
9 Obj_T_Child_1 : T_Child_1;
10 Obj_T_Child_2 : T_Child_2;
11 Obj_T_Child_3 : T_Child_3;
12 begin
13 Put_Line ("T'Image : "
14 & Obj_T'Image);
15 Put_Line ("--------------------");
16 Put_Line ("T_Child_1'Image : "
17 & Obj_T_Child_1'Image);
18 Put_Line ("--------------------");
19 Put_Line ("T_Child_2'Image : "
20 & Obj_T_Child_2'Image);
21 Put_Line ("--------------------");
22 Put_Line ("T_Child_3'Image : "
23 & Obj_T_Child_3'Image);
24 Put_Line ("--------------------");
25 Put_Line ("T'Class'Image : "
26 & T'Class (Obj_T_Child_1)'Image);
27 end Show_Tagged_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Tagged_Put_Image
MD5: 74d29ea54f1ad79fea7de2ad7c1dcb31

Runtime output

T'Image : Put_Image_T

T_Child_1'Image :
(Put_Image_T with I1 => 1701066593)

T_Child_2'Image :
(Put_Image_T)

T_Child_3'Image : Put_Image_T_Child_3

T'Class'Image : TAGGED_PUT_IMAGE.T_CHILD_1'
(Put_Image_T with I1 => 1701066593)

In this example, we declare the type T and its derived types T_Child_1, T_Child_2 and
T_Child_3. When running this code, we see that:
• for both T_Child_1 and T_Child_2, the parent's Put_Image aspect (the Put_Image_T
procedure) is called and its information is combined with the information from the type
extension;
– The information from the parent's Put_Image_T procedure is presented in an ag-
gregate syntax — in this case, this results in (Put_Image_T).

260 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

– For the T_Child_1 type, the I1 component of the type extension is displayed
by calling a default version of the Put_Image procedure for that component —
(Put_Image_T with I1 => 0) is displayed.

– For the T_Child_2 type, no additional information is displayed because this type
has a null extension.

• for the T_Child_3 type, the Put_Image_T_Child_3 procedure, which was indicated in
the Put_Image aspect of the type, is used.

Finally, class-wide types (such as T'Class) include additional information. Here, the tag of
the specific derived type is displayed first — in this case, the tag of the T_Child_1 type —
and then the actual information for the derived type is displayed.

6.5 Universal text buffer

In the previous section (page 253), we've seen that the first parameter of the procedure
indicated in the Put_Image aspect has the Root_Buffer_Type'Class type, which is defined
in the Ada.Strings.Text_Buffers package. In this section, we talk more about this type
and additional procedures associated with this type.

Note: This feature was introduced in Ada 2022.

6.5.1 Overview

We use the Root_Buffer_Type'Class type to implement a universal text buffer that is used
to store and retrieve information about data types. Because this text buffer isn't associated
with specific data types, it is universal — in the sense that we can really use it for any data
type, regardless of the characteristics of this type.
In theory, we could use Ada's universal text buffer to implement applications that actually
process text in some form — for example, when implementing a text editor. However, in
general, Ada programmers are only expected to make use of the Root_Buffer_Type'Class
type when implementing a procedure for the Put_Image aspect. For this reason, we
won't discuss any kind of type derivation — or any other kind of usages of this type —
in this section. Instead, we'll just focus on additional subprograms from the Ada.Strings.
Text_Buffers package.

In the Ada Reference Manual
• Universal Text Buffers100

100 http://www.ada-auth.org/standards/22rm/html/RM-A-4-12.html

6.5. Universal text buffer 261

http://www.ada-auth.org/standards/22rm/html/RM-A-4-12.html

Advanced Journey With Ada: A Flight In Progress

6.5.2 Additional procedures

In the previous section, we used the Put procedure — and the related Wide_Put and
Wide_Wide_Put procedures — from the Ada.Strings.Text_Buffers package. In addition
to these procedures, the package also includes:
• the New_Line procedure, which writes a new line marker to the text buffer;
• the Increase_Indent procedure, which increases the indentation in the text buffer;
and

• the Decrease_Indent procedure, which decreases the indentation in the text buffer.
The Ada.Strings.Text_Buffers package also includes the Current_Indent function,
which retrieves the current indentation counter.
Let's revisit an example from the previous section and use the proceduresmentioned above:

Listing 37: custom_numerics.ads
1 pragma Ada_2022;
2

3 with Ada.Strings.Text_Buffers;
4

5 package Custom_Numerics is
6

7 type Float_Integer is record
8 F : Float;
9 I : Integer;
10 end record
11 with Dynamic_Predicate =>
12 Integer (Float_Integer.F) =
13 Float_Integer.I,
14 Put_Image => Put_Float_Integer;
15 -- ^ Custom version of Put_Image
16

17 use Ada.Strings.Text_Buffers;
18

19 procedure Put_Float_Integer
20 (Buffer : in out Root_Buffer_Type'Class;
21 Arg : Float_Integer);
22

23 end Custom_Numerics;

Listing 38: custom_numerics.adb
1 package body Custom_Numerics is
2

3 procedure Put_Float_Integer
4 (Buffer : in out Root_Buffer_Type'Class;
5 Arg : Float_Integer) is
6 begin
7 Buffer.Wide_Wide_Put ("(");
8 Buffer.New_Line;
9

10 Buffer.Increase_Indent;
11

12 Buffer.Wide_Wide_Put
13 ("F : "
14 & Arg.F'Wide_Wide_Image);
15 Buffer.New_Line;
16

17 Buffer.Wide_Wide_Put
(continues on next page)

262 Chapter 6. Strings

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
18 ("I : "
19 & Arg.I'Wide_Wide_Image);
20

21 Buffer.Decrease_Indent;
22 Buffer.New_Line;
23

24 Buffer.Wide_Wide_Put (")");
25 end Put_Float_Integer;
26

27 end Custom_Numerics;

Listing 39: show_put_image.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Custom_Numerics; use Custom_Numerics;
6

7 procedure Show_Put_Image is
8 V : Float_Integer;
9 begin
10 V := (F => 100.2,
11 I => 100);
12 Put_Line ("V = "
13 & V'Image);
14 end Show_Put_Image;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Strings.Universal_Text_Buffer.Put_Image_
↪Custom_Numerics

MD5: af95f9fe4064e8a9d7aebe14d7f561f7

Runtime output

V = (
F : 1.00200E+02
I : 100

)

In the body of the Put_Float_Integer procedure, we're using the New_Line, In-
crease_Indent and Decrease_Indent procedures to improve the format of the string re-
turned by the Float_Integer'Image attribute. Using these procedures, you can create any
kind of output format for your custom type.

6.5. Universal text buffer 263

Advanced Journey With Ada: A Flight In Progress

264 Chapter 6. Strings

CHAPTER

SEVEN

NUMERICS

7.1 Modular Types

In the Introduction to Ada course, we've seen that Ada has two kinds of integer type:
signed101 and modular102 types. For example:

Listing 1: num_types.ads
1 package Num_Types is
2

3 type Signed_Integer is range 1 .. 1_000_000;
4 type Modular is mod 2**32;
5

6 end Num_Types;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: 2dff9fe22c6bbe52f964befccf68debf

In this section, we discuss two attributes of modular types: Modulus and Mod. We also
discuss operations on modular types.

In the Ada Reference Manual
• 3.5.4 Integer Types103

7.1.1 Modulus Attribute

The Modulus attribute returns the modulus of the modular type as a universal integer value.
Let's get the modulus of the 32-bit Modular type that we've declared in the Num_Types
package of the previous example:

Listing 2: show_modular.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Num_Types; use Num_Types;
4

5 procedure Show_Modular is
(continues on next page)

101 https://learn.adacore.com/courses/intro-to-ada/chapters/strongly_typed_language.html#intro-ada-integers
102 https://learn.adacore.com/courses/intro-to-ada/chapters/strongly_typed_language.html#
intro-ada-unsigned-types
103 http://www.ada-auth.org/standards/22rm/html/RM-3-5-4.html

265

https://learn.adacore.com/courses/intro-to-ada/chapters/strongly_typed_language.html#intro-ada-integers
https://learn.adacore.com/courses/intro-to-ada/chapters/strongly_typed_language.html#intro-ada-unsigned-types
http://www.ada-auth.org/standards/22rm/html/RM-3-5-4.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 Modulus_Value : constant := Modular'Modulus;
7 begin
8 Put_Line (Modulus_Value'Image);
9 end Show_Modular;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: 336254ebc8c09ee9921633f6919994fe

Runtime output

4294967296

When we run this example, we get 4294967296, which is equal to 2**32.

7.1.2 Mod Attribute

Note: This section was originally written by Robert A. Duff and published as Gem #26:
The Mod Attribute104.

Operations on signed integers can overflow: if the result is outside the base range, Con-
straint_Error will be raised. In our previous example, we declared the Signed_Integer
type:

type Signed_Integer is range 1 .. 1_000_000;

The base range of Signed_Integer is the range of Signed_Integer'Base, which is chosen
by the compiler, but is likely to be something like -2**31 .. 2**31 - 1. (Note: we
discussed the Base attribute in this section (page 11).)
Operations on modular integers use modular (wraparound) arithmetic. For example:

Listing 3: show_modular.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Num_Types; use Num_Types;
4

5 procedure Show_Modular is
6 X : Modular;
7 begin
8 X := 1;
9 Put_Line (X'Image);
10

11 X := -X;
12 Put_Line (X'Image);
13 end Show_Modular;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: e9ac61d2e43585f002fe2b79544ef9d7

Runtime output
104 https://www.adacore.com/gems/gem-26

266 Chapter 7. Numerics

https://www.adacore.com/gems/gem-26
https://www.adacore.com/gems/gem-26

Advanced Journey With Ada: A Flight In Progress

1
4294967295

Negating X gives -1, which wraps around to 2**32 - 1, i.e. all-one-bits.
But what about a type conversion from signed to modular? Is that a signed operation (so
it should overflow) or is it a modular operation (so it should wrap around)? The answer in
Ada is the former — that is, if you try to convert, say, Integer'(-1) to Modular, you will
get Constraint_Error:

Listing 4: show_modular.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Num_Types; use Num_Types;
4

5 procedure Show_Modular is
6 I : Integer := -1;
7 X : Modular := 1;
8 begin
9 X := Modular (I); -- raises Constraint_Error
10 Put_Line (X'Image);
11 end Show_Modular;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: e8e1a1924efcbe770c719c29547bb863

Build output

show_modular.adb:9:09: warning: value not in range of type "Modular" defined at␣
↪num_types.ads:4 [enabled by default]

show_modular.adb:9:09: warning: Constraint_Error will be raised at run time␣
↪[enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_modular.adb:9 range check failed

To solve this problem, we can use the Mod attribute:

Listing 5: show_modular.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Num_Types; use Num_Types;
4

5 procedure Show_Modular is
6 I : constant Integer := -1;
7 X : Modular := 1;
8 begin
9 X := Modular'Mod (I);
10 Put_Line (X'Image);
11 end Show_Modular;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: 572a753de946b7578c5f1b6a795ede98

Runtime output

7.1. Modular Types 267

Advanced Journey With Ada: A Flight In Progress

4294967295

The Mod attribute will correctly convert from any integer type to a given modular type, using
wraparound semantics.

Historically
In older versions of Ada — such as Ada 95 —, the only way to do this conversion is to use
Unchecked_Conversion, which is somewhat uncomfortable. Furthermore, if you're trying
to convert to a generic formal modular type, how do you know what size of signed integer
type to use? Note that Unchecked_Conversion might malfunction if the source and target
types are of different sizes.
The Mod attribute was added to Ada 2005 to solve this problem. Also, we can now safely
use this attribute in generics. For example:

Listing 6: mod_attribute.ads
1 generic
2 type Formal_Modular is mod <>;
3 package Mod_Attribute is
4 function F return Formal_Modular;
5 end Mod_Attribute;

Listing 7: mod_attribute.adb
1 package body Mod_Attribute is
2

3 A_Signed_Integer : Integer := -1;
4

5 function F return Formal_Modular is
6 begin
7 return Formal_Modular'Mod
8 (A_Signed_Integer);
9 end F;
10

11 end Mod_Attribute;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Mod_Attribute
MD5: b2f227b8d4f14cd36508bf33c403f751

In this example, F will return the all-ones bit pattern, for whatever modular type is passed
to Formal_Modular.

7.1.3 Operations on modular types

Modular types are particularly useful for bit manipulation. For example, we can use the
and, or, xor and not operators for modular types.
Also, we can perform bit-shifting by multiplying or dividing a modular object with a power
of two. For example, if M is a variable of modular type, then M := M * 2 ** 3; shifts the
bits to the left by three bits. Likewise, M := M / 2 ** 3 shifts the bits to the right. Note that
the compiler selects the appropriate shifting operator when translating these operations to
machine code — no actual multiplication or division will be performed.
Let's see a simple implementation of the CRC-CCITT (0x1D0F) algorithm:

268 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

Listing 8: crc_defs.ads
1 package Crc_Defs is
2

3 type Byte is mod 2 ** 8;
4 type Crc is mod 2 ** 16;
5

6 type Byte_Array is
7 array (Positive range <>) of Byte;
8

9 function Crc_CCITT (A : Byte_Array)
10 return Crc;
11

12 procedure Display (Crc_A : Crc);
13

14 procedure Display (A : Byte_Array);
15

16 end Crc_Defs;

Listing 9: crc_defs.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Crc_Defs is
4

5 package Byte_IO is new Modular_IO (Byte);
6 package Crc_IO is new Modular_IO (Crc);
7

8 function Crc_CCITT (A : Byte_Array)
9 return Crc
10 is
11 X : Byte;
12 Crc_A : Crc := 16#1d0f#;
13 begin
14 for I in A'Range loop
15 X := Byte (Crc_A / 2 ** 8) xor A (I);
16 X := X xor (X / 2 ** 4);
17 declare
18 Crc_X : constant Crc := Crc (X);
19 begin
20 Crc_A := Crc_A * 2 ** 8 xor
21 Crc_X * 2 ** 12 xor
22 Crc_X * 2 ** 5 xor
23 Crc_X;
24 end;
25 end loop;
26

27 return Crc_A;
28 end Crc_CCITT;
29

30 procedure Display (Crc_A : Crc) is
31 begin
32 Crc_IO.Put (Crc_A);
33 New_Line;
34 end Display;
35

36 procedure Display (A : Byte_Array) is
37 begin
38 for E of A loop
39 Byte_IO.Put (E);
40 Put (", ");

(continues on next page)

7.1. Modular Types 269

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
41 end loop;
42 New_Line;
43 end Display;
44

45 begin
46 Byte_IO.Default_Width := 1;
47 Byte_IO.Default_Base := 16;
48 Crc_IO.Default_Width := 1;
49 Crc_IO.Default_Base := 16;
50 end Crc_Defs;

Listing 10: show_crc.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Crc_Defs; use Crc_Defs;
3

4 procedure Show_Crc is
5 AA : constant Byte_Array :=
6 (16#0#, 16#20#, 16#30#);
7 Crc_A : Crc;
8 begin
9 Crc_A := Crc_CCITT (AA);
10

11 Put ("Input array: ");
12 Display (AA);
13

14 Put ("CRC-CCITT: ");
15 Display (Crc_A);
16 end Show_Crc;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Mod_Crc_CCITT_Ada
MD5: 9c66abfadcce92231295cbccad087912

Runtime output

Input array: 16#0#, 16#20#, 16#30#,
CRC-CCITT: 16#21B9#

In this example, the core of the algorithm is implemented in the Crc_CCITT function. There,
we use bit shifting — for instance, * 2 ** 8 and / 2 ** 8, which shift left and right,
respectively, by eight bits. We also use the xor operator.

7.2 Numeric Literals

7.2.1 Classification

We've already discussed basic characteristics of numeric literals in the Introduction to Ada
course — although we haven't used this terminology there. There are two kinds of numeric
literals in Ada: integer literals and real literals. They are distinguished by the absence or
presence of a radix point. For example:

Listing 11: real_integer_literals.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

(continues on next page)

270 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 procedure Real_Integer_Literals is
4 Integer_Literal : constant := 365;
5 Real_Literal : constant := 365.2564;
6 begin
7 Put_Line ("Integer Literal: "
8 & Integer_Literal'Image);
9 Put_Line ("Real Literal: "
10 & Real_Literal'Image);
11 end Real_Integer_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Real_Integer_
↪Literals

MD5: ba1cc348cad054f3ab86c05e051b40fa

Runtime output

Integer Literal: 365
Real Literal: 3.65256400000000000E+02

Another classification takes the use of a base indicator into account. (Remember that, when
writing a literal such as 2#1011#, the base is the element before the first # sign.) So here
we distinguish between decimal literals and based literals. For example:

Listing 12: decimal_based_literals.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Decimal_Based_Literals is
4

5 package F_IO is new
6 Ada.Text_IO.Float_IO (Float);
7

8 --
9 -- DECIMAL LITERALS
10 --
11

12 Dec_Integer : constant := 365;
13

14 Dec_Real : constant := 365.2564;
15 Dec_Real_Exp : constant := 0.365_256_4e3;
16

17 --
18 -- BASED LITERALS
19 --
20

21 Based_Integer : constant := 16#16D#;
22 Based_Integer_Exp : constant := 5#243#e1;
23

24 Based_Real : constant :=
25 2#1_0110_1101.0100_0001_1010_0011_0111#;
26 Based_Real_Exp : constant :=
27 7#1.031_153_643#e3;
28 begin
29 F_IO.Default_Fore := 3;
30 F_IO.Default_Aft := 4;
31 F_IO.Default_Exp := 0;
32

33 Put_Line ("Dec_Integer: "
34 & Dec_Integer'Image);

(continues on next page)

7.2. Numeric Literals 271

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
35

36 Put ("Dec_Real: ");
37 F_IO.Put (Item => Dec_Real);
38 New_Line;
39

40 Put ("Dec_Real_Exp: ");
41 F_IO.Put (Item => Dec_Real_Exp);
42 New_Line;
43

44 Put_Line ("Based_Integer: "
45 & Based_Integer'Image);
46 Put_Line ("Based_Integer_Exp: "
47 & Based_Integer_Exp'Image);
48

49 Put ("Based_Real: ");
50 F_IO.Put (Item => Based_Real);
51 New_Line;
52

53 Put ("Based_Real_Exp: ");
54 F_IO.Put (Item => Based_Real_Exp);
55 New_Line;
56 end Decimal_Based_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Decimal_Based_
↪Literals

MD5: bde8f422c3844826819348d18fb48a33

Runtime output

Dec_Integer: 365
Dec_Real: 365.2564
Dec_Real_Exp: 365.2564
Based_Integer: 365
Based_Integer_Exp: 365
Based_Real: 365.2564
Based_Real_Exp: 365.2564

Based literals use the base#number# format. Also, they aren't limited to simple integer
literals such as 16#16D#. In fact, we can use a radix point or an exponent in based literals,
as well as underscores. In addition, we can use any base from 2 up to 16. We discuss these
aspects further in the next section.

7.2.2 Features and Flexibility

Note: This section was originally written by Franco Gasperoni and published as Gem #7:
The Beauty of Numeric Literals in Ada105.

Ada provides a simple and elegant way of expressing numeric literals. One of those
simple, yet powerful aspects is the ability to use underscores to separate groups of digits.
For example, 3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37510
is more readable and less error prone to type than 3.
14159265358979323846264338327950288419716939937510. Here's the complete code:
105 https://www.adacore.com/gems/ada-gem-7

272 Chapter 7. Numerics

https://www.adacore.com/gems/ada-gem-7
https://www.adacore.com/gems/ada-gem-7

Advanced Journey With Ada: A Flight In Progress

Listing 13: ada_numeric_literals.adb
1 with Ada.Text_IO;
2

3 procedure Ada_Numeric_Literals is
4 Pi : constant :=
5 3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37510;
6

7 Pi2 : constant :=
8 3.14159265358979323846264338327950288419716939937510;
9

10 Z : constant := Pi - Pi2;
11 pragma Assert (Z = 0.0);
12

13 use Ada.Text_IO;
14 begin
15 Put_Line ("Z = " & Float'Image (Z));
16 end Ada_Numeric_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Pi_Literals
MD5: 8f6516730fa98f08234b159488431aaf

Runtime output

Z = 0.00000E+00

Also, when using based literals, Ada allows any base from 2 to 16. Thus, we can write the
decimal number 136 in any one of the following notations:

Listing 14: ada_numeric_literals.adb
1 with Ada.Text_IO;
2

3 procedure Ada_Numeric_Literals is
4 Bin_136 : constant := 2#1000_1000#;
5 Oct_136 : constant := 8#210#;
6 Dec_136 : constant := 10#136#;
7 Hex_136 : constant := 16#88#;
8 pragma Assert (Bin_136 = 136);
9 pragma Assert (Oct_136 = 136);
10 pragma Assert (Dec_136 = 136);
11 pragma Assert (Hex_136 = 136);
12

13 use Ada.Text_IO;
14

15 begin
16 Put_Line ("Bin_136 = "
17 & Integer'Image (Bin_136));
18 Put_Line ("Oct_136 = "
19 & Integer'Image (Oct_136));
20 Put_Line ("Dec_136 = "
21 & Integer'Image (Dec_136));
22 Put_Line ("Hex_136 = "
23 & Integer'Image (Hex_136));
24 end Ada_Numeric_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Based_Literals
MD5: 0959ec5e4aafcde245c5a15597ac9b7e

7.2. Numeric Literals 273

Advanced Journey With Ada: A Flight In Progress

Runtime output

Bin_136 = 136
Oct_136 = 136
Dec_136 = 136
Hex_136 = 136

In other languages
The rationale behind the method to specify based literals in the C programming language
is strange and unintuitive. Here, you have only three possible bases: 8, 10, and 16 (why no
base 2?). Furthermore, requiring that numbers in base 8 be preceded by a zero feels like a
bad joke on us programmers. For example, what values do 0210 and 210 represent in C?

When dealing with microcontrollers, we might encounter I/O devices that are memory
mapped. Here, we have the ability to write:

Lights_On : constant := 2#1000_1000#;
Lights_Off : constant := 2#0111_0111#;

and have the ability to turn on/off the lights as follows:

Output_Devices := Output_Devices or Lights_On;
Output_Devices := Output_Devices and Lights_Off;

Here's the complete example:

Listing 15: ada_numeric_literals.adb
1 with Ada.Text_IO;
2

3 procedure Ada_Numeric_Literals is
4 Lights_On : constant := 2#1000_1000#;
5 Lights_Off : constant := 2#0111_0111#;
6

7 type Byte is mod 256;
8 Output_Devices : Byte := 0;
9

10 -- for Output_Devices'Address
11 -- use 16#DEAD_BEEF#;
12 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^
13 -- Memory mapped Output
14

15 use Ada.Text_IO;
16 begin
17 Output_Devices := Output_Devices or
18 Lights_On;
19

20 Put_Line ("Output_Devices (lights on) = "
21 & Byte'Image (Output_Devices));
22

23 Output_Devices := Output_Devices and
24 Lights_Off;
25

26 Put_Line ("Output_Devices (lights off) = "
27 & Byte'Image (Output_Devices));
28 end Ada_Numeric_Literals;

Code block metadata

274 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literal_Lights
MD5: c3e72b25366d8d815a1f425f2695ad0b

Runtime output

Output_Devices (lights on) = 136
Output_Devices (lights off) = 0

Of course, we can also use records with representation clauses (page 97) to do the above,
which is even more elegant.
The notion of base in Ada allows for exponents, which is particularly pleasant. For instance,
we can write:

Listing 16: literal_binaries.ads
1 package Literal_Binaries is
2 Kilobyte : constant := 2#1#e+10;
3 Megabyte : constant := 2#1#e+20;
4 Gigabyte : constant := 2#1#e+30;
5 Terabyte : constant := 2#1#e+40;
6 Petabyte : constant := 2#1#e+50;
7 Exabyte : constant := 2#1#e+60;
8 Zettabyte : constant := 2#1#e+70;
9 Yottabyte : constant := 2#1#e+80;
10 end Literal_Binaries;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literal_Binary
MD5: 98d971e0f170db570069f8868e442d6d

In based literals, the exponent — like the base — uses the regular decimal notation and
specifies the power of the base that the based literal should be multiplied with to obtain
the final value. For instance 2#1#e+10 = 1 x 210 = 1_024 (in base 10), whereas 16#F#e+2
= 15 x 162 = 15 x 256 = 3_840 (in base 10).
Based numbers apply equally well to real literals. We can, for instance, write:

One_Third : constant := 3#0.1#;
-- ^^^^^^
-- same as 1.0/3

Whether we write 3#0.1# or 1.0 / 3, or even 3#1.0#e-1, Ada allows us to specify exactly
rational numbers for which decimal literals cannot be written.
The last nice feature is that Ada has an open-ended set of integer and real types. As a result,
numeric literals in Ada do not carry with them their type as, for example, in C. The actual
type of the literal is determined from the context. This is particularly helpful in avoiding
overflows, underflows, and loss of precision.

In other languages
In C, a source of confusion can be the distinction between 32l and 321. Although both look
similar, they're actually very different from each other.

And this is not all: all constant computations done at compile time are done in infinite
precision, be they integer or real. This allows us to write constants with whatever size and
precision without having to worry about overflow or underflow. We can for instance write:

7.2. Numeric Literals 275

Advanced Journey With Ada: A Flight In Progress

Zero : constant := 1.0 - 3.0 * One_Third;

and be guaranteed that constant Zero has indeed value zero. This is very different from
writing:

One_Third_Approx : constant :=
0.33333333333333333333333333333;

Zero_Approx : constant :=
1.0 - 3.0 * One_Third_Approx;

where Zero_Approx is really 1.0e-29 — and that will show up in your numerical compu-
tations. The above is quite handy when we want to write fractions without any loss of
precision. Here's the complete code:

Listing 17: ada_numeric_literals.adb
1 with Ada.Text_IO;
2

3 procedure Ada_Numeric_Literals is
4 One_Third : constant := 3#1.0#e-1;
5 -- same as 1.0/3.0
6

7 Zero : constant := 1.0 - 3.0 * One_Third;
8 pragma Assert (Zero = 0.0);
9

10 One_Third_Approx : constant :=
11 0.33333333333333333333333333333;
12 Zero_Approx : constant :=
13 1.0 - 3.0 * One_Third_Approx;
14

15 use Ada.Text_IO;
16

17 begin
18 Put_Line ("Zero = "
19 & Float'Image (Zero));
20 Put_Line ("Zero_Approx = "
21 & Float'Image (Zero_Approx));
22 end Ada_Numeric_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literals
MD5: ee604245b34e8cb878a8ebdb21cd564e

Runtime output

Zero = 0.00000E+00
Zero_Approx = 1.00000E-29

Along these same lines, we can write:

Listing 18: ada_numeric_literals.adb
1 with Ada.Text_IO;
2

3 with Literal_Binaries; use Literal_Binaries;
4

5 procedure Ada_Numeric_Literals is
6

7 Big_Sum : constant := 1 +
8 Kilobyte +

(continues on next page)

276 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 Megabyte +
10 Gigabyte +
11 Terabyte +
12 Petabyte +
13 Exabyte +
14 Zettabyte;
15

16 Result : constant := (Yottabyte - 1) /
17 (Kilobyte - 1);
18

19 Nil : constant := Result - Big_Sum;
20 pragma Assert (Nil = 0);
21

22 use Ada.Text_IO;
23

24 begin
25 Put_Line ("Nil = "
26 & Integer'Image (Nil));
27 end Ada_Numeric_Literals;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literal_Binary
MD5: 7bda6442e68271d12bdb827b63f0d702

Runtime output

Nil = 0

and be guaranteed that Nil is equal to zero.

7.3 Floating-Point Types

In this section, we discuss various attributes related to floating-point types.

In the Ada Reference Manual
• 3.5.8 Operations of Floating Point Types106

• A.5.3 Attributes of Floating Point Types107

7.3.1 Representation-oriented attributes

In this section, we discuss attributes related to the representation of floating-point types.
106 http://www.ada-auth.org/standards/22rm/html/RM-3-5-8.html
107 http://www.ada-auth.org/standards/22rm/html/RM-A-5-3.html

7.3. Floating-Point Types 277

http://www.ada-auth.org/standards/22rm/html/RM-3-5-8.html
http://www.ada-auth.org/standards/22rm/html/RM-A-5-3.html

Advanced Journey With Ada: A Flight In Progress

Attribute: Machine_Radix

Machine_Radix is an attribute that returns the radix of the hardware representation of a
type. For example:

Listing 19: show_machine_radix.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Machine_Radix is
4 begin
5 Put_Line
6 ("Float'Machine_Radix: "
7 & Float'Machine_Radix'Image);
8 Put_Line
9 ("Long_Float'Machine_Radix: "
10 & Long_Float'Machine_Radix'Image);
11 Put_Line
12 ("Long_Long_Float'Machine_Radix: "
13 & Long_Long_Float'Machine_Radix'Image);
14 end Show_Machine_Radix;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_
↪Radix

MD5: 88680df680f1db4ff803912850370551

Runtime output

Float'Machine_Radix: 2
Long_Float'Machine_Radix: 2
Long_Long_Float'Machine_Radix: 2

Usually, this value is two, as the radix is based on a binary system.

Attributes: Machine_Mantissa

Machine_Mantissa is an attribute that returns the number of bits reserved for the mantissa
of the floating-point type. For example:

Listing 20: show_machine_mantissa.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Machine_Mantissa is
4 begin
5 Put_Line
6 ("Float'Machine_Mantissa: "
7 & Float'Machine_Mantissa'Image);
8 Put_Line
9 ("Long_Float'Machine_Mantissa: "
10 & Long_Float'Machine_Mantissa'Image);
11 Put_Line
12 ("Long_Long_Float'Machine_Mantissa: "
13 & Long_Long_Float'Machine_Mantissa'Image);
14 end Show_Machine_Mantissa;

Code block metadata

278 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_
↪Mantissa

MD5: da946a90a454c6e8f68cbff1ec54c7d3

Runtime output

Float'Machine_Mantissa: 24
Long_Float'Machine_Mantissa: 53
Long_Long_Float'Machine_Mantissa: 64

On a typical desktop PC, as indicated by Machine_Mantissa, we have 24 bits for the floating-
point mantissa of the Float type.

Machine_Emin and Machine_Emax

The Machine_Emin and Machine_Emax attributes return the minimum and maximum value,
respectively, of the machine exponent the floating-point type. Note that, in all cases, the
returned value is a universal integer. For example:

Listing 21: show_machine_emin_emax.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Machine_Emin_Emax is
4 begin
5 Put_Line
6 ("Float'Machine_Emin: "
7 & Float'Machine_Emin'Image);
8 Put_Line
9 ("Float'Machine_Emax: "
10 & Float'Machine_Emax'Image);
11 Put_Line
12 ("Long_Float'Machine_Emin: "
13 & Long_Float'Machine_Emin'Image);
14 Put_Line
15 ("Long_Float'Machine_Emax: "
16 & Long_Float'Machine_Emax'Image);
17 Put_Line
18 ("Long_Long_Float'Machine_Emin: "
19 & Long_Long_Float'Machine_Emin'Image);
20 Put_Line
21 ("Long_Long_Float'Machine_Emax: "
22 & Long_Long_Float'Machine_Emax'Image);
23 end Show_Machine_Emin_Emax;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_
↪Emin_Emax

MD5: 9766e06faaf1fc2ca48dd0bc0461b247

Runtime output

Float'Machine_Emin: -125
Float'Machine_Emax: 128
Long_Float'Machine_Emin: -1021
Long_Float'Machine_Emax: 1024
Long_Long_Float'Machine_Emin: -16381
Long_Long_Float'Machine_Emax: 16384

7.3. Floating-Point Types 279

Advanced Journey With Ada: A Flight In Progress

On a typical desktop PC, the value of Float'Machine_Emin and Float'Machine_Emax is
-125 and 128, respectively.
To get the actual minimum and maximum value of the exponent for a specific type, we
need to use the Machine_Radix attribute that we've seen previously. Let's calculate the
minimum and maximum value of the exponent for the Float type on a typical PC:
• Value of minimum exponent: Float'Machine_Radix ** Float'Machine_Emin.

– In our target platform, this is 2-125 = 2.35098870164457501594 x 10-38.
• Value of maximum exponent: Float'Machine_Radix ** Float'Machine_Emax.

– In our target platform, this is 2128 = 3.40282366920938463463 x 1038.

Attribute: Digits

Digits is an attribute that returns the requested decimal precision of a floating-point sub-
type. Let's see an example:

Listing 22: show_digits.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Digits is
4 begin
5 Put_Line ("Float'Digits: "
6 & Float'Digits'Image);
7 Put_Line ("Long_Float'Digits: "
8 & Long_Float'Digits'Image);
9 Put_Line ("Long_Long_Float'Digits: "
10 & Long_Long_Float'Digits'Image);
11 end Show_Digits;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Digits
MD5: cd1c88054f7d54703760a852d08acb6d

Runtime output

Float'Digits: 6
Long_Float'Digits: 15
Long_Long_Float'Digits: 18

Here, the requested decimal precision of the Float type is six digits.
Note that we said that Digits is the requested level of precision, which is specified as
part of declaring a floating point type. We can retrieve the actual decimal precision with
Base'Digits. For example:

Listing 23: show_base_digits.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Base_Digits is
4 type Float_D3 is new Float digits 3;
5 begin
6 Put_Line ("Float_D3'Digits: "
7 & Float_D3'Digits'Image);
8 Put_Line ("Float_D3'Base'Digits: "
9 & Float_D3'Base'Digits'Image);
10 end Show_Base_Digits;

280 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Base_Digits
MD5: a2deb352f93511ab2a39d41f0b3f9512

Runtime output

Float_D3'Digits: 3
Float_D3'Base'Digits: 6

The requested decimal precision of the Float_D3 type is three digits, while the actual dec-
imal precision is six digits (on a typical desktop PC).

Attributes: Denorm, Signed_Zeros, Machine_Rounds, Machine_Overflows

In this section, we discuss attributes that return Boolean values indicating whether a feature
is available or not in the target architecture:
• Denorm is an attribute that indicates whether the target architecture uses denormal-
ized numbers108.

• Signed_Zeros is an attribute that indicates whether the type uses a sign for zero
values, so it can represent both -0.0 and 0.0.

• Machine_Rounds is an attribute that indicates whether rounding-to-nearest is used,
rather than some other choice (such as rounding-toward-zero).

• Machine_Overflows is an attribute that indicates whether a Constraint_Error ex-
ception is (or is not) guaranteed to be raised when an operation with that type pro-
duces an overflow or divide-by-zero.

Listing 24: show_boolean_attributes.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Boolean_Attributes is
4 begin
5 Put_Line
6 ("Float'Denorm: "
7 & Float'Denorm'Image);
8 Put_Line
9 ("Long_Float'Denorm: "
10 & Long_Float'Denorm'Image);
11 Put_Line
12 ("Long_Long_Float'Denorm: "
13 & Long_Long_Float'Denorm'Image);
14 Put_Line
15 ("Float'Signed_Zeros: "
16 & Float'Signed_Zeros'Image);
17 Put_Line
18 ("Long_Float'Signed_Zeros: "
19 & Long_Float'Signed_Zeros'Image);
20 Put_Line
21 ("Long_Long_Float'Signed_Zeros: "
22 & Long_Long_Float'Signed_Zeros'Image);
23 Put_Line
24 ("Float'Machine_Rounds: "
25 & Float'Machine_Rounds'Image);
26 Put_Line
27 ("Long_Float'Machine_Rounds: "

(continues on next page)
108 https://en.wikipedia.org/wiki/Subnormal_number

7.3. Floating-Point Types 281

https://en.wikipedia.org/wiki/Subnormal_number
https://en.wikipedia.org/wiki/Subnormal_number

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
28 & Long_Float'Machine_Rounds'Image);
29 Put_Line
30 ("Long_Long_Float'Machine_Rounds: "
31 & Long_Long_Float'Machine_Rounds'Image);
32 Put_Line
33 ("Float'Machine_Overflows: "
34 & Float'Machine_Overflows'Image);
35 Put_Line
36 ("Long_Float'Machine_Overflows: "
37 & Long_Float'Machine_Overflows'Image);
38 Put_Line
39 ("Long_Long_Float'Machine_Overflows: "
40 & Long_Long_Float'Machine_Overflows'Image);
41 end Show_Boolean_Attributes;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_
↪Rounds_Overflows

MD5: b3f72c212cf00e697fe144a87eb72339

Runtime output

Float'Denorm: TRUE
Long_Float'Denorm: TRUE
Long_Long_Float'Denorm: TRUE
Float'Signed_Zeros: TRUE
Long_Float'Signed_Zeros: TRUE
Long_Long_Float'Signed_Zeros: TRUE
Float'Machine_Rounds: TRUE
Long_Float'Machine_Rounds: TRUE
Long_Long_Float'Machine_Rounds: TRUE
Float'Machine_Overflows: FALSE
Long_Float'Machine_Overflows: FALSE
Long_Long_Float'Machine_Overflows: FALSE

On a typical PC, we have the following information:
• Denorm is true (i.e. the architecture uses denormalized numbers);
• Signed_Zeros is true (i.e. the standard floating-point types use a sign for zero values);
• Machine_Rounds is true (i.e. rounding-to-nearest is used for floating-point types);
• Machine_Overflows is false (i.e. there's no guarantee that a Constraint_Error ex-
ception is raised when an operation with a floating-point type produces an overflow or
divide-by-zero).

282 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

7.3.2 Primitive function attributes

In this section, we discuss attributes that we can use to manipulate floating-point values.

Attributes: Fraction, Exponent and Compose

The Exponent and Fraction attributes return "parts" of a floating-point value:
• Exponent returns the machine exponent, and
• Fraction returns the mantissa part.

Compose is used to return a floating-point value based on a fraction (the mantissa part) and
the machine exponent.
Let's see some examples:

Listing 25: show_exponent_fraction_compose.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Exponent_Fraction_Compose is
4 begin
5 Put_Line
6 ("Float'Fraction (1.0): "
7 & Float'Fraction (1.0)'Image);
8 Put_Line
9 ("Float'Fraction (0.25): "
10 & Float'Fraction (0.25)'Image);
11 Put_Line
12 ("Float'Fraction (1.0e-25): "
13 & Float'Fraction (1.0e-25)'Image);
14 Put_Line
15 ("Float'Exponent (1.0): "
16 & Float'Exponent (1.0)'Image);
17 Put_Line
18 ("Float'Exponent (0.25): "
19 & Float'Exponent (0.25)'Image);
20 Put_Line
21 ("Float'Exponent (1.0e-25): "
22 & Float'Exponent (1.0e-25)'Image);
23 Put_Line
24 ("Float'Compose (5.00000e-01, 1): "
25 & Float'Compose (5.00000e-01, 1)'Image);
26 Put_Line
27 ("Float'Compose (5.00000e-01, -1): "
28 & Float'Compose (5.00000e-01, -1)'Image);
29 Put_Line
30 ("Float'Compose (9.67141E-01, -83): "
31 & Float'Compose (9.67141E-01, -83)'Image);
32 end Show_Exponent_Fraction_Compose;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Exponent_
↪Fraction

MD5: d2e61b6b9a7a50861145f6b65e9fac39

Runtime output

Float'Fraction (1.0): 5.00000E-01
Float'Fraction (0.25): 5.00000E-01

(continues on next page)

7.3. Floating-Point Types 283

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
Float'Fraction (1.0e-25): 9.67141E-01
Float'Exponent (1.0): 1
Float'Exponent (0.25): -1
Float'Exponent (1.0e-25): -83
Float'Compose (5.00000e-01, 1): 1.00000E+00
Float'Compose (5.00000e-01, -1): 2.50000E-01
Float'Compose (9.67141E-01, -83): 1.00000E-25

To understand this code example, we have to take this formula into account:
Value = Fraction x Machine_RadixExponent

Considering that the value of Float'Machine_Radix on a typical PC is two, we see that the
value 1.0 is composed by a fraction of 0.5 and a machine exponent of one. In other words:

0.5 x 21 = 1.0
For the value 0.25, we get a fraction of 0.5 and a machine exponent of -1, which is the
result of 0.5 x 2-1 = 0.25. We can use the Compose attribute to perform this calculation. For
example, Float'Compose (0.5, -1) = 0.25.
Note that Fraction is always between 0.5 and 0.999999 (i.e < 1.0), except for denormalized
numbers, where it can be < 0.5.

Attribute: Scaling

Scaling is an attribute that scales a floating-point value based on the machine radix and
a machine exponent passed to the function. For example:

Listing 26: show_scaling.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Scaling is
4 begin
5 Put_Line ("Float'Scaling (0.25, 1): "
6 & Float'Scaling (0.25, 1)'Image);
7 Put_Line ("Float'Scaling (0.25, 2): "
8 & Float'Scaling (0.25, 2)'Image);
9 Put_Line ("Float'Scaling (0.25, 3): "
10 & Float'Scaling (0.25, 3)'Image);
11 end Show_Scaling;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Scaling
MD5: 9fa821d32911b74ee4b4fde3f3adafd8

Runtime output

Float'Scaling (0.25, 1): 5.00000E-01
Float'Scaling (0.25, 2): 1.00000E+00
Float'Scaling (0.25, 3): 2.00000E+00

The scaling is calculated with this formula:
scaling = value x Machine_Radixmachine exponent

For example, on a typical PC with a machine radix of two, Float'Scaling (0.25, 3) =
2.0 corresponds to

0.25 x 23 = 2.0

284 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

Round-up and round-down attributes

Floor and Ceiling are attributes that returned the rounded-down or rounded-up value,
respectively, of a floating-point value. For example:

Listing 27: show_floor_ceiling.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Floor_Ceiling is
4 begin
5 Put_Line ("Float'Floor (0.25): "
6 & Float'Floor (0.25)'Image);
7 Put_Line ("Float'Ceiling (0.25): "
8 & Float'Ceiling (0.25)'Image);
9 end Show_Floor_Ceiling;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Floor_
↪Ceiling

MD5: 1344d54ae86b9fd4831d5f078eb655d4

Runtime output

Float'Floor (0.25): 0.00000E+00
Float'Ceiling (0.25): 1.00000E+00

As we can see in this example, the rounded-down value (floor) of 0.25 is 0.0, while the
rounded-up value (ceiling) of 0.25 is 1.0.

Round-to-nearest attributes

In this section, we discuss three attributes used for rounding: Rounding, Unbi-
ased_Rounding, Machine_Rounding In all cases, the rounding attributes return the nearest
integer value (as a floating-point value). For example, the rounded value for 4.8 is 5.0
because 5 is the closest integer value.
Let's see a code example:

Listing 28: show_roundings.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Roundings is
4 begin
5 Put_Line
6 ("Float'Rounding (0.5): "
7 & Float'Rounding (0.5)'Image);
8 Put_Line
9 ("Float'Rounding (1.5): "
10 & Float'Rounding (1.5)'Image);
11 Put_Line
12 ("Float'Rounding (4.5): "
13 & Float'Rounding (4.5)'Image);
14 Put_Line
15 ("Float'Rounding (-4.5): "
16 & Float'Rounding (-4.5)'Image);
17 Put_Line
18 ("Float'Unbiased_Rounding (0.5): "

(continues on next page)

7.3. Floating-Point Types 285

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
19 & Float'Unbiased_Rounding (0.5)'Image);
20 Put_Line
21 ("Float'Unbiased_Rounding (1.5): "
22 & Float'Unbiased_Rounding (1.5)'Image);
23 Put_Line
24 ("Float'Machine_Rounding (0.5): "
25 & Float'Machine_Rounding (0.5)'Image);
26 Put_Line
27 ("Float'Machine_Rounding (1.5): "
28 & Float'Machine_Rounding (1.5)'Image);
29 end Show_Roundings;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Rounding
MD5: 3f78165f092a163339cb9593ff15a50d

Runtime output

Float'Rounding (0.5): 1.00000E+00
Float'Rounding (1.5): 2.00000E+00
Float'Rounding (4.5): 5.00000E+00
Float'Rounding (-4.5): -5.00000E+00
Float'Unbiased_Rounding (0.5): 0.00000E+00
Float'Unbiased_Rounding (1.5): 2.00000E+00
Float'Machine_Rounding (0.5): 1.00000E+00
Float'Machine_Rounding (1.5): 2.00000E+00

The difference between these attributes is the way they handle the case when a value is
exactly in between two integer values. For example, 4.5 could be rounded up to 5.0 or
rounded down to 4.0. This is the way each rounding attribute works in this case:
• Rounding rounds away from zero. Positive floating-point values are rounded up, while
negative floating-point values are rounded down when the value is between two inte-
ger values. For example:
– 4.5 is rounded-up to 5.0, i.e. Float'Rounding (4.5) = Float'Ceiling (4.5)
= 5.0.

– -4.5 is rounded-down to -5.0, i.e. Float'Rounding (-4.5) = Float'Floor (-4.
5) = -5.0.

• Unbiased_Rounding rounds toward the even integer. For example,
– Float'Unbiased_Rounding (0.5) = 0.0 because zero is the closest even integer,
while

– Float'Unbiased_Rounding (1.5) = 2.0 because two is the closest even integer.
• Machine_Rounding uses the most appropriate rounding instruction available on the
target platform. While this rounding attribute can potentially have the best perfor-
mance, its result may be non-portable. For example, whether the rounding of 4.5
becomes 4.0 or 5.0 depends on the target platform.
– If an algorithm depends on a specific rounding behavior, it's best to avoid the
Machine_Rounding attribute. On the other hand, if the rounding behavior won't
have a significant impact on the results, we can safely use this attribute.

286 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

Attributes: Truncation, Remainder, Adjacent

The Truncation attribute returns the truncated value of a floating-point value, i.e. the value
corresponding to the integer part of a number rounded toward zero. This corresponds to
the number before the radix point. For example, the truncation of 1.55 is 1.0 because the
integer part of 1.55 is 1.
The Remainder attribute returns the remainder part of a division. For example,
Float'Remainder (1.25, 0.5) = 0.25. Let's briefly discuss the details of this opera-
tions. The result of the division 1.25 / 0.5 is 2.5. Here, 1.25 is the dividend and 0.5 is the
divisor. The quotient and remainder of this division are 2 and 0.25, respectively. (Here, the
quotient is an integer number, and the remainder is the floating-point part that remains.)
Note that the relation between quotient and remainder is defined in such a way that we
get the original dividend back when we use the formula: "quotient x divisor + remainder =
dividend". For the previous example, this means 2 x 0.5 + 0.25 = 1.25.
The Adjacent attribute is the next machine value towards another value. For example, on
a typical PC, the adjacent value of a small value — say, 1.0 x 10-83 — towards zero is +0.0,
while the adjacent value of this small value towards 1.0 is another small, but greater value
— in fact, it's 1.40130 x 10-45. Note that the first parameter of the Adjacent attribute is
the value we want to analyze and the second parameter is the Towards value.
Let's see a code example:

Listing 29: show_truncation_remainder_adjacent.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Truncation_Remainder_Adjacent is
4 begin
5 Put_Line
6 ("Float'Truncation (1.55): "
7 & Float'Truncation (1.55)'Image);
8 Put_Line
9 ("Float'Truncation (-1.55): "
10 & Float'Truncation (-1.55)'Image);
11 Put_Line
12 ("Float'Remainder (1.25, 0.25): "
13 & Float'Remainder (1.25, 0.25)'Image);
14 Put_Line
15 ("Float'Remainder (1.25, 0.5): "
16 & Float'Remainder (1.25, 0.5)'Image);
17 Put_Line
18 ("Float'Remainder (1.25, 1.0): "
19 & Float'Remainder (1.25, 1.0)'Image);
20 Put_Line
21 ("Float'Remainder (1.25, 2.0): "
22 & Float'Remainder (1.25, 2.0)'Image);
23 Put_Line
24 ("Float'Adjacent (1.0e-83, 0.0): "
25 & Float'Adjacent (1.0e-83, 0.0)'Image);
26 Put_Line
27 ("Float'Adjacent (1.0e-83, 1.0): "
28 & Float'Adjacent (1.0e-83, 1.0)'Image);
29 end Show_Truncation_Remainder_Adjacent;

7.3. Floating-Point Types 287

Advanced Journey With Ada: A Flight In Progress

Attributes: Copy_Sign and Leading_Part

Copy_Sign is an attribute that returns a value where the sign of the second floating-point
argument is multiplied by the magnitude of the first floating-point argument. For example,
Float'Copy_Sign (1.0, -10.0) is -1.0. Here, the sign of the second argument (-10.0) is
multiplied by the magnitude of the first argument (1.0), so the result is -1.0.
Leading_Part is an attribute that returns the approximated version of the mantissa of
a value based on the specified number of leading bits for the mantissa. Let's see some
examples:
• Float'Leading_Part (3.1416, 1) is 2.0 because that's the value we can represent
with one leading bit.
– Note that Float'Fraction (2.0) = 0.5 — which can be represented with one
leading bit in the mantissa — and Float'Exponent (2.0) = 2.)

• If we increase the number of leading bits of the mantissa to two — by writing
Float'Leading_Part (3.1416, 2) —, we get 3.0 because that's the value we can
represent with two leading bits.

• If we increase again the number of leading bits to five — Float'Leading_Part (3.
1416, 5) —, we get 3.125.
– Note that, in this case Float'Fraction (3.125) = 0.78125 and Float'Exponent
(3.125) = 2.

– The binary mantissa is actually 2#110_0100_0000_0000_0000_0000#, which can
be represented with five leading bits as expected: 2#110_01#.
∗ We can get the binary mantissa by calculating Float'Fraction (3.125) *

Float (Float'Machine_Radix) ** (Float'Machine_Mantissa - 1) and
converting the result to binary format. The -1 value in the formula corresponds
to the sign bit.

Attention
In this explanation about the Leading_Part attribute, we're talking about leading bits.
Strictly speaking, however, this is actually a simplification, and it's only correct if Ma-
chine_Radix is equal to two — which is the case for most machines. Therefore, in most
cases, the explanation above is perfectly acceptable.
However, if Machine_Radix is not equal to two, we cannot use the term "bits" anymore,
but rather digits of the Machine_Radix.

Let's see some examples:

Listing 30: show_copy_sign_leading_part_machine.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Copy_Sign_Leading_Part_Machine is
4 begin
5 Put_Line
6 ("Float'Copy_Sign (1.0, -10.0): "
7 & Float'Copy_Sign (1.0, -10.0)'Image);
8 Put_Line
9 ("Float'Copy_Sign (-1.0, -10.0): "
10 & Float'Copy_Sign (-1.0, -10.0)'Image);
11 Put_Line
12 ("Float'Copy_Sign (1.0, 10.0): "
13 & Float'Copy_Sign (1.0, 10.0)'Image);
14 Put_Line

(continues on next page)

288 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
15 ("Float'Copy_Sign (1.0, -0.0): "
16 & Float'Copy_Sign (1.0, -0.0)'Image);
17 Put_Line
18 ("Float'Copy_Sign (1.0, 0.0): "
19 & Float'Copy_Sign (1.0, 0.0)'Image);
20 Put_Line
21 ("Float'Leading_Part (1.75, 1): "
22 & Float'Leading_Part (1.75, 1)'Image);
23 Put_Line
24 ("Float'Leading_Part (1.75, 2): "
25 & Float'Leading_Part (1.75, 2)'Image);
26 Put_Line
27 ("Float'Leading_Part (1.75, 3): "
28 & Float'Leading_Part (1.75, 3)'Image);
29 end Show_Copy_Sign_Leading_Part_Machine;

Attribute: Machine

Not every real number is directly representable as a floating-point value on a specific ma-
chine. For example, let's take a value such as 1.0 x 1015 (or 1,000,000,000,000,000):

Listing 31: show_float_value.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Float_Value is
4 package F_IO is new
5 Ada.Text_IO.Float_IO (Float);
6

7 V : Float;
8 begin
9 F_IO.Default_Fore := 3;
10 F_IO.Default_Aft := 1;
11 F_IO.Default_Exp := 0;
12

13 V := 1.0E+15;
14 Put ("1.0E+15 = ");
15 F_IO.Put (Item => V);
16 New_Line;
17

18 end Show_Float_Value;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Float_Value
MD5: a7f80f7584ebaf39f2d5f9564c9c7d64

Runtime output

1.0E+15 = 999999986991000.0

If we run this example on a typical PC, we see that the expected value
1_000_000_000_000_000.0 was displayed as 999_999_986_991_000.0. This is be-
cause 1.0 x 1015 isn't directly representable on this machine, so it has to be modified to a
value that is actually representable (on the machine).
This automatic modification we've just described is actually hidden, so to say, in the as-
signment. However, we can make it more visible by using the Machine (X) attribute,
which returns a version of X that is representable on the target machine. The Machine (X)
attribute rounds (or truncates) X to either one of the adjacent machine numbers for the

7.3. Floating-Point Types 289

Advanced Journey With Ada: A Flight In Progress

specific floating-point type of X. (Of course, if the real value of X is directly representable
on the target machine, no modification is performed.)
In fact, we could rewrite the V := 1.0E+15 assignment of the code example as V :=
Float'Machine (1.0E+15), as we're never assigning a real value directly to a floating-
pointing variable — instead, we're first converting it to a version of the real value that is
representable on the target machine. In this case, 999999986991000.0 is a representable
version of the real value 1.0 x 1015. Of course, writing V := 1.0E+15 or V := Float'Machine
(1.0E+15) doesn't make any difference to the actual value that is assigned to V (in the case
of this specific target architecture), as the conversion to a representable value happens
automatically during the assignment to V.
There are, however, instances where using the Machine attribute does make a difference in
the result. For example, let's say we want to calculate the difference between the original
real value in our example (1.0 x 1015) and the actual value that is assigned to V. We can do
this by using the Machine attribute in the calculation:

Listing 32: show_machine_attribute.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Machine_Attribute is
4 package F_IO is new
5 Ada.Text_IO.Float_IO (Float);
6

7 V : Float;
8 begin
9 F_IO.Default_Fore := 3;
10 F_IO.Default_Aft := 1;
11 F_IO.Default_Exp := 0;
12

13 Put_Line
14 ("Original value: 1_000_000_000_000_000.0");
15

16 V := 1.0E+15;
17 Put ("Machine value: ");
18 F_IO.Put (Item => V);
19 New_Line;
20

21 V := 1.0E+15 - Float'Machine (1.0E+15);
22 Put ("Difference: ");
23 F_IO.Put (Item => V);
24 New_Line;
25

26 end Show_Machine_Attribute;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_
↪Attribute

MD5: c2db2cca028dc5811068f9b7f1bc209d

Runtime output

Original value: 1_000_000_000_000_000.0
Machine value: 999999986991000.0
Difference: 13008896.0

When we run this example on a typical PC, we see that the difference is roughly 1.3009 x
107. (Actually, the value that we might see is 1.3008896 x 107, which is a version of 1.3009
x 107 that is representable on the target machine.)
When we write 1.0E+15 - Float'Machine (1.0E+15):

290 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

• the first value in the operation is the universal real value 1.0 x 1015, while
• the second value in the operation is a version of the universal real value 1.0 x 1015
that is representable on the target machine.

This also means that, in the assignment to V, we're actually writing V := Float'Machine
(1.0E+15 - Float'Machine (1.0E+15)), so that:
1. we first get the intermediate real value that represents the difference between these
values; and then

2. we get a version of this intermediate real value that is representable on the target
machine.

This is the reason why we see 1.3008896 x 107 instead of 1.3009 x 107 when we run this
application.

7.4 Fixed-Point Types

In this section, we discuss various attributes and operations related to fixed-point types.

In the Ada Reference Manual
• 3.5.10 Operations of Fixed Point Types109

• A.5.4 Attributes of Fixed Point Types110

7.4.1 Attributes of fixed-point types

Attribute: Machine_Radix

Machine_Radix is an attribute that returns the radix of the hardware representation of a
type. For example:

Listing 33: show_fixed_machine_radix.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Fixed_Machine_Radix is
4 type T3_D3 is delta 10.0 ** (-3) digits 3;
5

6 D : constant := 2.0 ** (-31);
7 type TQ31 is delta D range -1.0 .. 1.0 - D;
8 begin
9 Put_Line ("T3_D3'Machine_Radix: "
10 & T3_D3'Machine_Radix'Image);
11 Put_Line ("TQ31'Machine_Radix: "
12 & TQ31'Machine_Radix'Image);
13 end Show_Fixed_Machine_Radix;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Machine_
↪Radix

MD5: a09d060a58f76550e948a8245ffb5fde

109 http://www.ada-auth.org/standards/22rm/html/RM-3-5-10.html
110 http://www.ada-auth.org/standards/22rm/html/RM-A-5-4.html

7.4. Fixed-Point Types 291

http://www.ada-auth.org/standards/22rm/html/RM-3-5-10.html
http://www.ada-auth.org/standards/22rm/html/RM-A-5-4.html

Advanced Journey With Ada: A Flight In Progress

Runtime output

T3_D3'Machine_Radix: 2
TQ31'Machine_Radix: 2

Usually, this value is two, as the radix is based on a binary system.

Attribute: Machine_Rounds and Machine_Overflows

In this section, we discuss attributes that return Boolean values indicating whether a feature
is available or not in the target architecture:
• Machine_Rounds is an attribute that indicates what happens when the result of a fixed-
point operation is inexact:
– T'Machine_Rounds = True: inexact result is rounded;
– T'Machine_Rounds = False: inexact result is truncated.

• Machine_Overflows is an attribute that indicates whether a Constraint_Error is
guaranteed to be raised when a fixed-point operation with that type produces an over-
flow or divide-by-zero.

Listing 34: show_boolean_attributes.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Boolean_Attributes is
4 type T3_D3 is delta 10.0 ** (-3) digits 3;
5

6 D : constant := 2.0 ** (-31);
7 type TQ31 is delta D range -1.0 .. 1.0 - D;
8 begin
9 Put_Line ("T3_D3'Machine_Rounds: "
10 & T3_D3'Machine_Rounds'Image);
11 Put_Line ("TQ31'Machine_Rounds: "
12 & TQ31'Machine_Rounds'Image);
13 Put_Line ("T3_D3'Machine_Overflows: "
14 & T3_D3'Machine_Overflows'Image);
15 Put_Line ("TQ31'Machine_Overflows: "
16 & TQ31'Machine_Overflows'Image);
17 end Show_Boolean_Attributes;

Attribute: Small and Delta

The Small and Delta attributes return numbers that indicate the numeric precision of a
fixed-point type. In many cases, the Small of a type T is equal to the Delta of that type —
i.e. T'Small = T'Delta. Let's discuss each attribute and how they distinguish from each
other.
The Delta attribute returns the value of the delta that was used in the type definition. For
example, if we declare type T3_D3 is delta 10.0 ** (-3) digits D, then the value of
T3_D3'Delta is the 10.0 ** (-3) that we used in the type definition.
The Small attribute returns the "small" of a type, i.e. the smallest value used in themachine
representation of the type. The small must be at least equal to or smaller than the delta—
in other words, it must conform to the T'Small <= T'Delta rule.

For further reading...

292 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

The Small and the Delta need not actually be small numbers. They can be arbitrarily large.
For instance, they could be 1.0, or 1000.0. Consider the following example:

Listing 35: fixed_point_defs.ads
1 package Fixed_Point_Defs is
2 S : constant := 32;
3 Exp : constant := 128;
4 D : constant := 2.0 ** (-S + Exp + 1);
5

6 type Fixed is delta D
7 range -1.0 * 2.0 ** Exp ..
8 1.0 * 2.0 ** Exp - D;
9

10 pragma Assert (Fixed'Size = S);
11 end Fixed_Point_Defs;

Listing 36: show_fixed_type_info.adb
1 with Fixed_Point_Defs; use Fixed_Point_Defs;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Show_Fixed_Type_Info is
5 begin
6 Put_Line ("Size : "
7 & Fixed'Size'Image);
8 Put_Line ("Small : "
9 & Fixed'Small'Image);
10 Put_Line ("Delta : "
11 & Fixed'Delta'Image);
12 Put_Line ("First : "
13 & Fixed'First'Image);
14 Put_Line ("Last : "
15 & Fixed'Last'Image);
16 end Show_Fixed_Type_Info;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Large_Small_
↪Attribute

MD5: 89672950b355060d250e0f5d7e2d40cb

Runtime output

Size : 32
Small : 1.58456325028528675E+29
Delta : 1.58456325028528675E+29
First : -340282366920938463463374607431768211456.0
Last : 340282366762482138434845932244680310784.0

In this example, the small of the Fixed type is actually quite large:
1.5845632502852867529. (Also, the first and the last values are
large: -340,282,366,920,938,463,463,374,607,431,768,211,456.0 and
340,282,366,762,482,138,434,845,932,244,680,310,784.0, or approximately -3.402838
and 3.402838.)
In this case, if we assign 1 or 1,000 to a variable F of this type, the actual value stored in F
is zero. Feel free to try this out!

When we declare an ordinary fixed-point data type, we must specify the delta. Specifying
the small, however, is optional:

7.4. Fixed-Point Types 293

Advanced Journey With Ada: A Flight In Progress

• If the small isn't specified, it is automatically selected by the compiler. In this case,
the actual value of the small is an implementation-defined power of two — always
following the rule that says: T'Small <= T'Delta.

• If we want, however, to specify the small, we can do that by using the Small aspect.
In this case, it doesn't need to be a power of two.

For decimal fixed-point types, we cannot specify the small. In this case, it's automatically
selected by the compiler, and it's always equal to the delta.
Let's see an example:

Listing 37: fixed_small_delta.ads
1 package Fixed_Small_Delta is
2 D3 : constant := 10.0 ** (-3);
3

4 type T3_D3 is delta D3 digits 3;
5

6 type TD3 is delta D3 range -1.0 .. 1.0 - D3;
7

8 D31 : constant := 2.0 ** (-31);
9 D15 : constant := 2.0 ** (-15);
10

11 type TQ31 is delta D31 range -1.0 .. 1.0 - D31;
12

13 type TQ15 is delta D15 range -1.0 .. 1.0 - D15
14 with Small => D31;
15 end Fixed_Small_Delta;

Listing 38: show_fixed_small_delta.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Fixed_Small_Delta; use Fixed_Small_Delta;
4

5 procedure Show_Fixed_Small_Delta is
6 begin
7 Put_Line ("T3_D3'Small: "
8 & T3_D3'Small'Image);
9 Put_Line ("T3_D3'Delta: "
10 & T3_D3'Delta'Image);
11 Put_Line ("T3_D3'Size: "
12 & T3_D3'Size'Image);
13 Put_Line ("--------------------");
14

15 Put_Line ("TD3'Small: "
16 & TD3'Small'Image);
17 Put_Line ("TD3'Delta: "
18 & TD3'Delta'Image);
19 Put_Line ("TD3'Size: "
20 & TD3'Size'Image);
21 Put_Line ("--------------------");
22

23 Put_Line ("TQ31'Small: "
24 & TQ31'Small'Image);
25 Put_Line ("TQ31'Delta: "
26 & TQ31'Delta'Image);
27 Put_Line ("TQ32'Size: "
28 & TQ31'Size'Image);
29 Put_Line ("--------------------");
30

31 Put_Line ("TQ15'Small: "
(continues on next page)

294 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
32 & TQ15'Small'Image);
33 Put_Line ("TQ15'Delta: "
34 & TQ15'Delta'Image);
35 Put_Line ("TQ15'Size: "
36 & TQ15'Size'Image);
37 end Show_Fixed_Small_Delta;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Small_
↪Delta

MD5: 0e811c7c0b92f05483b0ac7c3489dc3d

Runtime output

T3_D3'Small: 1.00000000000000000E-03
T3_D3'Delta: 1.00000000000000000E-03
T3_D3'Size: 11

TD3'Small: 9.76562500000000000E-04
TD3'Delta: 1.00000000000000000E-03
TD3'Size: 11

TQ31'Small: 4.65661287307739258E-10
TQ31'Delta: 4.65661287307739258E-10
TQ32'Size: 32

TQ15'Small: 4.65661287307739258E-10
TQ15'Delta: 3.05175781250000000E-05
TQ15'Size: 32

As we can see in the output of the code example, the Delta attribute returns the value we
used for delta in the type definition of the T3_D3, TD3, TQ31 and TQ15 types.
The TD3 type is an ordinary fixed-point type with the the same delta as the decimal T3_D3
type. In this case, however, TD3'Small is not the same as the TD3'Delta. On a typical
desktop PC, TD3'Small is 2-10, while the delta is 10-3. (Remember that, for ordinary fixed-
point types, if we don't specify the small, it's automatically selected by the compiler as a
power of two smaller than or equal to the delta.)
In the case of the TQ15 type, we're specifying the small by using the Small aspect. In
this case, the underlying size of the TQ15 type is 32 bits, while the precision we get when
operating with this type is 16 bits. Let's see a specific example for this type:

Listing 39: show_fixed_small_delta.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Fixed_Small_Delta; use Fixed_Small_Delta;
4

5 procedure Show_Fixed_Small_Delta is
6 V : TQ15;
7 begin
8 Put_Line ("V'Size: " & V'Size'Image);
9

10 V := TQ15'Small;
11 Put_Line ("V: " & V'Image);
12

13 V := TQ15'Delta;
14 Put_Line ("V: " & V'Image);
15 end Show_Fixed_Small_Delta;

7.4. Fixed-Point Types 295

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Small_
↪Delta

MD5: f2a71db911913d6fbf5343671599c0ae

Runtime output

V'Size: 32
V: 0.00000
V: 0.00003

In the first assignment, we assign TQ15'Small (2-31) to V. This value is smaller than the
type's delta (2-15). Even though V'Size is 32 bits, V'Delta indicates 16-bit precision, and
TQ15'Small requires 32-bit precision to be represented correctly. As a result, V has a value
of zero after this assignment.
In contrast, after the second assignment — where we assign TQ15'Delta (2-15) to V — we
see, as expected, that V has the same value as the delta.

Attributes: Fore and Aft

The Fore and Aft attributes indicate the number of characters or digits needed for display-
ing a value in decimal representation. To be more precise:
• The Fore attribute refers to the digits before the decimal point and it returns the num-
ber of digits plus one for the sign indicator (which is either - or space), and it's always
at least two.

• The Aft attribute returns the number of decimal digits that is needed to represent the
delta after the decimal point.

Let's see an example:

Listing 40: show_fixed_fore_aft.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Fixed_Fore_Aft is
4 type T3_D3 is delta 10.0 ** (-3) digits 3;
5

6 D : constant := 2.0 ** (-31);
7 type TQ31 is delta D range -1.0 .. 1.0 - D;
8

9 Dec : constant T3_D3 := -0.123;
10 Fix : constant TQ31 := -TQ31'Delta;
11 begin
12 Put_Line ("T3_D3'Fore: "
13 & T3_D3'Fore'Image);
14 Put_Line ("T3_D3'Aft: "
15 & T3_D3'Aft'Image);
16

17 Put_Line ("TQ31'Fore: "
18 & TQ31'Fore'Image);
19 Put_Line ("TQ31'Aft: "
20 & TQ31'Aft'Image);
21 Put_Line ("----");
22 Put_Line ("Dec: "
23 & Dec'Image);
24 Put_Line ("Fix: "
25 & Fix'Image);
26 end Show_Fixed_Fore_Aft;

296 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Fore_Aft
MD5: d031f74d967a96dee1c6a83ff4bd14cf

Runtime output

T3_D3'Fore: 2
T3_D3'Aft: 3
TQ31'Fore: 2
TQ31'Aft: 10

Dec: -0.123
Fix: -0.0000000005

As we can see in the output of the Dec and Fix variables at the bottom, the value of
Fore is two for both T3_D3 and TQ31. This value corresponds to the length of the string
"-0" displayed in the output for these variables (the first two characters of "-0.123" and
"-0.0000000005").
The value of Dec'Aft is three, which matches the number of digits after the decimal point
in "-0.123". Similarly, the value of Fix'Aft is 10, which matches the number of digits after
the decimal point in "-0.0000000005".

7.4.2 Attributes of decimal fixed-point types

The attributes presented in this subsection are only available for decimal fixed-point types.

Attribute: Digits

Digits is an attribute that returns the number of significant decimal digits of a decimal
fixed-point subtype. This corresponds to the value that we use for the digits in the defi-
nition of a decimal fixed-point type.
Let's see an example:

Listing 41: show_decimal_digits.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Decimal_Digits is
4 type T3_D6 is delta 10.0 ** (-3) digits 6;
5 subtype T3_D2 is T3_D6 digits 2;
6 begin
7 Put_Line ("T3_D6'Digits: "
8 & T3_D6'Digits'Image);
9 Put_Line ("T3_D2'Digits: "
10 & T3_D2'Digits'Image);
11 end Show_Decimal_Digits;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Decimal_Digits
MD5: d46e67bd0f8b369918e7ab9ab4413ae7

Runtime output

T3_D6'Digits: 6
T3_D2'Digits: 2

7.4. Fixed-Point Types 297

Advanced Journey With Ada: A Flight In Progress

In this example, T3_D6'Digits is six, which matches the value that we used for digits
in the type definition of T3_D6. The same logic applies for subtypes, as we can see in the
value of T3_D2'Digits. Here, the value is two, which was used in the declaration of the
T3_D2 subtype.

Attribute: Scale

According to the Ada Reference Manual, the Scale attribute "indicates the position of the
point relative to the rightmost significant digits of values" of a decimal type. For example:
• If the value of Scale is two, then there are two decimal digits after the decimal point.
• If the value of Scale is negative, that implies that the Delta is a power of 10 greater
than 1, and it would be the number of zero digits that every value would end in.

The Scale corresponds to the N used in the delta 10.0 ** (-N) expression of the type
declaration. For example, if we write delta 10.0 ** (-3) in the declaration of a type T,
then the value of T'Scale is three.
Let's look at this complete example:

Listing 42: show_decimal_scale.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Decimal_Scale is
4 type TM3_D6 is delta 10.0 ** 3 digits 6;
5 type T3_D6 is delta 10.0 ** (-3) digits 6;
6 type T9_D12 is delta 10.0 ** (-9) digits 12;
7 begin
8 Put_Line ("TM3_D6'Scale: "
9 & TM3_D6'Scale'Image);
10 Put_Line ("T3_D6'Scale: "
11 & T3_D6'Scale'Image);
12 Put_Line ("T9_D12'Scale: "
13 & T9_D12'Scale'Image);
14 end Show_Decimal_Scale;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Decimal_Scale
MD5: 56a99848cf31a9c69fe6d91ead73375a

Runtime output

TM3_D6'Scale: -3
T3_D6'Scale: 3
T9_D12'Scale: 9

In this example, we get the following values for the scales:
• TM3_D6'Scale = -3,
• T3_D6'Scale = 3,
• T9_D12 = 9.

As you can see, the value of Scale is directly related to the delta of the corresponding type
declaration.

298 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

Attribute: Round

The Round attribute rounds a value of any real type to the nearest value that is a multiple
of the delta of the decimal fixed-point type, rounding away from zero if exactly between
two such multiples.
For example, if we have a type T with three digits, and we use a value with 10 digits after
the decimal point in a call to T'Round, the resulting value will have three digits after the
decimal point.
Note that the X input of an S'Round (X) call is a universal real value, while the returned
value is of S'Base type.
Let's look at this example:

Listing 43: show_decimal_round.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Decimal_Round is
4 type T3_D3 is delta 10.0 ** (-3) digits 3;
5 begin
6 Put_Line ("T3_D3'Round (0.2774): "
7 & T3_D3'Round (0.2774)'Image);
8 Put_Line ("T3_D3'Round (0.2777): "
9 & T3_D3'Round (0.2777)'Image);
10 end Show_Decimal_Round;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Decimal_Round
MD5: 153d9dae52fee750da30dd9152a03c37

Runtime output

T3_D3'Round (0.2774): 0.277
T3_D3'Round (0.2777): 0.278

Here, the T3_D3 has a precision of three digits. Therefore, to fit this precision, 0.2774 is
rounded to 0.277, and 0.2777 is rounded to 0.278.

7.5 Big Numbers

As we've seen before, we can define numeric types in Ada with a high degree of precision.
However, these normal numeric types in Ada are limited to what the underlying hardware
actually supports. For example, any signed integer type—whether defined by the language
or the user — cannot have a range greater than that of System.Min_Int .. System.
Max_Int because those constants reflect the actual hardware's signed integer types. In
certain applications, that precision might not be enough, so we have to rely on arbitrary-
precision arithmetic111. These so-called "big numbers" are limited conceptually only by
available memory, in contrast to the underlying hardware-defined numeric types.
Ada supports two categories of big numbers: big integers and big reals — both are specified
in child packages of the Ada.Numerics.Big_Numbers package:
111 https://en.wikipedia.org/wiki/arbitrary-precision_arithmetic

7.5. Big Numbers 299

https://en.wikipedia.org/wiki/arbitrary-precision_arithmetic
https://en.wikipedia.org/wiki/arbitrary-precision_arithmetic

Advanced Journey With Ada: A Flight In Progress

Category Package
Big Integers Ada.Numerics.Big_Numbers.Big_Integers
Big Reals Ada.Numerics.Big_Numbers.Big_Real

In the Ada Reference Manual
• Big Numbers112

• Big Integers113

• Big Reals114

7.5.1 Overview

Let's start with a simple declaration of big numbers:

Listing 44: show_simple_big_numbers.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 with Ada.Numerics.Big_Numbers.Big_Reals;
9 use Ada.Numerics.Big_Numbers.Big_Reals;
10

11 procedure Show_Simple_Big_Numbers is
12 BI : Big_Integer;
13 BR : Big_Real;
14 begin
15 BI := 12345678901234567890;
16 BR := 2.0 ** 1234;
17

18 Put_Line ("BI: " & BI'Image);
19 Put_Line ("BR: " & BR'Image);
20

21 BI := BI + 1;
22 BR := BR + 1.0;
23

24 Put_Line ("BI: " & BI'Image);
25 Put_Line ("BR: " & BR'Image);
26 end Show_Simple_Big_Numbers;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Simple_Big_Numbers
MD5: d25e0c73ef04b6c950f2ab63fc96a353

Runtime output

112 http://www.ada-auth.org/standards/22rm/html/RM-A-5-5.html
113 http://www.ada-auth.org/standards/22rm/html/RM-A-5-6.html
114 http://www.ada-auth.org/standards/22rm/html/RM-A-5-7.html

300 Chapter 7. Numerics

http://www.ada-auth.org/standards/22rm/html/RM-A-5-5.html
http://www.ada-auth.org/standards/22rm/html/RM-A-5-6.html
http://www.ada-auth.org/standards/22rm/html/RM-A-5-7.html

Advanced Journey With Ada: A Flight In Progress

BI: 12345678901234567890
BR:␣

↪295811224608098629060044695716103590786339687135372992239556207050657350796238924261053837248378050186443647759070955993120820899330381760937027212482840944941362110665443775183495726811929203861182015218323892077355983393191208928867652655993602487903113708549402668624521100611794270340232766099317098048887493809023127398253860618772619035009883272941129544640111837184.
↪000

BI: 12345678901234567891
BR:␣

↪295811224608098629060044695716103590786339687135372992239556207050657350796238924261053837248378050186443647759070955993120820899330381760937027212482840944941362110665443775183495726811929203861182015218323892077355983393191208928867652655993602487903113708549402668624521100611794270340232766099317098048887493809023127398253860618772619035009883272941129544640111837185.
↪000

In this example, we're declaring the big integer BI and the big real BR, and we're increment-
ing them by one.
Naturally, we're not limited to using the + operator (such as in this example). We can use
the same operators on big numbers that we can use with normal numeric types. In fact,
the common unary operators (+, -, abs) and binary operators (+, -, *, /, **, Min and Max)
are available to us. For example:

Listing 45: show_simple_big_numbers_operators.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 procedure Show_Simple_Big_Numbers_Operators is
9 BI : Big_Integer;
10 begin
11 BI := 12345678901234567890;
12

13 Put_Line ("BI: " & BI'Image);
14

15 BI := -BI + BI / 2;
16 BI := BI - BI * 2;
17

18 Put_Line ("BI: " & BI'Image);
19 end Show_Simple_Big_Numbers_Operators;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Simple_Big_Numbers_
↪Operators

MD5: c4f405e3ea916bc8a3f309acdeb0606a

Runtime output

BI: 12345678901234567890
BI: 6172839450617283945

In this example, we're applying the four basic operators (+, -, *, /) on big integers.

7.5. Big Numbers 301

Advanced Journey With Ada: A Flight In Progress

7.5.2 Factorial

A typical example is the factorial115: a sequence of the factorial of consecutive small num-
bers can quickly lead to big numbers. Let's take this implementation as an example:

Listing 46: factorial.ads
1 function Factorial (N : Integer)
2 return Long_Long_Integer;

Listing 47: factorial.adb
1 function Factorial (N : Integer)
2 return Long_Long_Integer is
3 Fact : Long_Long_Integer := 1;
4 begin
5 for I in 2 .. N loop
6 Fact := Fact * Long_Long_Integer (I);
7 end loop;
8

9 return Fact;
10 end Factorial;

Listing 48: show_factorial.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Factorial;
4

5 procedure Show_Factorial is
6 begin
7 for I in 1 .. 50 loop
8 Put_Line (I'Image & "! = "
9 & Factorial (I)'Image);
10 end loop;
11 end Show_Factorial;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Factorial_Integer
MD5: 9b20469533706ef025a03b506a07b920

Runtime output

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000

(continues on next page)
115 https://en.wikipedia.org/wiki/Factorial

302 Chapter 7. Numerics

https://en.wikipedia.org/wiki/Factorial

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000

raised CONSTRAINT_ERROR : factorial.adb:6 overflow check failed

Here, we're using Long_Long_Integer for the computation and return type of the Facto-
rial function. (We're using Long_Long_Integer because its range is probably the biggest
possible on the machine, although that is not necessarily so.) The last number we're able
to calculate before getting an exception is 20!, which basically shows the limitation of stan-
dard integers for this kind of algorithm. If we use big integers instead, we can easily display
all numbers up to 50! (and more!):

Listing 49: factorial.ads
1 pragma Ada_2022;
2

3 with Ada.Numerics.Big_Numbers.Big_Integers;
4 use Ada.Numerics.Big_Numbers.Big_Integers;
5

6 function Factorial (N : Integer)
7 return Big_Integer;

Listing 50: factorial.adb
1 function Factorial (N : Integer)
2 return Big_Integer is
3 Fact : Big_Integer := 1;
4 begin
5 for I in 2 .. N loop
6 Fact := Fact * To_Big_Integer (I);
7 end loop;
8

9 return Fact;
10 end Factorial;

Listing 51: show_big_number_factorial.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Factorial;
6

7 procedure Show_Big_Number_Factorial is
8 begin
9 for I in 1 .. 50 loop
10 Put_Line (I'Image & "! = "
11 & Factorial (I)'Image);
12 end loop;
13 end Show_Big_Number_Factorial;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Factorial_Big_Numbers
MD5: 18b6e168dac40422a1f0334fe5e4486e

Runtime output

7.5. Big Numbers 303

Advanced Journey With Ada: A Flight In Progress

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 51090942171709440000
22! = 1124000727777607680000
23! = 25852016738884976640000
24! = 620448401733239439360000
25! = 15511210043330985984000000
26! = 403291461126605635584000000
27! = 10888869450418352160768000000
28! = 304888344611713860501504000000
29! = 8841761993739701954543616000000
30! = 265252859812191058636308480000000
31! = 8222838654177922817725562880000000
32! = 263130836933693530167218012160000000
33! = 8683317618811886495518194401280000000
34! = 295232799039604140847618609643520000000
35! = 10333147966386144929666651337523200000000
36! = 371993326789901217467999448150835200000000
37! = 13763753091226345046315979581580902400000000
38! = 523022617466601111760007224100074291200000000
39! = 20397882081197443358640281739902897356800000000
40! = 815915283247897734345611269596115894272000000000
41! = 33452526613163807108170062053440751665152000000000
42! = 1405006117752879898543142606244511569936384000000000
43! = 60415263063373835637355132068513997507264512000000000
44! = 2658271574788448768043625811014615890319638528000000000
45! = 119622220865480194561963161495657715064383733760000000000
46! = 5502622159812088949850305428800254892961651752960000000000
47! = 258623241511168180642964355153611979969197632389120000000000
48! = 12413915592536072670862289047373375038521486354677760000000000
49! = 608281864034267560872252163321295376887552831379210240000000000
50! = 30414093201713378043612608166064768844377641568960512000000000000

As we can see in this example, replacing the Long_Long_Integer type by the Big_Integer
type fixes the problem (the runtime exception) that we had in the previous version. (Note
that we're using the To_Big_Integer function to convert from Integer to Big_Integer:
we discuss these conversions next.)
Note that there is a limit to the upper bounds for big integers. However, this limit isn't
dependent on the hardware types — as it's the case for normal numeric types —, but rather
compiler specific. In other words, the compiler can decide how much memory it wants to
use to represent big integers.

304 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

7.5.3 Conversions

Most probably, we want to mix big numbers and standard numbers (i.e. integer and real
numbers) in our application. In this section, we talk about the conversion between big
numbers and standard types.

Validity

The package specifications of big numbers include subtypes that ensure that a actual value
of a big number is valid:

Type Subtype for valid values
Big Integers Valid_Big_Integer
Big Reals Valid_Big_Real

These subtypes include a contract for this check. For example, this is the definition of the
Valid_Big_Integer subtype:

subtype Valid_Big_Integer is Big_Integer
with Dynamic_Predicate =>

Is_Valid (Valid_Big_Integer),
Predicate_Failure =>

(raise Program_Error);

Any operation on big numbers is actually performing this validity check (via a call to the
Is_Valid function). For example, this is the addition operator for big integers:

function "+" (L, R : Valid_Big_Integer)
return Valid_Big_Integer;

As we can see, both the input values to the operator as well as the return value are expected
to be valid — the Valid_Big_Integer subtype triggers this check, so to say. This approach
ensures that an algorithm operating on big numbers won't be using invalid values.

Conversion functions

These are themost important functions to convert between big number and standard types:

Category To big number From big number
Big Integers • To_Big_Integer • To_Integer (Integer)

• From_Big_Integer
(other integer types)

Big Reals
• To_Big_Real (floating-
point types or fixed-
point types)

• From_Big_Real

• To_Big_Real
(Valid_Big_Integer)

• To_Real (Integer)

• Numerator, Denomina-
tor (Integer)

7.5. Big Numbers 305

Advanced Journey With Ada: A Flight In Progress

In the following sections, we discuss these functions in more detail.

Big integer to integer

We use the To_Big_Integer and To_Integer functions to convert back and forth between
Big_Integer and Integer types:

Listing 52: show_simple_big_integer_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 procedure Show_Simple_Big_Integer_Conversion is
9 BI : Big_Integer;
10 I : Integer := 10000;
11 begin
12 BI := To_Big_Integer (I);
13 Put_Line ("BI: " & BI'Image);
14

15 I := To_Integer (BI + 1);
16 Put_Line ("I: " & I'Image);
17 end Show_Simple_Big_Integer_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Simple_Big_Integer_
↪Conversion

MD5: 84f55568b26bf6c1c6f0b06391e8ac0f

Runtime output

BI: 10000
I: 10001

In addition, we can use the generic Signed_Conversions and Unsigned_Conversions
packages to convert between Big_Integer and any signed or unsigned integer types:

Listing 53: show_arbitrary_big_integer_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 procedure Show_Arbitrary_Big_Integer_Conversion is
9

10 type Mod_32_Bit is mod 2 ** 32;
11

12 package Long_Long_Integer_Conversions is new
13 Signed_Conversions (Long_Long_Integer);
14 use Long_Long_Integer_Conversions;
15

16 package Mod_32_Bit_Conversions is new
17 Unsigned_Conversions (Mod_32_Bit);
18 use Mod_32_Bit_Conversions;

(continues on next page)

306 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
19

20 BI : Big_Integer;
21 LLI : Long_Long_Integer := 10000;
22 U_32 : Mod_32_Bit := 2 ** 32 + 1;
23

24 begin
25 BI := To_Big_Integer (LLI);
26 Put_Line ("BI: " & BI'Image);
27

28 LLI := From_Big_Integer (BI + 1);
29 Put_Line ("LLI: " & LLI'Image);
30

31 BI := To_Big_Integer (U_32);
32 Put_Line ("BI: " & BI'Image);
33

34 U_32 := From_Big_Integer (BI + 1);
35 Put_Line ("U_32: " & U_32'Image);
36

37 end Show_Arbitrary_Big_Integer_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Arbitrary_Big_
↪Integer_Conversion

MD5: 21466010594cf09f37776bc8cb61ee9c

Runtime output

BI: 10000
LLI: 10001
BI: 1
U_32: 2

In this examples, we declare the Long_Long_Integer_Conversions and the
Mod_32_Bit_Conversions to be able to convert between big integers and the
Long_Long_Integer and the Mod_32_Bit types, respectively.
Note that, when converting from big integer to integer, we used the To_Integer func-
tion, while, when using the instances of the generic packages, the function is named
From_Big_Integer.

Big real to floating-point types

When converting between big real and floating-point types, we have to instantiate the
generic Float_Conversions package:

Listing 54: show_big_real_floating_point_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Reals;
6 use Ada.Numerics.Big_Numbers.Big_Reals;
7

8 procedure Show_Big_Real_Floating_Point_Conversion
9 is
10 type D10 is digits 10;
11

(continues on next page)

7.5. Big Numbers 307

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
12 package D10_Conversions is new
13 Float_Conversions (D10);
14 use D10_Conversions;
15

16 package Long_Float_Conversions is new
17 Float_Conversions (Long_Float);
18 use Long_Float_Conversions;
19

20 BR : Big_Real;
21 LF : Long_Float := 2.0;
22 F10 : D10 := 1.999;
23

24 begin
25 BR := To_Big_Real (LF);
26 Put_Line ("BR: " & BR'Image);
27

28 LF := From_Big_Real (BR + 1.0);
29 Put_Line ("LF: " & LF'Image);
30

31 BR := To_Big_Real (F10);
32 Put_Line ("BR: " & BR'Image);
33

34 F10 := From_Big_Real (BR + 0.1);
35 Put_Line ("F10: " & F10'Image);
36

37 end Show_Big_Real_Floating_Point_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Floating_
↪Point_Conversion

MD5: 531c59a06b46c2074bc5378b5dcddd35

Runtime output

BR: 2.000
LF: 3.00000000000000E+00
BR: 1.999
F10: 2.099000000E+00

In this example, we declare the D10_Conversions and the Long_Float_Conversions to
be able to convert between big reals and the custom floating-point type D10 and the
Long_Float type, respectively. To do that, we use the To_Big_Real and the From_Big_Real
functions.

Big real to fixed-point types

When converting between big real and ordinary fixed-point types, we have to instantiate
the generic Fixed_Conversions package:

Listing 55: show_big_real_fixed_point_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Reals;
6 use Ada.Numerics.Big_Numbers.Big_Reals;
7

(continues on next page)

308 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 procedure Show_Big_Real_Fixed_Point_Conversion
9 is
10 D : constant := 2.0 ** (-31);
11 type TQ31 is delta D range -1.0 .. 1.0 - D;
12

13 package TQ31_Conversions is new
14 Fixed_Conversions (TQ31);
15 use TQ31_Conversions;
16

17 BR : Big_Real;
18 FQ31 : TQ31 := 0.25;
19

20 begin
21 BR := To_Big_Real (FQ31);
22 Put_Line ("BR: " & BR'Image);
23

24 FQ31 := From_Big_Real (BR * 2.0);
25 Put_Line ("FQ31: " & FQ31'Image);
26

27 end Show_Big_Real_Fixed_Point_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Fixed_Point_
↪Conversion

MD5: 94a87bfc6ffad70f757cfc8b6ae32530

Runtime output

BR: 0.250
FQ31: 0.5000000000

In this example, we declare the TQ31_Conversions to be able to convert between big re-
als and the custom fixed-point type TQ31 type. Again, we use the To_Big_Real and the
From_Big_Real functions for the conversions.
Note that there's no direct way to convert between decimal fixed-point types and big real
types. (Of course, you could perform this conversion indirectly by using a floating-point or
an ordinary fixed-point type in between.)

Big reals to (big) integers

We can also convert between big reals and big integers (or standard integers):

Listing 56: show_big_real_big_integer_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 with Ada.Numerics.Big_Numbers.Big_Reals;
9 use Ada.Numerics.Big_Numbers.Big_Reals;
10

11 procedure Show_Big_Real_Big_Integer_Conversion
12 is
13 I : Integer;

(continues on next page)

7.5. Big Numbers 309

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14 BI : Big_Integer;
15 BR : Big_Real;
16

17 begin
18 I := 12345;
19 BR := To_Real (I);
20 Put_Line ("BR (from I): " & BR'Image);
21

22 BI := 123456;
23 BR := To_Big_Real (BI);
24 Put_Line ("BR (from BI): " & BR'Image);
25

26 end Show_Big_Real_Big_Integer_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Big_Integer_
↪Conversion

MD5: 9a217c0551bc80269596d7217d2be879

Runtime output

BR (from I): 12345.000
BR (from BI): 123456.000

Here, we use the To_Real and the To_Big_Real and functions for the conversions.

String conversions

In addition to that, we can use string conversions:

Listing 57: show_big_number_string_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 with Ada.Numerics.Big_Numbers.Big_Reals;
9 use Ada.Numerics.Big_Numbers.Big_Reals;
10

11 procedure Show_Big_Number_String_Conversion
12 is
13 BI : Big_Integer;
14 BR : Big_Real;
15 begin
16 BI := From_String ("12345678901234567890");
17 BR := From_String ("12345678901234567890.0");
18

19 Put_Line ("BI: "
20 & To_String (Arg => BI,
21 Width => 5,
22 Base => 2));
23 Put_Line ("BR: "
24 & To_String (Arg => BR,
25 Fore => 2,
26 Aft => 6,

(continues on next page)

310 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
27 Exp => 18));
28 end Show_Big_Number_String_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Number_String_
↪Conversion

MD5: 3819df198ec140b457fa56a65d8876f9

Runtime output

BI: 2#1010101101010100101010011000110011101011000111110000101011010010#
BR: 12.345678E+18

In this example, we use the From_String to convert a string to a big number. Note that
the From_String function is actually called when converting a literal — because of the
corresponding aspect for user-defined literals in the definitions of the Big_Integer and the
Big_Real types.

For further reading...
Big numbers are implemented using user-defined literals (page 68), which we discussed
previously. In fact, these are the corresponding type declarations:

-- Declaration from
-- Ada.Numerics.Big_Numbers.Big_Integers;

type Big_Integer is private
with Integer_Literal => From_Universal_Image,

Put_Image => Put_Image;

function From_Universal_Image
(Arg : String)
return Valid_Big_Integer

renames From_String;

-- Declaration from
-- Ada.Numerics.Big_Numbers.Big_Reals;

type Big_Real is private
with Real_Literal => From_Universal_Image,

Put_Image => Put_Image;

function From_Universal_Image
(Arg : String)
return Valid_Big_Real
renames From_String;

As we can see in these declarations, the From_String function renames the
From_Universal_Image function, which is being used for the user-defined literals.

Also, we call the To_String function to get a string for the big numbers. Naturally, using
the To_String function instead of the Image attribute — as we did in previous examples —
allows us to customize the format of the string that we display in the user message.

7.5. Big Numbers 311

Advanced Journey With Ada: A Flight In Progress

7.5.4 Other features of big integers

Now, let's look at two additional features of big integers:
• the natural and positive subtypes, and
• other available operators and functions.

Big positive and natural subtypes

Similar to integer types, big integers have the Big_Natural and Big_Positive subtypes to
indicate natural and positive numbers. However, in contrast to the Natural and Positive
subtypes, the Big_Natural and Big_Positive subtypes are defined via predicates rather
than the simple ranges of normal (ordinary) numeric types:

subtype Natural is
Integer range 0 .. Integer'Last;

subtype Positive is
Integer range 1 .. Integer'Last;

subtype Big_Natural is Big_Integer
with Dynamic_Predicate =>

(if Is_Valid (Big_Natural)
then Big_Natural >= 0),

Predicate_Failure =>
(raise Constraint_Error);

subtype Big_Positive is Big_Integer
with Dynamic_Predicate =>

(if Is_Valid (Big_Positive)
then Big_Positive > 0),

Predicate_Failure =>
(raise Constraint_Error);

Therefore, we cannot simply use attributes such as Big_Natural'First. However, we can
use the subtypes to ensure that a big integer is in the expected (natural or positive) range:

Listing 58: show_big_positive_natural.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 procedure Show_Big_Positive_Natural is
9 BI, D, N : Big_Integer;
10 begin
11 D := 3;
12 N := 2;
13 BI := Big_Natural (D / Big_Positive (N));
14

15 Put_Line ("BI: " & BI'Image);
16 end Show_Big_Positive_Natural;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Positive_Natural
MD5: 6debfb86e11c7bfa3dbaf2d81eb24360

312 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

Runtime output

BI: 1

By using the Big_Natural and Big_Positive subtypes in the calculation above (in the
assignment to BI), we ensure that we don't perform a division by zero, and that the result
of the calculation is a natural number.

7.5.5 Other operators for big integers

We can use the mod and rem operators with big integers:

Listing 59: show_big_integer_rem_mod.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 procedure Show_Big_Integer_Rem_Mod is
9 BI : Big_Integer;
10 begin
11 BI := 145 mod (-4);
12 Put_Line ("BI (mod): " & BI'Image);
13

14 BI := 145 rem (-4);
15 Put_Line ("BI (rem): " & BI'Image);
16 end Show_Big_Integer_Rem_Mod;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Integer_Rem_Mod
MD5: 079f2f88f98f52e81ae7719d4629ca08

Runtime output

BI (mod): -5
BI (rem): 1

In this example, we use the mod and rem operators in the assignments to BI.
Moreover, there's a Greatest_Common_Divisor function for big integers which, as the name
suggests, calculates the greatest common divisor of two big integer values:

Listing 60: show_big_integer_greatest_common_divisor.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 procedure Show_Big_Integer_Greatest_Common_Divisor
9 is
10 BI : Big_Integer;
11 begin
12 BI := Greatest_Common_Divisor (145, 25);
13 Put_Line ("BI: " & BI'Image);

(continues on next page)

7.5. Big Numbers 313

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14

15 end Show_Big_Integer_Greatest_Common_Divisor;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Integer_Greatest_
↪Common_Divisor

MD5: b2d0098fcca6f949f228276b4d862b56

Runtime output

BI: 5

In this example, we retrieve the greatest common divisor of 145 and 25 (i.e.: 5).

7.5.6 Big real and quotients

An interesting feature of big reals is that they support quotients. In fact, we can simply
assign 2/3 to a big real variable. (Note that we're able to omit the decimal points, as we
write 2/3 instead of 2.0 / 3.0.) For example:

Listing 61: show_big_real_quotient_conversion.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Reals;
6 use Ada.Numerics.Big_Numbers.Big_Reals;
7

8 procedure Show_Big_Real_Quotient_Conversion
9 is
10 BR : Big_Real;
11 begin
12 BR := 2 / 3;
13 -- Same as:
14 -- BR := From_Quotient_String ("2 / 3");
15

16 Put_Line ("BR: " & BR'Image);
17

18 Put_Line ("Q: "
19 & To_Quotient_String (BR));
20

21 Put_Line ("Q numerator: "
22 & Numerator (BR)'Image);
23 Put_Line ("Q denominator: "
24 & Denominator (BR)'Image);
25 end Show_Big_Real_Quotient_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Quotient_
↪Conversion

MD5: 4ef8355332e73a1f7da036b8e1e4b898

Runtime output

BR: 0.666
Q: 2 / 3

(continues on next page)

314 Chapter 7. Numerics

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
Q numerator: 2
Q denominator: 3

In this example, we assign 2 / 3 to BR — we could have used the From_Quotient_String
function as well. Also, we use the To_Quotient_String to get a string that represents the
quotient. Finally, we use the Numerator and Denominator functions to retrieve the values,
respectively, of the numerator and denominator of the quotient (as big integers) of the big
real variable.

7.5.7 Range checks

Previously, we've talked about the Big_Natural and Big_Positive subtypes. In addition
to those subtypes, we have the In_Range function for big numbers:

Listing 62: show_big_numbers_in_range.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Ada.Numerics.Big_Numbers.Big_Integers;
6 use Ada.Numerics.Big_Numbers.Big_Integers;
7

8 with Ada.Numerics.Big_Numbers.Big_Reals;
9 use Ada.Numerics.Big_Numbers.Big_Reals;
10

11 procedure Show_Big_Numbers_In_Range is
12

13 BI : Big_Integer;
14 BR : Big_Real;
15

16 BI_From : constant Big_Integer := 0;
17 BI_To : constant Big_Integer := 1024;
18

19 BR_From : constant Big_Real := 0.0;
20 BR_To : constant Big_Real := 1024.0;
21

22 begin
23 BI := 1023;
24 BR := 1023.9;
25

26 if In_Range (BI, BI_From, BI_To) then
27 Put_Line ("BI ("
28 & BI'Image
29 & ") is in the "
30 & BI_From'Image
31 & " .. "
32 & BI_To'Image
33 & " range");
34 end if;
35

36 if In_Range (BR, BR_From, BR_To) then
37 Put_Line ("BR ("
38 & BR'Image
39 & ") is in the "
40 & BR_From'Image
41 & " .. "
42 & BR_To'Image
43 & " range");

(continues on next page)

7.5. Big Numbers 315

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
44 end if;
45

46 end Show_Big_Numbers_In_Range;

Code block metadata

Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Numbers_In_Range
MD5: 9c85e8374db1095142260f45c4c4e7e1

Runtime output

BI (1023) is in the 0 .. 1024 range
BR (1023.900) is in the 0.000 .. 1024.000 range

In this example, we call the In_Range function to check whether the big integer number
(BI) and the big real number (BR) are in the range between 0 and 1024.

316 Chapter 7. Numerics

Part II

Control Flow

317

CHAPTER

EIGHT

EXPRESSIONS

8.1 Expressions: Definition

According to the Ada Reference Manual, an expression "is a formula that defines the com-
putation or retrieval of a value." Also, when an expression is evaluated, the computed or
retrieved value always has an associated type known at compile-time.
Even though the definition above is very simple, Ada expressions are actually very flexible
— and they can also be very complex. In fact, if you read the corresponding section116
of the Ada Reference Manual, you'll quickly discover that they include elements such as
relations, membership choices, terms and primaries. Some of these are classic elements of
expressions in programming languages, although some of their forms are unique to Ada. In
this section, we present examples of just some of these elements. For a complete overview,
please refer to the Reference Manual.

In the Ada Reference Manual
• 4.4 Expressions117

8.1.1 Relations and simple expressions

Expressions usually consist of relations, which in turn consist of simple expressions. (There
are more details to this, but we'll keep it simple for the moment.) Let's see a code example
with a few expressions, which we dissect into the corresponding grammatical elements
(we're going to discuss them later):

Listing 1: show_expression_elements.adb
1 procedure Show_Expression_Elements is
2 type Mode is (Off, A, B, C, D);
3

4 pragma Unreferenced (B, C, D);
5

6 subtype Active_Mode is Mode
7 range Mode'Succ (Off) .. Mode'Last;
8

9 M1, M2 : Mode;
10 Dummy : Boolean;
11 begin
12 M1 := A;
13

(continues on next page)
116 http://www.ada-auth.org/standards/22rm/html/RM-4-4.html
117 http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

319

http://www.ada-auth.org/standards/22rm/html/RM-4-4.html
http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14 Dummy :=
15 M1 in Active_Mode
16 and then M2 in Off | A;
17 --
18 -- ^^^^^^^^^^^^^^^^^ relation
19 --
20 -- ^^^^^^^^^^^^^^ relation
21 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22 -- expression
23

24 Dummy :=
25 M1 in Active_Mode;
26 -- ^^ name
27 -- ^^ primary
28 -- ^^ factor
29 -- ^^ term
30 -- ^^ simple expression
31 --
32 -- ^^^^^^^^^^^ membership choice
33 -- ^^^^^^^^^^^ membership choice list
34 --
35 -- ^^^^^^^^^^^^^^^^^ relation
36 -- ^^^^^^^^^^^^^^^^^ expression
37

38 Dummy :=
39 M2 in Off | A;
40 -- ^^ name
41 -- ^^ primary
42 -- ^^ factor
43 -- ^^ term
44 -- ^^ simple expression
45 --
46 -- ^^^ membership choice
47 -- ^ membership choice
48 -- ^^^^^^^ membership choice list
49 --
50 -- ^^^^^^^^^^^^^ relation
51 -- ^^^^^^^^^^^^^ expression
52

53 end Show_Expression_Elements;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.
↪Expression_Elements

MD5: a22e6f2d2bc181ce77097a1de204eb62

Build output

show_expression_elements.adb:9:08: warning: variable "M2" is read but never␣
↪assigned [-gnatwv]

In this code example, we see three expressions. As we mentioned earlier, every expression
has a type; here, the type of each expression is Boolean.
The first expression (M1 in Active_Mode and then M2 in Off | A) consists of two
relations: M1 in Active_Mode and M2 in Off | A. Let's discuss some of the details.
The M1 in Active_Mode relation consists of the simple expression M1 and the membership
choice list Active_Mode. (Here, the in keyword is part of the relation definition.) Also, as
we see in the comments of the source code, the simple expression M1 is, at the same time,
a term, a factor, a primary and a name.

320 Chapter 8. Expressions

Advanced Journey With Ada: A Flight In Progress

Let's briefly talk about this chain of syntactic elements for simple expressions. Very roughly
said, this is how we can break up simple expressions:
• a simple expression consists of terms;
• a term consists of factors;
• a factor consists of primaries;
• a primary can be one of those:

– a numeric literal;
– null;
– a string literal;
– an aggregate (page 167);
– a name;
– an allocator (like new Integer);
– a parenthesized expression (page 323);
– a conditional expression (page 326);
– a quantified expression (page 328);
– a declare expression (page 332).

For further reading...
The definition of simple expressions we've just seen is very simplified. In actuality, these
are the grammatical elements specified in the Ada Reference Manual:

simple_expression ::=
[unary_adding_operator] term {binary_adding_operator term}

term ::= factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

primary ::=
numeric_literal | null | string_literal | aggregate

| name | allocator | (expression)
| (conditional_expression) | (quantified_expression)
| (declare_expression)

Later on in this chapter, we discuss conditional expressions (page 326), quantified expres-
sions (page 328) and declare expressions (page 332) in more details.
In the relation M2 in Off | A from the code example, Off | A is a membership choice
list, and Off and A are membership choices.

For further reading...
Relations can actually be much more complicated than the one we just saw. In fact, this is
the definition from the Ada Reference Manual:

expression ::=
relation {and relation}

| relation {and then relation}
| relation {or relation}
| relation {or else relation}
| relation {xor relation}

(continues on next page)

8.1. Expressions: Definition 321

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)

relation ::=
simple_expression

[relational_operator simple_expression]
| simple_expression [not] in

membership_choice_list
| raise_expression

Again, for more details, please refer to the section on expressions118 of the Ada Reference
Manual.

In the Ada Reference Manual
• 4.4 Expressions119

• 4.5.2 Relational Operators and Membership Tests120

8.1.2 Numeric expressions

The expressions we've seen so far had the Boolean type. Although much of the grammar
described in the Manual exists exclusively for Boolean operations, we can also write numeric
expressions such as the following one:

Listing 2: show_numeric_expressions.adb
1 procedure Show_Numeric_Expressions is
2 C1 : constant Integer := 5;
3 Dummy : Integer;
4 begin
5 Dummy :=
6 -2 ** 4 + 3 * C1 ** 8;
7 -- ^ numeric literal
8 -- ^ primary
9 -- ^^ name
10 -- ^^ primary
11 -- ^^^^^^^ factor
12 -- ^ multiplying operator
13 -- ^ numeric literal
14 -- ^ primary
15 -- ^ factor
16 -- ^^^^^^^^^^^ term
17 --
18 -- ^ numeric literal
19 -- ^ primary
20 -- ^ numeric literal
21 -- ^ primary
22 -- ^^^^^^ factor
23 -- ^^^^^^ term
24 -- ^ binary adding operator
25 -- ^ unary adding operator
26 --
27 -- ^^^^^^^^^^^^^^^^^^^^^^ simple expression
28 --

(continues on next page)
118 http://www.ada-auth.org/standards/22rm/html/RM-4-4.html
119 http://www.ada-auth.org/standards/22rm/html/RM-4-4.html
120 http://www.ada-auth.org/standards/22rm/html/RM-4-5-2.html

322 Chapter 8. Expressions

http://www.ada-auth.org/standards/22rm/html/RM-4-4.html
http://www.ada-auth.org/standards/22rm/html/RM-4-4.html
http://www.ada-auth.org/standards/22rm/html/RM-4-5-2.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
29 -- ^^^^^^^^^^^^^^^^^^^^^^ expression
30 end Show_Numeric_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.
↪Numeric_Expressions

MD5: a3c902c7aa5b0afe30ae220256c3306a

In this code example, the expression - 2 ** 4 + 3 * C1 ** 8 consists of just a single
simple expression. (Note that simple expressions do not have to be "simple".) This simple
expression consists of two terms: 2 ** 4 and 3 * C1 ** 8. While the 2 ** 4 term is also
a single factor, the 3 * C1 ** 8 term consists of two factors: 3 and C1 ** 8. Both the 2
** 4 and the C1 ** 8 factors consists of two primaries each:
• the 2 ** 4 factor has the primaries 2 and 4,
• the C1 ** 8 factor has the primaries C1 and 8.

In the Ada Reference Manual
• 4.4 Expressions121

8.1.3 Other expressions

Expressions aren't limited to the Boolean type or to numeric types. Indeed, expressions
can be of any type, and the definition of primaries we've seen earlier on already hints in
this direction — as it includes elements such as allocators. Because expressions are very
flexible, covering all possible variations and combinations in this section is out of scope.
Again, please refer to the section on expressions122 of the Ada Reference Manual for further
details.

8.1.4 Parenthesized expression

An interesting aspect of primaries is that, by using parentheses, we can embed an expres-
sion inside another expression. As an example, let's discuss the following expression and
its elements:

Listing 3: show_parenthesized_expressions.adb
1 procedure Show_Parenthesized_Expressions is
2 C1 : constant Integer := 4;
3 C2 : constant Integer := 5;
4

5 Dummy : Integer;
6 begin
7 Dummy :=
8 (2 + C1) * C2;
9 -- ^^ name
10 -- ^^ primary
11 -- ^^ factor
12 -- ^^ term
13 --

(continues on next page)
121 http://www.ada-auth.org/standards/22rm/html/RM-4-4.html
122 http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

8.1. Expressions: Definition 323

http://www.ada-auth.org/standards/22rm/html/RM-4-4.html
http://www.ada-auth.org/standards/22rm/html/RM-4-4.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14 -- ^ numeric literal
15 -- ^ primary
16 -- ^ factor
17 -- ^ term
18 --
19 -- ^ binary adding operator
20 -- ^^^^^^^^ simple expression
21 --
22 -- ^^^^^^^^ expression
23 -- ^^^^^^^^ primary
24 -- ^^^^^^^^ factor
25 --
26 -- ^^ factor
27 -- ^^^^^^^^^^^^^ term
28 --
29 -- ^^^^^^^^^^^^^ simple expression
30 --
31 -- ^^^^^^^^^^^^^ expression
32 end Show_Parenthesized_Expressions;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.
↪Parenthesized_Expressions

MD5: 5871d2b0cd33e4f562b96381e0f0d293

In this example, we first start with the single expression (2 + C1) * C2, which is also a
simple expression consisting of just one term, which consists of two factors: (2 + C1) and
C2. The (2 + C1) factor is also a primary. Now, because of the parentheses, we identify
that the primary (2 + C1) is an expression that is embedded in another expression.

Important
To be fair, the existence of parentheses in a primary could also indicate other kinds of ex-
pressions, such as conditional or quantified expressions. However, differentiating between
them is straightforward, as we'll see later on in this chapter.

We then proceed to parse the (2 + C1) expression, which consists of the terms 2 and C1.
As we've seen in the comments of the code example, each of these terms consists of one
factor, which consists of one primary. In the end, after parsing the primaries, we identify
that 2 is a numeric literal and C1 is a name.
Note that the usage of parentheses might lead to situations where we have expressions in
potentially unsuspected places. For example, consider the following code example:

Listing 4: show_name_in_expression.adb
1 procedure Show_Name_In_Expression is
2 type Mode is (Off, A, B, C, D);
3

4 M1 : Mode;
5 begin
6 M1 := A;
7

8 case M1 is
9 when Off | D =>
10 null;
11 when A | B | C =>
12 M1 := D;

(continues on next page)

324 Chapter 8. Expressions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
13 end case;
14

15 end Show_Name_In_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Name_
↪In_Expression

MD5: ec8fcbc511e6a372da4f0ad99d2619a5

Here, the case statement expects a selecting expression. In this case, M1 is identified as
a name — after being identified as a relation, a simple expression, a term, a factor and a
primary.
However, if we replace case M1 is by case (M1) is, (M1) is identified as a parenthe-
sized expression, not as a name! This parenthesized expression is first parsed and eval-
uated, which might have implications in case statements, as we'll see in another chapter
(page 351).
Let's look at another example, this time with a subprogram call:

Listing 5: increment_by_one.ads
1 procedure Increment_By_One (I : in out Integer);

Listing 6: increment_by_one.adb
1 procedure Increment_By_One (I : in out Integer) is
2 begin
3 I := I + 1;
4 end Increment_By_One;

Listing 7: show_name_in_expression.adb
1 with Increment_By_One;
2

3 procedure Show_Name_In_Expression is
4 V : Integer := 0;
5 begin
6 Increment_By_One ((V));
7 end Show_Name_In_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Name_
↪In_Expression

MD5: 4805df49dc702e5cb365252e58742dd2

Build output

show_name_in_expression.adb:6:23: error: actual for "I" must be a variable
gprbuild: *** compilation phase failed

The Increment_By_One procedure from this example expects a variable as an actual param-
eter because the parameter mode is in out. However, the (V) in the call to the procedure
is interpreted as an expression, so we end up providing a value — the result of the expres-
sion — as the actual parameter instead of the V variable. Naturally, this is a compilation
error. (Of course, writing Increment_By_One (V) fixes the error.)

8.1. Expressions: Definition 325

Advanced Journey With Ada: A Flight In Progress

8.2 Conditional Expressions

As we've seen before, we can write simple expressions such as I = 0 or D.Valid. A
conditional expression, as the name implies, is an expression that contains a condition. This
might be an "if-expression" (in the if ... then ... else form) or a "case-expression" (in
the case ... is when => form).
The Max function in the following code example is an expression function implemented with
a conditional expression — an if-expression, to be more precise:

Listing 8: expr_func.ads
1 package Expr_Func is
2

3 function Max (A, B : Integer) return Integer is
4 (if A >= B then A else B);
5

6 end Expr_Func;

Let's say we have a system with four states Off, On, Waiting, and Invalid. For this system,
we want to implement a function named Toggled that returns the toggled value of a state
S. If the current value of S is either Off or On, the function toggles from Off to On (or from
On to Off). For other values, the state remains unchanged — i.e. the returned value is the
same as the input value. This is the implementation using a conditional expression:

Listing 9: expr_func.ads
1 package Expr_Func is
2

3 type State is (Off, On, Waiting, Invalid);
4

5 function Toggled (S : State) return State is
6 (if S = Off
7 then On
8 elsif S = On
9 then Off
10 else S);
11

12 end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.
↪Conditional_If_Expressions_1

MD5: 7a99711afecc0b481557f9874dfbf4de

As you can see, if-expressions may contain an elsif branch (and therefore be more com-
plicated).
The code above corresponds to this more verbose version:

Listing 10: expr_func.ads
1 package Expr_Func is
2

3 type State is (Off, On, Waiting, Invalid);
4

5 function Toggled (S : State) return State;
6

7 end Expr_Func;

326 Chapter 8. Expressions

Advanced Journey With Ada: A Flight In Progress

Listing 11: expr_func.adb
1 package body Expr_Func is
2

3 function Toggled (S : State) return State is
4 begin
5 if S = Off then
6 return On;
7 elsif S = On then
8 return Off;
9 else
10 return S;
11 end if;
12 end Toggled;
13

14 end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.
↪Conditional_If_Expressions_2

MD5: 9e6cdf53c9c934f37e5717e1d230615a

If we compare the if-block of this code example to the if-expression of the previous example,
we notice that the if-expression is just a simplified version without the return keyword and
the end if;. In fact, converting an if-block to an if-expression is quite straightforward.
We could also replace the if-expression used in the Toggled function above with a case-
expression. For example:

Listing 12: expr_func.ads
1 package Expr_Func is
2

3 type State is (Off, On, Waiting, Invalid);
4

5 function Toggled (S : State) return State is
6 (case S is
7 when Off => On,
8 when On => Off,
9 when others => S);
10

11 end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.
↪Conditional_Case_Expressions_1

MD5: 0dd3a86f0872d1e8c3a81f7a17c44bd5

Note that we use commas in case-expressions to separate the alternatives (the when ex-
pressions). The code above corresponds to this more verbose version:

Listing 13: expr_func.ads
1 package Expr_Func is
2

3 type State is (Off, On, Waiting, Invalid);
4

5 function Toggled (S : State) return State;
6

7 end Expr_Func;

8.2. Conditional Expressions 327

Advanced Journey With Ada: A Flight In Progress

Listing 14: expr_func.adb
1 package body Expr_Func is
2

3 function Toggled (S : State) return State is
4 begin
5 case S is
6 when Off => return On;
7 when On => return Off;
8 when others => return S;
9 end case;
10 end Toggled;
11

12 end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.
↪Conditional_Case_Expressions_2

MD5: db6a0737e3931c83c31f53e4da3d8a2b

If we compare the case block of this code example to the case-expression of the previ-
ous example, we notice that the case-expression is just a simplified version of the case
block without the return keyword and the end case;, and with alternatives separated by
commas instead of semicolons.

In the Ada Reference Manual
• 4.5.7 Conditional Expressions123

8.3 Quantified Expressions

Quantified expressions are for expressions using a quantifier — which can be either all or
some — and a predicate. This kind of expressions let us formalize statements such as:
• "all values of array A must be zero" into for all I in A'Range => A (I) = 0, and
• "at least one value of array A must be zero" into for some I in A'Range => A (I)
= 0.

In the quantified expression for all I in A'Range => A (I) = 0, the quantifier is all
and the predicate is A (I) = 0. In the second expression, the quantifier is some. The result
of a quantified expression is always a Boolean value.
For example, we could use the quantified expressions above and implement these two
functions:
• Is_Zero, which checks whether all components of an array A are zero, and
• Has_Zero, which checks whether array A has at least one component of the array A is
zero.

This is the complete code:
123 http://www.ada-auth.org/standards/22rm/html/RM-4-5-7.html

328 Chapter 8. Expressions

http://www.ada-auth.org/standards/22rm/html/RM-4-5-7.html

Advanced Journey With Ada: A Flight In Progress

Listing 15: int_arrays.ads
1 package Int_Arrays is
2

3 type Integer_Arr is
4 array (Positive range <>) of Integer;
5

6 function Is_Zero (A : Integer_Arr)
7 return Boolean is
8 (for all I in A'Range => A (I) = 0);
9

10 function Has_Zero (A : Integer_Arr)
11 return Boolean is
12 (for some I in A'Range => A (I) = 0);
13

14 procedure Display_Array (A : Integer_Arr;
15 Name : String);
16

17 end Int_Arrays;

Listing 16: int_arrays.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Int_Arrays is
4

5 procedure Display_Array (A : Integer_Arr;
6 Name : String) is
7 begin
8 Put (Name & ": ");
9 for E of A loop
10 Put (E'Image & " ");
11 end loop;
12 New_Line;
13 end Display_Array;
14

15 end Int_Arrays;

Listing 17: test_int_arrays.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Int_Arrays; use Int_Arrays;
4

5 procedure Test_Int_Arrays is
6 A : Integer_Arr := (0, 0, 1);
7 begin
8 Display_Array (A, "A");
9 Put_Line ("Is_Zero: "
10 & Boolean'Image (Is_Zero (A)));
11 Put_Line ("Has_Zero: "
12 & Boolean'Image (Has_Zero (A)));
13

14 A := (0, 0, 0);
15

16 Display_Array (A, "A");
17 Put_Line ("Is_Zero: "
18 & Boolean'Image (Is_Zero (A)));
19 Put_Line ("Has_Zero: "
20 & Boolean'Image (Has_Zero (A)));
21 end Test_Int_Arrays;

8.3. Quantified Expressions 329

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Quantified_Expression.
↪Quantified_Expression_1

MD5: 4bbda8a3830272748500f797f23f76fc

Runtime output

A: 0 0 1
Is_Zero: FALSE
Has_Zero: TRUE
A: 0 0 0
Is_Zero: TRUE
Has_Zero: TRUE

As you might have expected, we can rewrite a quantified expression as a loop in the for
I in A'Range loop if ... return ... form. In the code below, we're implementing
Is_Zero and Has_Zero using loops and conditions instead of quantified expressions:

Listing 18: int_arrays.ads
1 package Int_Arrays is
2

3 type Integer_Arr is
4 array (Positive range <>) of Integer;
5

6 function Is_Zero (A : Integer_Arr)
7 return Boolean;
8

9 function Has_Zero (A : Integer_Arr)
10 return Boolean;
11

12 procedure Display_Array (A : Integer_Arr;
13 Name : String);
14

15 end Int_Arrays;

Listing 19: int_arrays.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Int_Arrays is
4

5 function Is_Zero (A : Integer_Arr)
6 return Boolean is
7 begin
8 for I in A'Range loop
9 if A (I) /= 0 then
10 return False;
11 end if;
12 end loop;
13

14 return True;
15 end Is_Zero;
16

17 function Has_Zero (A : Integer_Arr)
18 return Boolean is
19 begin
20 for I in A'Range loop
21 if A (I) = 0 then
22 return True;
23 end if;

(continues on next page)

330 Chapter 8. Expressions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
24 end loop;
25

26 return False;
27 end Has_Zero;
28

29 procedure Display_Array (A : Integer_Arr;
30 Name : String) is
31 begin
32 Put (Name & ": ");
33 for E of A loop
34 Put (E'Image & " ");
35 end loop;
36 New_Line;
37 end Display_Array;
38

39 end Int_Arrays;

Listing 20: test_int_arrays.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Int_Arrays; use Int_Arrays;
4

5 procedure Test_Int_Arrays is
6 A : Integer_Arr := (0, 0, 1);
7 begin
8 Display_Array (A, "A");
9 Put_Line ("Is_Zero: "
10 & Boolean'Image (Is_Zero (A)));
11 Put_Line ("Has_Zero: "
12 & Boolean'Image (Has_Zero (A)));
13

14 A := (0, 0, 0);
15

16 Display_Array (A, "A");
17 Put_Line ("Is_Zero: "
18 & Boolean'Image (Is_Zero (A)));
19 Put_Line ("Has_Zero: "
20 & Boolean'Image (Has_Zero (A)));
21 end Test_Int_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Quantified_Expression.
↪Quantified_Expression_2

MD5: a957a8fd60e1849248efe1a84eae6afa

Runtime output

A: 0 0 1
Is_Zero: FALSE
Has_Zero: TRUE
A: 0 0 0
Is_Zero: TRUE
Has_Zero: TRUE

So far, we've seen quantified expressions using indices — e.g. for all I in A'Range =>
.... We could avoid indices in quantified expressions by simply using the E of A form. In
this case, we can just write for all E of A => Let's adapt the implementation of
Is_Zero and Has_Zero using this form:

8.3. Quantified Expressions 331

Advanced Journey With Ada: A Flight In Progress

Listing 21: int_arrays.ads
1 package Int_Arrays is
2

3 type Integer_Arr is
4 array (Positive range <>) of Integer;
5

6 function Is_Zero (A : Integer_Arr)
7 return Boolean is
8 (for all E of A => E = 0);
9

10 function Has_Zero (A : Integer_Arr)
11 return Boolean is
12 (for some E of A => E = 0);
13

14 end Int_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Quantified_Expression.
↪Quantified_Expression_3

MD5: 059d12a6529483ebcc5db23dc6262896

Here, we're checking the components E of the array A and comparing them against zero.

In the Ada Reference Manual
• 4.5.8 Quantified Expressions124

8.4 Declare Expressions

So far, we've seen expressions that make use of existing objects declared outside of the
expression. Sometimes, we might want to declare constant objects inside the expression,
so we can use them locally in the expression. Similarly, we might want to rename an
object and use the renamed object in an expression. In those cases, we can use a declare
expression.
A declare expression allows for declaring or renaming objects within an expression:

Listing 22: p.ads
1 pragma Ada_2022;
2

3 package P is
4

5 function Max (A, B : Integer) return Integer is
6 (declare
7 Bigger_A : constant Boolean := (A >= B);
8 begin
9 (if Bigger_A then A else B));
10

11 end P;

Code block metadata

124 http://www.ada-auth.org/standards/22rm/html/RM-4-5-8.html

332 Chapter 8. Expressions

http://www.ada-auth.org/standards/22rm/html/RM-4-5-8.html

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Declare_Expressions.Simple_
↪Declare_Expression

MD5: 5da80e76393645d6eb1cb8cfe88e190a

The declare expression starts with the declare keyword and the usual object declarations,
and it's followed by the begin keyword and the body. In this example, the body of the
declare expression is a conditional expression.
Of course, the code above isn't really useful, so let's look at a more complete example:

Listing 23: integer_arrays.ads
1 pragma Ada_2022;
2

3 package Integer_Arrays is
4

5 type Integer_Array is
6 array (Positive range <>) of Integer;
7

8 function Sum (Arr : Integer_Array)
9 return Integer;
10

11 --
12 -- Expression function using
13 -- declare expression:
14 --
15 function Avg (Arr : Integer_Array)
16 return Float is
17 (declare
18 A : Integer_Array renames Arr;
19 S : constant Float := Float (Sum (A));
20 L : constant Float := Float (A'Length);
21 begin
22 S / L);
23

24 end Integer_Arrays;

Listing 24: integer_arrays.adb
1 package body Integer_Arrays is
2

3 function Sum (Arr : Integer_Array)
4 return Integer is
5 begin
6 return Acc : Integer := 0 do
7 for V of Arr loop
8 Acc := Acc + V;
9 end loop;
10 end return;
11 end Sum;
12

13 end Integer_Arrays;

Listing 25: show_integer_arrays.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 with Integer_Arrays; use Integer_Arrays;
6

(continues on next page)

8.4. Declare Expressions 333

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 procedure Show_Integer_Arrays is
8 Arr : constant Integer_Array := [1, 2, 3];
9 begin
10 Put_Line ("Sum: "
11 & Sum (Arr)'Image);
12 Put_Line ("Avg: "
13 & Avg (Arr)'Image);
14 end Show_Integer_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Declare_Expressions.Integer_
↪Arrays

MD5: 8e96d49b1676f0aaf95437e271069690

Runtime output

Sum: 6
Avg: 2.00000E+00

In this example, the Avg function is implemented using a declare expression. In this ex-
pression, A renames the Arr array, and S is a constant initialized with the value returned
by the Sum function.

In the Ada Reference Manual
• 4.5.9 Declare Expressions125

8.4.1 Restrictions in the declarative part

The declarative part of a declare expression is more restricted than the declarative part of
a subprogram or declare block. In fact, we cannot:
• declare variables;
• declare constants of limited types;
• rename an object of limited type that is constructed within the declarative part;
• declare aliased constants;
• declare constants that make use of the Access or Unchecked_Access attributes in the
initialization;

• declare constants of anonymous access type.
Let's see some examples of erroneous declarations:

Listing 26: integer_arrays.ads
1 pragma Ada_2022;
2

3 package Integer_Arrays is
4

5 type Integer_Array is
6 array (Positive range <>) of Integer;
7

8 type Integer_Sum is limited private;
(continues on next page)

125 http://www.ada-auth.org/standards/22rm/html/RM-4-5-9.html

334 Chapter 8. Expressions

http://www.ada-auth.org/standards/22rm/html/RM-4-5-9.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9

10 type Const_Integer_Access is
11 access constant Integer;
12

13 function Sum (Arr : Integer_Array)
14 return Integer;
15

16 function Sum (Arr : Integer_Array)
17 return Integer_Sum;
18

19 --
20 -- Expression function using
21 -- declare expression:
22 --
23 function Avg (Arr : Integer_Array)
24 return Float is
25 (declare
26 A : Integer_Array renames Arr;
27

28 S1 : aliased constant Integer := Sum (A);
29 -- ERROR: aliased constant
30

31 S : Float := Float (S1);
32 L : Float := Float (A'Length);
33 -- ERROR: declaring variables
34

35 S2 : constant Integer_Sum := Sum (A);
36 -- ERROR: declaring constant of
37 -- limited type
38

39 A1 : Const_Integer_Access :=
40 S1'Unchecked_Access;
41 -- ERROR: using 'Unchecked_Access
42 -- attribute
43

44 A2 : access Integer := null;
45 -- ERROR: declaring object of
46 -- anonymous access type
47 begin
48 S / L);
49

50 private
51

52 type Integer_Sum is new Integer;
53

54 end Integer_Arrays;

Listing 27: integer_arrays.adb
1 package body Integer_Arrays is
2

3 function Sum (Arr : Integer_Array)
4 return Integer is
5 begin
6 return Acc : Integer := 0 do
7 for V of Arr loop
8 Acc := Acc + V;
9 end loop;
10 end return;
11 end Sum;
12

(continues on next page)

8.4. Declare Expressions 335

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
13 function Sum (Arr : Integer_Array)
14 return Integer_Sum is
15 (Integer_Sum (Integer'(Sum (Arr))));
16

17 end Integer_Arrays;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Declare_Expressions.Integer_
↪Arrays_Error

MD5: e1f72f817baea87f66fb34b6aa8d1949

Build output

integer_arrays.ads:28:10: error: "aliased" not allowed in declare_expression
integer_arrays.ads:31:10: error: object renaming or constant declaration expected
integer_arrays.ads:32:10: error: object renaming or constant declaration expected
integer_arrays.ads:35:10: error: object renaming or constant declaration expected
integer_arrays.ads:40:19: error: "Unchecked_Access" attribute cannot occur in a␣

↪declare_expression
integer_arrays.ads:44:15: error: anonymous access type not allowed in declare_

↪expression
gprbuild: *** compilation phase failed

In this version of the Avg function, we see many errors in the declarative part of the declare
expression. If we convert the declare expression into an actual function implementation,
however, those declarations won't trigger compilation errors. (Feel free to try this out!)

8.5 Reduction Expressions

Note: This feature was introduced in Ada 2022.

A reduction expression reduces a list of values into a single value. For example, we can
reduce the list [2, 3, 4] to a single value:
• by adding the values of the list: 2 + 3 + 4 = 9, or
• by multiplying the values of the list: 2 * 3 * 4 = 24.

We write a reduction expression by using the Reduce attribute and providing the reducer
and its initial value:
• the reducer is the operator (e.g.: + or *) that we use to combine the values of the list;
• the initial value is the value that we use before all other values of the list.

For example, if we use + as the operator and 0 an the initial value, we get the reduction
expression: 0 + 2 + 3 + 4 = 9. This can be implemented using an array:

Listing 28: show_reduction_expression.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Reduction_Expression is
4 A : array (1 .. 3) of Integer;
5 I : Integer;
6 begin
7 A := [2, 3, 4];

(continues on next page)

336 Chapter 8. Expressions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 I := A'Reduce ("+", 0);
9

10 Put_Line ("A = "
11 & A'Image);
12 Put_Line ("I = "
13 & I'Image);
14 end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.
↪Simple_Reduction_Expression

MD5: 1a0164b3c4768125c8dbbe8a0f4955a1

Runtime output

A =
[2, 3, 4]
I = 9

Here, we have the array A with a list of values. The A'Reduce ("+", 0) expression reduces
the list of values of A into a single value — in this case, an integer value that is stored in I.
This statement is equivalent to:

I := 0;
for E of A loop

I := I + E;
end loop;

Naturally, we can reduce the array using the * operator:

Listing 29: show_reduction_expression.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Reduction_Expression is
4 A : array (1 .. 3) of Integer;
5 I : Integer;
6 begin
7 A := [2, 3, 4];
8 I := A'Reduce ("*", 1);
9

10 Put_Line ("A = "
11 & A'Image);
12 Put_Line ("I = "
13 & I'Image);
14 end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.
↪Simple_Reduction_Expression

MD5: 415b1ee8b21cca6d2438a34c88e7e2df

Runtime output

A =
[2, 3, 4]
I = 24

In this example, we call A'Reduce ("*", 1) to reduce the list. (Note that we use an

8.5. Reduction Expressions 337

Advanced Journey With Ada: A Flight In Progress

initial value of one because it is the identity element126 of a multiplication, so the complete
operation is: 1 * 2 * 3 * 4 = 24.)

In the Ada Reference Manual
• Reduction Expressions127

8.5.1 Value sequences

In addition to arrays, we can apply reduction expression to value sequences, which consist
of an iterated element association — for example, [for I in 1 .. 3 => I + 1]. We can
simply append the reduction expression to a value sequence:

Listing 30: show_reduction_expression.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Reduction_Expression is
4 I : Integer;
5 begin
6 I := [for I in 1 .. 3 =>
7 I + 1]'Reduce ("+", 0);
8 Put_Line ("I = "
9 & I'Image);
10

11 I := [for I in 1 .. 3 =>
12 I + 1]'Reduce ("*", 1);
13 Put_Line ("I = "
14 & I'Image);
15 end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.
↪Reduction_Expression_Value_Sequences

MD5: e714f69700e3f0387314ee0e531620c4

Runtime output

I = 9
I = 24

In this example, we create the value sequence [for I in 1 .. 3 => I + 1] and reduce
it using the + and * operators. (Note that the operations in this example have the same
results as in the previous examples using arrays.)
126 https://en.wikipedia.org/wiki/Identity_element
127 http://www.ada-auth.org/standards/22rm/html/RM-4-5-10.html

338 Chapter 8. Expressions

https://en.wikipedia.org/wiki/Identity_element
http://www.ada-auth.org/standards/22rm/html/RM-4-5-10.html

Advanced Journey With Ada: A Flight In Progress

8.5.2 Custom reducers

In the previous examples, we've used standard operators such as + and * as the reducer. We
can, however, write our own reducers and pass them to the Reduce attribute. For example:

Listing 31: show_reduction_expression.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Reduction_Expression is
4 type Integer_Array is
5 array (Positive range <>) of Integer;
6

7 A : Integer_Array (1 .. 3);
8 I : Long_Integer;
9

10 procedure Accumulate
11 (Accumulator : in out Long_Integer;
12 Value : Integer) is
13 begin
14 Accumulator := Accumulator
15 + Long_Integer (Value);
16 end Accumulate;
17

18 begin
19 A := [2, 3, 4];
20 I := A'Reduce (Accumulate, 0);
21

22 Put_Line ("A = "
23 & A'Image);
24 Put_Line ("I = "
25 & I'Image);
26 end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.
↪Custom_Reducer_Procedure

MD5: 3190a1ff6a8027268ca96a75cf214714

Runtime output

A =
[2, 3, 4]
I = 9

In this example, we implement the Accumulate procedure as our reducer, which is called to
accumulate the individual elements (integer values) of the list. We pass this procedure to
the Reduce attribute in the I := A'Reduce (Accumulate, 0) statement, which is equivalent
to:

I := 0;
for E of A loop

Accumulate (I, E);
end loop;

A custom reducer must have the following parameters:
1. The accumulator parameter, which stores the interim result — and the final result as
well, once all elements of the list have been processed.

2. The value parameter, which is a single element from the list.

8.5. Reduction Expressions 339

Advanced Journey With Ada: A Flight In Progress

Note that the accumulator type doesn't need to match the type of the individual compo-
nents. In this example, we're using Integer as the component type, while the accumulator
type is Long_Integer. (For this kind of reducers, using Long_Integer instead of Inte-
ger for the accumulator type makes lots of sense due to the risk of triggering overflows
while the reducer is accumulating values — e.g. when accumulating a long list with larger
numbers.)
In the example above, we've implemented the reducer as a procedure. However, we can
also implement it as a function. In this case, the accumulated value is returned by the
function:

Listing 32: show_reduction_expression.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Reduction_Expression is
4 type Integer_Array is
5 array (Positive range <>) of Integer;
6

7 A : Integer_Array (1 .. 3);
8 I : Long_Integer;
9

10 function Accumulate
11 (Accumulator : Long_Integer;
12 Value : Integer)
13 return Long_Integer is
14 begin
15 return Accumulator + Long_Integer (Value);
16 end Accumulate;
17

18 begin
19 A := [2, 3, 4];
20 I := A'Reduce (Accumulate, 0);
21

22 Put_Line ("A = "
23 & A'Image);
24 Put_Line ("I = "
25 & I'Image);
26 end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.
↪Custom_Reducer_Function

MD5: ee5d5bb2b151ef7552d752c7e452127d

Runtime output

A =
[2, 3, 4]
I = 9

In this example, we converted the Accumulate procedure into a function (while the core
implementation is essentially the same).
Note that the reduction expression remains the same, independently of whether we're us-
ing a procedure or a function as the reducer. Therefore, the statement with the reduc-
tion expression in this example is the same as in the previous example: I := A'Reduce
(Accumulate, 0);. Now that we're using a function, this statement is equivalent to:

I := 0;
for E of A loop

(continues on next page)

340 Chapter 8. Expressions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
I := Accumulate (I, E);

end loop;

8.5.3 Other accumulator types

The accumulator type isn't restricted to scalars: in fact, we could use record types as well.
For example:

Listing 33: show_reduction_expression.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Reduction_Expression is
4 type Integer_Array is
5 array (Positive range <>) of Integer;
6

7 A : Integer_Array (1 .. 3);
8

9 type Integer_Accumulator is record
10 Value : Long_Integer;
11 Count : Integer;
12 end record;
13

14 function Accumulate
15 (Accumulator : Integer_Accumulator;
16 Value : Integer)
17 return Integer_Accumulator is
18 begin
19 return (Value => Accumulator.Value
20 + Long_Integer (Value),
21 Count => Accumulator.Count + 1);
22 end Accumulate;
23

24 function Zero return Integer_Accumulator is
25 (Value => 0, Count => 0);
26

27 function Average (Acc : Integer_Accumulator)
28 return Float is
29 (Float (Acc.Value) / Float (Acc.Count));
30

31 Acc : Integer_Accumulator;
32

33 begin
34 A := [2, 3, 4];
35

36 Acc := A'Reduce (Accumulate, Zero);
37 Put_Line ("Acc = "
38 & Acc'Image);
39 Put_Line ("Avg = "
40 & Average (Acc)'Image);
41 end Show_Reduction_Expression;

In this example, we're using the Integer_Accumulator record type in our reducer — the
Accumulate function. In this case, we're not only accumulating the values, but also counting
the number of elements in the list. (Of course, we could have used A'Length for that as
well.)
Also, we're not limited to numeric types: we can also create a reducer using strings as the
accumulator type. In fact, we can display the initial value and the elements of the list by
using unbounded strings:

8.5. Reduction Expressions 341

Advanced Journey With Ada: A Flight In Progress

Listing 34: show_reduction_expression.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Strings.Unbounded;
4 use Ada.Strings.Unbounded;
5

6 procedure Show_Reduction_Expression is
7 type Integer_Array is
8 array (Positive range <>) of Integer;
9

10 A : Integer_Array (1 .. 3);
11

12 function Unbounded_String_List
13 (Accumulator : Unbounded_String;
14 Value : Integer)
15 return Unbounded_String is
16 begin
17 return Accumulator
18 & ", " & Value'Image;
19 end Unbounded_String_List;
20

21 begin
22 A := [2, 3, 4];
23

24 Put_Line ("A = "
25 & A'Image);
26 Put_Line ("L = "
27 & To_String (A'Reduce
28 (Unbounded_String_List,
29 To_Unbounded_String ("0"))));
30 end Show_Reduction_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.
↪Reducer_String_Accumulator

MD5: 43c54e93e404a235c8721db7c691a864

Runtime output

A =
[2, 3, 4]
L = 0, 2, 3, 4

In this case, the "accumulator" is concatenating the initial value and individual values of
the list into a string.

342 Chapter 8. Expressions

CHAPTER

NINE

STATEMENTS

9.1 Simple and Compound Statements

We can classify statements as either simple or compound. Simple statements don't contain
other statements; think of them as "atomic units" that cannot be further divided. Compound
statements, on the other hand, may contain other — simple or compound — statements.
Here are some examples from each category:

Category Examples
Simple statements Null statement, assignment, subprogram call, etc.
Compound statements If statement, case statement, loop statement, block statement

In the Ada Reference Manual
• 5.1 Simple and Compound Statements - Sequences of Statements128

9.2 Labels

We can use labels to identify statements in the code. They have the following format:
<<Some_Label>>. We write them right before the statement we want to apply it to. Let's
see an example of labels with simple statements:

Listing 1: show_statement_identifier.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Statement_Identifier is
4 pragma Warnings (Off, "is not referenced");
5 begin
6 <<Show_Hello>> Put_Line ("Hello World!");
7 <<Show_Test>> Put_Line ("This is a test.");
8

9 <<Show_Separator>>
10 <<Show_Block_Separator>>
11 Put_Line ("====================");
12 end Show_Statement_Identifier;

Code block metadata
128 http://www.ada-auth.org/standards/22rm/html/RM-5-1.html

343

http://www.ada-auth.org/standards/22rm/html/RM-5-1.html

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Simple_Labels
MD5: 820f5963b476af5c04314fd4373d2286

Runtime output

Hello World!
This is a test.
====================

Here, we're labeling each statement. For example, we use the Show_Hello label to identify
the Put_Line ("Hello World!"); statement. Note that we can use multiple labels a single
statement. In this code example, we use the Show_Separator and Show_Block_Separator
labels for the same statement.

In the Ada Reference Manual
• 5.1 Simple and Compound Statements - Sequences of Statements129

9.2.1 Labels and goto statements

Labels are mainly used in combination with goto statements. (Although pretty much un-
common, we could potentially use labels to indicate important statements in the code.)
Let's see an example where we use a goto label; statement to jump to a specific label:

Listing 2: show_cleanup.adb
1 procedure Show_Cleanup is
2 pragma Warnings (Off, "always false");
3

4 Some_Error : Boolean;
5 begin
6 Some_Error := False;
7

8 if Some_Error then
9 goto Cleanup;
10 end if;
11

12 <<Cleanup>> null;
13 end Show_Cleanup;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Label_Goto
MD5: 0ce06582bbefae818d4da3b7d2d3436b

Here, we transfer the control to the cleanup statement as soon as an error is detected.
129 http://www.ada-auth.org/standards/22rm/html/RM-5-1.html

344 Chapter 9. Statements

http://www.ada-auth.org/standards/22rm/html/RM-5-1.html

Advanced Journey With Ada: A Flight In Progress

9.2.2 Use-case: Continue

Another use-case is that of a Continue label in a loop. Consider a loop where we want to
skip further processing depending on a condition:

Listing 3: show_continue.adb
1 procedure Show_Continue is
2 function Is_Further_Processing_Needed
3 (Dummy : Integer)
4 return Boolean
5 is
6 begin
7 -- Dummy implementation
8 return False;
9 end Is_Further_Processing_Needed;
10

11 A : constant array (1 .. 10) of Integer :=
12 (others => 0);
13 begin
14 for E of A loop
15

16 -- Some stuff here...
17

18 if Is_Further_Processing_Needed (E) then
19

20 -- Do more stuff...
21

22 null;
23 end if;
24 end loop;
25 end Show_Continue;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Label_Continue_1
MD5: 115eeaf08d5fb072d707d6325fe9cfd0

In this example, we call the Is_Further_Processing_Needed (E) function to check
whether further processing is needed or not. If it's needed, we continue processing in
the if statement. We could simplify this code by just using a Continue label at the end of
the loop and a goto statement:

Listing 4: show_continue.adb
1 procedure Show_Continue is
2 function Is_Further_Processing_Needed
3 (Dummy : Integer)
4 return Boolean
5 is
6 begin
7 -- Dummy implementation
8 return False;
9 end Is_Further_Processing_Needed;
10

11 A : constant array (1 .. 10) of Integer :=
12 (others => 0);
13 begin
14 for E of A loop
15

16 -- Some stuff here...
17

(continues on next page)

9.2. Labels 345

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
18 if not Is_Further_Processing_Needed (E) then
19 goto Continue;
20 end if;
21

22 -- Do more stuff...
23

24 <<Continue>>
25 end loop;
26 end Show_Continue;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Label_Continue_2
MD5: 260b52ead782adf76eee5cf3c4e8332b

Here, we use a Continue label at the end of the loop and jump to it in the case that no
further processing is needed. Note that, in this example, we don't have a statement after
the Continue label because the label itself is at the end of a statement — to be more
specific, at the end of the loop statement. In such cases, there's an implicit null statement.

Historically
Since Ada 2012, we can simply write:

loop
-- Some statements...

<<Continue>>
end loop;

If a label is used at the end of a sequence of statements, a null statement is implied.
In previous versions of Ada, however, that is not the case. Therefore, when using those
versions of the language, we must write at least a null statement:

loop
-- Some statements...

<<Continue>> null;
end loop;

9.2.3 Labels and compound statements

We can use labels with compound statements as well. For example, we can label a for
loop:

Listing 5: show_statement_identifier.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Statement_Identifier is
4 pragma Warnings (Off, "is not referenced");
5

6 Arr : constant array (1 .. 5) of Integer :=
7 (1, 4, 6, 42, 49);
8 Found : Boolean := False;
9 begin
10 <<Find_42>> for E of Arr loop

(continues on next page)

346 Chapter 9. Statements

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
11 if E = 42 then
12 Found := True;
13 exit;
14 end if;
15 end loop;
16

17 Put_Line ("Found: " & Found'Image);
18 end Show_Statement_Identifier;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Loop_Label
MD5: 5ca80b5a379ba0b08ccfaa4c6eab64d5

Runtime output

Found: TRUE

For further reading...
In addition to labels, loops and block statements allow us to use a statement identifier. In
simple terms, instead of writing <<Some_Label>>, we write Some_Label :.
We could rewrite the previous code example using a loop statement identifier:

Listing 6: show_statement_identifier.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Statement_Identifier is
4 Arr : constant array (1 .. 5) of Integer :=
5 (1, 4, 6, 42, 49);
6 Found : Boolean := False;
7 begin
8 Find_42 : for E of Arr loop
9 if E = 42 then
10 Found := True;
11 exit Find_42;
12 end if;
13 end loop Find_42;
14

15 Put_Line ("Found: " & Found'Image);
16 end Show_Statement_Identifier;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Loop_Statement_
↪Identifier

MD5: e52cb5eea9427addf3cabe64dd73bc2d

Runtime output

Found: TRUE

Loop statement and block statement identifiers are generally preferred over labels. Later
in this chapter, we discuss this topic in more detail.

9.2. Labels 347

Advanced Journey With Ada: A Flight In Progress

9.3 Exit loop statement

We've introduced bare loops back in the Introduction to Ada course130. In this section, we'll
briefly discuss loop names and exit loop statements.
A bare loop has this form:

loop
exit when Some_Condition;

end loop;

We can name a loop by using a loop statement identifier:

Loop_Name:
loop

exit Loop_Name when Some_Condition;
end loop Loop_Name;

In this case, we have to use the loop's name after end loop. Also, having a name for a loop
allows us to indicate which loop we're exiting from: exit Loop_Name when.
Let's see a complete example:

Listing 7: show_vector_cursor_iteration.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Containers.Vectors;
3

4 procedure Show_Vector_Cursor_Iteration is
5

6 package Integer_Vectors is new
7 Ada.Containers.Vectors
8 (Index_Type => Positive,
9 Element_Type => Integer);
10

11 use Integer_Vectors;
12

13 V : constant Vector := 20 & 10 & 0 & 13;
14 C : Cursor;
15 begin
16 C := V.First;
17 Put_Line ("Vector elements are: ");
18

19 Show_Elements :
20 loop
21 exit Show_Elements when C = No_Element;
22

23 Put_Line ("Element: "
24 & Integer'Image (V (C)));
25 C := Next (C);
26 end loop Show_Elements;
27

28 end Show_Vector_Cursor_Iteration;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Exit_Loop_Statement.Exit_
↪Named_Loop

MD5: b77353f6ed98f8ddb32c73c47d249020

Runtime output
130 https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-bare-loops

348 Chapter 9. Statements

https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-bare-loops

Advanced Journey With Ada: A Flight In Progress

Vector elements are:
Element: 20
Element: 10
Element: 0
Element: 13

Naming a loop is particularly useful when we have nested loops and we want to exit directly
from the inner loop:

Listing 8: show_inner_loop_exit.adb
1 procedure Show_Inner_Loop_Exit is
2 pragma Warnings (Off);
3

4 Cond : Boolean := True;
5 begin
6

7 Outer_Processing : loop
8

9 Inner_Processing : loop
10 exit Outer_Processing when Cond;
11 end loop Inner_Processing;
12

13 end loop Outer_Processing;
14

15 end Show_Inner_Loop_Exit;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Exit_Loop_Statement.Inner_
↪Loop_Exit

MD5: b5c7434f1bf23c2cb8f81e4c13a31386

Here, we indicate that we exit from the Outer_Processing loop in case a condition Cond is
met, even if we're actually within the inner loop.

In the Ada Reference Manual
• 5.7 Exit Statements131

9.4 If, case and loop statements

In the Introduction to Ada course, we talked about if statements132, loop statements133, and
case statements134. This is a very simple code example with these statements:

Listing 9: show_if_case_loop_statements.adb
1 procedure Show_If_Case_Loop_Statements is
2 pragma Warnings (Off);
3

4 Reset : Boolean := False;
(continues on next page)

131 http://www.ada-auth.org/standards/22rm/html/RM-5-7.html
132 https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-if-statement
133 https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#
intro-ada-loop-statement
134 https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#
intro-ada-case-statement

9.4. If, case and loop statements 349

http://www.ada-auth.org/standards/22rm/html/RM-5-7.html
https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-if-statement
https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-loop-statement
https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-case-statement

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 Increment : Boolean := True;
6 Val : Integer := 0;
7 begin
8 --
9 -- If statement
10 --
11 if Reset then
12 Val := 0;
13 elsif Increment then
14 Val := Val + 1;
15 else
16 Val := Val - 1;
17 end if;
18

19 --
20 -- Loop statement
21 --
22 for I in 1 .. 5 loop
23 Val := Val * 2 - I;
24 end loop;
25

26 --
27 -- Case statement
28 --
29 case Val is
30 when 0 .. 5 =>
31 null;
32 when others =>
33 Val := 5;
34 end case;
35

36 end Show_If_Case_Loop_Statements;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.If_Case_Loop_Statements.
↪Example

MD5: 4fdc7f00e5218ed59d9eb050339567f1

In this section, we'll look into a more advanced detail about the case statement.

In the Ada Reference Manual
• 5.3 If Statements135

• 5.4 Case Statements136

• 5.5 Loop Statements137

135 http://www.ada-auth.org/standards/22rm/html/RM-5-3.html
136 http://www.ada-auth.org/standards/22rm/html/RM-5-4.html
137 http://www.ada-auth.org/standards/22rm/html/RM-5-5.html

350 Chapter 9. Statements

http://www.ada-auth.org/standards/22rm/html/RM-5-3.html
http://www.ada-auth.org/standards/22rm/html/RM-5-4.html
http://www.ada-auth.org/standards/22rm/html/RM-5-5.html

Advanced Journey With Ada: A Flight In Progress

9.4.1 Case statements and expressions

As we know, the case statement has a choice expression (case Choice_Expression is),
which is expected to be a discrete type. Also, this expression can be a function call or a
type conversion, for example — in additional to being a variable or a constant.
As we discussed earlier on (page 323), if we use parentheses, the contents between those
parentheses is parsed as an expression. In the context of case statements, the expression
is first evaluated before being used as a choice expression. Consider the following code
example:

Listing 10: scales.ads
1 package Scales is
2

3 type Satisfaction_Scale is (Very_Dissatisfied,
4 Dissatisfied,
5 OK,
6 Satisfied,
7 Very_Satisfied);
8

9 type Scale is range 0 .. 10;
10

11 function To_Satisfaction_Scale
12 (S : Scale)
13 return Satisfaction_Scale;
14

15 end Scales;

Listing 11: scales.adb
1 package body Scales is
2

3 function To_Satisfaction_Scale
4 (S : Scale)
5 return Satisfaction_Scale
6 is
7 Satisfaction : Satisfaction_Scale;
8 begin
9 case (S) is
10 when 0 .. 2 =>
11 Satisfaction := Very_Dissatisfied;
12 when 3 .. 4 =>
13 Satisfaction := Dissatisfied;
14 when 5 .. 6 =>
15 Satisfaction := OK;
16 when 7 .. 8 =>
17 Satisfaction := Satisfied;
18 when 9 .. 10 =>
19 Satisfaction := Very_Satisfied;
20 end case;
21

22 return Satisfaction;
23 end To_Satisfaction_Scale;
24

25 end Scales;

Listing 12: show_case_statement_expression.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

(continues on next page)

9.4. If, case and loop statements 351

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 with Scales; use Scales;
4

5 procedure Show_Case_Statement_Expression is
6 Score : constant Scale := 0;
7 begin
8 Put_Line ("Score: "
9 & Scale'Image (Score)
10 & Satisfaction_Scale'Image (
11 To_Satisfaction_Scale (Score)));
12

13 end Show_Case_Statement_Expression;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.If_Case_Loop_Statements.Case_
↪Statement_Expression

MD5: 353ff771291e0c994ec052e818f9720c

Build output

scales.adb:9:07: error: missing case values: -128 .. -1
scales.adb:9:07: error: missing case values: 11 .. 127
gprbuild: *** compilation phase failed

When we try to compile this code example, the compiler complains about missing val-
ues in the To_Satisfaction_Scale function. As we mentioned in the Introduction to Ada
course138, every possible value for the choice expression needs to be covered by a unique
branch of the case statement. In principle, it seems that we're actually covering all possible
values of the Scale type, which ranges from 0 to 10. However, we've written case (S) is
instead of case S is. Because of the parentheses, (S) is evaluated as an expression. In
this case, the expected range of the case statement is not Scale'Range, but the range of
its base type (page 11) Scale'Base'Range.

In other languages
In C, the switch-case statement requires parentheses for the choice expression:

Listing 13: main.c
1

2 #include <stdio.h>
3

4 int main(int argc, const char * argv[])
5 {
6 int s = 0;
7

8 switch (s)
9 {
10 case 0:
11 case 1:
12 printf("Value in the 0 -- 1 range\n");
13 default:
14 printf("Value > 1\n");
15 }
16 }

Code block metadata
138 https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#
intro-ada-case-statement

352 Chapter 9. Statements

https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-case-statement
https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-case-statement

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Control_Flow.Statements.If_Case_Loop_Statements.Case_
↪Statement_C

MD5: 64ef6b15f1bdf14ca9273964ec5e1755

Runtime output

Value in the 0 -- 1 range
Value > 1

In Ada, parentheses aren't expected in the choice expression. Therefore, we shouldn't write
case (S) is in a C-like fashion— unless, of course, we really want to evaluate an expression
in the case statement.

9.5 Block Statements

We've introduced block statements back in the Introduction to Ada course139. They have
this simple form:

Listing 14: show_block_statement.adb
1 procedure Show_Block_Statement is
2 pragma Warnings (Off);
3 begin
4

5 -- BLOCK STARTS HERE:
6 declare
7 I : Integer;
8 begin
9 I := 0;
10 end;
11

12 end Show_Block_Statement;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Block_Statements.Simple_
↪Block_Statement

MD5: 61134b3899620c6d9ed68974fae33b5e

We can use an identifier when writing a block statement. (This is similar to loop statement
identifiers that we discussed in the previous section.) In this example, we implement a
block called Simple_Block:

Listing 15: show_block_statement.adb
1 procedure Show_Block_Statement is
2 pragma Warnings (Off);
3 begin
4

5 Simple_Block : declare
6 I : Integer;
7 begin
8 I := 0;
9 end Simple_Block;

(continues on next page)
139 https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#
intro-ada-block-statement

9.5. Block Statements 353

https://learn.adacore.com/courses/intro-to-ada/chapters/imperative_language.html#intro-ada-block-statement

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10

11 end Show_Block_Statement;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Block_Statements.Block_
↪Statement_Identifier

MD5: b327b7675931d9b994637671c806c7c3

Note that we must write end Simple_Block; when we use the Simple_Block identifier.
Block statement identifiers are useful:
• to indicate the begin and the end of a block — as some blocks might be long or nested
in other blocks;

• to indicate the purpose of the block (i.e. as code documentation).

In the Ada Reference Manual
• 5.6 Block Statements140

9.6 Extended return statement

A common idiom in Ada is to build up a function result in a local object, and then return that
object:

Listing 16: show_return.adb
1 procedure Show_Return is
2

3 type Array_Of_Natural is
4 array (Positive range <>) of Natural;
5

6 function Sum (A : Array_Of_Natural)
7 return Natural
8 is
9 Result : Natural := 0;
10 begin
11 for Index in A'Range loop
12 Result := Result + A (Index);
13 end loop;
14 return Result;
15 end Sum;
16

17 begin
18 null;
19 end Show_Return;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Extended_Return_Statements.
↪Simple_Return

MD5: 16e85a8cba869802f912627c40a64c20

Since Ada 2005, a notation called the extended return statement is available: this allows
you to declare the result object and return it as part of one statement. It looks like this:
140 http://www.ada-auth.org/standards/22rm/html/RM-5-6.html

354 Chapter 9. Statements

http://www.ada-auth.org/standards/22rm/html/RM-5-6.html

Advanced Journey With Ada: A Flight In Progress

Listing 17: show_extended_return.adb
1 procedure Show_Extended_Return is
2

3 type Array_Of_Natural is
4 array (Positive range <>) of Natural;
5

6 function Sum (A : Array_Of_Natural)
7 return Natural
8 is
9 begin
10 return Result : Natural := 0 do
11 for Index in A'Range loop
12 Result := Result + A (Index);
13 end loop;
14 end return;
15 end Sum;
16

17 begin
18 null;
19 end Show_Extended_Return;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Extended_Return_Statements.
↪Extended_Return

MD5: d6d6edaf800a0e346ff8ede13cbbe100

The return statement here creates Result, initializes it to 0, and executes the code between
do and end return. When end return is reached, Result is automatically returned as the
function result.

In the Ada Reference Manual
• 6.5 Return Statements141

9.6.1 Other usages of extended return statements

Note: This section was originally written by Robert A. Duff and published as Gem #10:
Limited Types in Ada 2005142.

While the extended_return_statement was added to the language specifically to support
limited constructor functions (page 707), it comes in handy whenever you want a local
name for the function result:

Listing 18: show_string_construct.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_String_Construct is
4

5 function Make_String
6 (S : String;

(continues on next page)
141 http://www.ada-auth.org/standards/22rm/html/RM-6-5.html
142 https://www.adacore.com/gems/ada-gem-10

9.6. Extended return statement 355

http://www.ada-auth.org/standards/22rm/html/RM-6-5.html
https://www.adacore.com/gems/ada-gem-10
https://www.adacore.com/gems/ada-gem-10

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 Prefix : String;
8 Use_Prefix : Boolean) return String
9 is
10 Length : Natural := S'Length;
11 begin
12 if Use_Prefix then
13 Length := Length + Prefix'Length;
14 end if;
15

16 return Result : String (1 .. Length) do
17

18 -- fill in the characters
19 if Use_Prefix then
20 Result
21 (1 .. Prefix'Length) := Prefix;
22

23 Result
24 (Prefix'Length + 1 .. Length) := S;
25 else
26 Result := S;
27 end if;
28

29 end return;
30 end Make_String;
31

32 S1 : String := "Ada";
33 S2 : String := "Make_With_";
34 begin
35 Put_Line ("No prefix: "
36 & Make_String (S1, S2, False));
37 Put_Line ("With prefix: "
38 & Make_String (S1, S2, True));
39 end Show_String_Construct;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Statements.Extended_Return_Statements.
↪Extended_Return_Other_Usages

MD5: a2b26ceed06a0ab66aff6c2b59c02003

Runtime output

No prefix: Ada
With prefix: Make_With_Ada

In this example, we first calculate the length of the string and store it in Length. We then
use this information to initialize the return object of the Make_String function.

356 Chapter 9. Statements

CHAPTER

TEN

SUBPROGRAMS

10.1 Parameter Modes and Associations

In this section, we discuss some details about parameter modes and associations. First of
all, as we know, parameters can be either formal or actual:
• Formal parameters are the ones we see in a subprogram declaration and implemen-
tation;

• Actual parameters are the ones we see in a subprogram call.
– Note that actual parameters are also called subprogram arguments in other lan-
guages.

We define parameter associations as the connection between an actual parameter in a
subprogram call and its declaration as a formal parameter in a subprogram specification or
body.

In the Ada Reference Manual
• 6.2 Formal Parameter Modes143

• 6.4.1 Parameter Associations144

10.1.1 Formal Parameter Modes

We already discussed formal parameter modes in the Introduction to Ada145 course:

in Parameter can only be read, not written
out Parameter can be written to, then read
in out Parameter can be both read and written

As this topic was already discussed in that course — and we used parameter modes exten-
sively in all code examples from that course —, we won't introduce the topic again here.
Instead, we'll look into some of the more advanced details.
143 http://www.ada-auth.org/standards/22rm/html/RM-6-2.html
144 http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html
145 https://learn.adacore.com/courses/intro-to-ada/chapters/subprograms.html#intro-ada-parameter-modes

357

http://www.ada-auth.org/standards/22rm/html/RM-6-2.html
http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html
https://learn.adacore.com/courses/intro-to-ada/chapters/subprograms.html#intro-ada-parameter-modes

Advanced Journey With Ada: A Flight In Progress

10.1.2 By-copy and by-reference

In the Introduction to Ada146 course, we saw that parametermodes don't correspond directly
to how parameters are actually passed. In fact, an in out parameter could be passed by
copy. For example:

Listing 1: check_param_passing.ads
1 with System;
2

3 procedure Check_Param_Passing
4 (Formal : System.Address;
5 Actual : System.Address);

Listing 2: check_param_passing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System.Address_Image;
3

4 procedure Check_Param_Passing
5 (Formal : System.Address;
6 Actual : System.Address) is
7 begin
8 Put_Line ("Formal parameter at "
9 & System.Address_Image (Formal));
10 Put_Line ("Actual parameter at "
11 & System.Address_Image (Actual));
12 if System.Address_Image (Formal) =
13 System.Address_Image (Actual)
14 then
15 Put_Line
16 ("Parameter is passed by reference.");
17 else
18 Put_Line
19 ("Parameter is passed by copy.");
20 end if;
21 end Check_Param_Passing;

Listing 3: machine_x.ads
1 with System;
2

3 package Machine_X is
4

5 procedure Update_Value
6 (V : in out Integer;
7 AV : System.Address);
8

9 end Machine_X;

Listing 4: machine_x.adb
1 with Check_Param_Passing;
2

3 package body Machine_X is
4

5 procedure Update_Value
6 (V : in out Integer;
7 AV : System.Address) is

(continues on next page)
146 https://learn.adacore.com/courses/intro-to-ada/chapters/subprograms.html#intro-ada-parameter-modes

358 Chapter 10. Subprograms

https://learn.adacore.com/courses/intro-to-ada/chapters/subprograms.html#intro-ada-parameter-modes

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 begin
9 V := V + 1;
10 Check_Param_Passing (Formal => V'Address,
11 Actual => AV);
12 end Update_Value;
13

14 end Machine_X;

Listing 5: show_by_copy_by_ref_params.adb
1 with Machine_X; use Machine_X;
2

3 procedure Show_By_Copy_By_Ref_Params is
4 A : Integer := 5;
5 begin
6 Update_Value (A, A'Address);
7 end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_
↪Associations.By_Copy_By_Ref_Params

MD5: e437d3432703124496f0a217177959eb

Runtime output

Formal parameter at 00007FFFA43D791C
Actual parameter at 00007FFFA43D793C
Parameter is passed by copy.

As we can see by running this example,
• the integer variable A in the Show_By_Copy_By_Ref_Params procedure

and
• the V parameter in the Update_Value procedure

have different addresses, so they are different objects. Therefore, we conclude that this
parameter is being passed by value, even though it has the in out mode. (We talk more
about addresses and the 'Address attribute later on (page 132)).
As we know, when a parameter is passed by copy, it is first copied to a temporary object.
In the case of a parameter with in out mode, the temporary object is copied back to
the original (actual) parameter at the end of the subprogram call. In our example, the
temporary object indicated by V is copied back to A at the end of the call to Update_Value.
In Ada, it's not the parameter mode that determines whether a parameter is passed by
copy or by reference, but rather its type. We can distinguish between three categories:
1. By-copy types;
2. By-reference types;
3. Unspecified types.

Obviously, parameters of by-copy types are passed by copy and parameters of by-reference
type are passed by reference. However, if a category isn't specified — i.e. when the type is
neither a by-copy nor a by-reference type —, the decision is essentially left to the compiler.
As a rule of thumb, we can say that;
• elementary types — and any type that is essentially elementary, such as a private
type whose full view is an elementary type — are passed by copy;

10.1. Parameter Modes and Associations 359

Advanced Journey With Ada: A Flight In Progress

• tagged and explicitly limited types — and other types that are essentially tagged, such
as task types — are passed by reference.

The following table provides more details:

Type category Parameter passing List of types
By copy By copy • Elementary types

• Descendant of a pri-
vate type whose full
type is a by-copy type

By reference By reference • Tagged types
• Task and protected
types

• Explicitly limited
record types

• Composite types
with at least one
subcomponent of a
by-reference type

• Private types whose
full type is a by-
reference type

• Any descendant of
the types mentioned
above

Unspecified Either by copy or by refer-
ence • Any type not men-

tioned above

Note that, for parameters of limited types, only those parameters whose type is explicitly
limited are always passed by reference. We discuss this topic in more details in another
chapter (page 716).
Let's see an example:

Listing 6: machine_x.ads
1 with System;
2

3 package Machine_X is
4

5 type Integer_Array is
6 array (Positive range <>) of Integer;
7

8 type Rec is record
9 A : Integer;
10 end record;
11

12 type Rec_Array is record
13 A : Integer;
14 Arr : Integer_Array (1 .. 100);
15 end record;
16

17 type Tagged_Rec is tagged record
18 A : Integer;

(continues on next page)

360 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
19 end record;
20

21 procedure Update_Value
22 (R : in out Rec;
23 AR : System.Address);
24

25 procedure Update_Value
26 (RA : in out Rec_Array;
27 ARA : System.Address);
28

29 procedure Update_Value
30 (R : in out Tagged_Rec;
31 AR : System.Address);
32

33 end Machine_X;

Listing 7: machine_x.adb
1 with Check_Param_Passing;
2

3 package body Machine_X is
4

5 procedure Update_Value
6 (R : in out Rec;
7 AR : System.Address)
8 is
9 begin
10 R.A := R.A + 1;
11 Check_Param_Passing (Formal => R'Address,
12 Actual => AR);
13 end Update_Value;
14

15 procedure Update_Value
16 (RA : in out Rec_Array;
17 ARA : System.Address)
18 is
19 begin
20 RA.A := RA.A + 1;
21 Check_Param_Passing (Formal => RA'Address,
22 Actual => ARA);
23 end Update_Value;
24

25 procedure Update_Value
26 (R : in out Tagged_Rec;
27 AR : System.Address)
28 is
29 begin
30 R.A := R.A + 1;
31 Check_Param_Passing (Formal => R'Address,
32 Actual => AR);
33 end Update_Value;
34

35 end Machine_X;

Listing 8: show_by_copy_by_ref_params.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Machine_X; use Machine_X;
3

4 procedure Show_By_Copy_By_Ref_Params is
(continues on next page)

10.1. Parameter Modes and Associations 361

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 TR : Tagged_Rec := (A => 5);
6 R : Rec := (A => 5);
7 RA : Rec_Array := (A => 5,
8 Arr => (others => 0));
9 begin
10 Put_Line ("Tagged record");
11 Update_Value (TR, TR'Address);
12

13 Put_Line ("Untagged record");
14 Update_Value (R, R'Address);
15

16 Put_Line ("Untagged record with array");
17 Update_Value (RA, RA'Address);
18 end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_
↪Associations.By_Copy_By_Ref_Params

MD5: 3ca46380c4df36af9393041181ff2f17

Runtime output

Tagged record
Formal parameter at 00007FFEE3FB1200
Actual parameter at 00007FFEE3FB1200
Parameter is passed by reference.
Untagged record
Formal parameter at 00007FFEE3FB104C
Actual parameter at 00007FFEE3FB11FC
Parameter is passed by copy.
Untagged record with array
Formal parameter at 00007FFEE3FB1060
Actual parameter at 00007FFEE3FB1060
Parameter is passed by reference.

When we run this example, we see that the object of tagged type (Tagged_Rec) is passed
by reference to the Update_Value procedure. In the case of the objects of untagged record
types, you might see this:
• the parameter of Rec type — which is an untagged record with a single component of
integer type —, the parameter is passed by copy;

• the parameter of Rec_Array type — which is an untagged record with a large array of
100 components —, the parameter is passed by reference.

Because Rec and Rec_Array are neither by-copy nor by-reference types, the decision about
how to pass them to the Update_Value procedure is made by the compiler. (Thus, it is
possible that you see different results when running the code above.)

362 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

10.1.3 Bounded errors

When we use parameters of types that are neither by-copy nor by-reference types, we
might encounter the situation where we have the same object bound to different names in
a subprogram. For example, if:
• we use a global object Global_R of a record type Rec

and
• we have a subprogram with an in-out parameter of the same record type Rec

and
• we pass Global_R as the actual parameter for the in-out parameter of this subpro-
gram,

then we have two access paths to this object: one of them using the global variable directly,
and the other one using it indirectly via the in-out parameter. This situation could lead to
undefined behavior or to a program error. Consider the following code example:

Listing 9: machine_x.ads
1 with System;
2

3 package Machine_X is
4

5 type Rec is record
6 A : Integer;
7 end record;
8

9 Global_R : Rec := (A => 0);
10

11 procedure Update_Value
12 (R : in out Rec;
13 AR : System.Address);
14

15 end Machine_X;

Listing 10: machine_x.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Check_Param_Passing;
4

5 package body Machine_X is
6

7 procedure Update_Value
8 (R : in out Rec;
9 AR : System.Address)
10 is
11 procedure Show_Vars is
12 begin
13 Put_Line ("Global_R.A: "
14 & Integer'Image (Global_R.A));
15 Put_Line ("R.A: "
16 & Integer'Image (R.A));
17 end Show_Vars;
18 begin
19 Check_Param_Passing (Formal => R'Address,
20 Actual => AR);
21

22 Put_Line ("Incrementing Global_R.A...");
(continues on next page)

10.1. Parameter Modes and Associations 363

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
23 Global_R.A := Global_R.A + 1;
24 Show_Vars;
25

26 Put_Line ("Incrementing R.A...");
27 R.A := R.A + 5;
28 Show_Vars;
29 end Update_Value;
30

31 end Machine_X;

Listing 11: show_by_copy_by_ref_params.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Machine_X; use Machine_X;
3

4 procedure Show_By_Copy_By_Ref_Params is
5 begin
6 Put_Line ("Calling Update_Value...");
7 Update_Value (Global_R, Global_R'Address);
8

9 Put_Line ("After call to Update_Value...");
10 Put_Line ("Global_R.A: "
11 & Integer'Image (Global_R.A));
12 end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_
↪Associations.By_Copy_By_Ref_Params

MD5: 96be7054b7ff64a304705edf6b15f031

Runtime output

Calling Update_Value...
Formal parameter at 00007FFCE420962C
Actual parameter at 00000000008003BC
Parameter is passed by copy.
Incrementing Global_R.A...
Global_R.A: 1
R.A: 0
Incrementing R.A...
Global_R.A: 1
R.A: 5
After call to Update_Value...
Global_R.A: 5

In the Update_Value procedure, because Global_R and R have a type that is neither a
by-pass nor a by-reference type, the language does not specify whether the old or the
new value would be read in the calls to Put_Line. In other words, the actual behavior is
undefined. Also, this situation might raise the Program_Error exception.

Important
As a general advice:
• you should be very careful when using global variables and
• you should avoid passing them as parameters in situations such as the one illustrated
in the code example above.

364 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

10.1.4 Aliased parameters

When a parameter is specified as aliased, it is always passed by reference, independently
of the type we're using. In this sense, we can use this keyword to circumvent the rules
mentioned so far. (We discuss more about aliasing (page 523) and aliased parameters
(page 532) later on.)
Let's rewrite a previous code example that has a parameter of elementary type and change
it to aliased:

Listing 12: machine_x.ads
1 with System;
2

3 package Machine_X is
4

5 procedure Update_Value
6 (V : aliased in out Integer;
7 AV : System.Address);
8

9 end Machine_X;

Listing 13: machine_x.adb
1 with Check_Param_Passing;
2

3 package body Machine_X is
4

5 procedure Update_Value
6 (V : aliased in out Integer;
7 AV : System.Address)
8 is
9 begin
10 V := V + 1;
11 Check_Param_Passing (Formal => V'Address,
12 Actual => AV);
13 end Update_Value;
14

15 end Machine_X;

Listing 14: show_by_copy_by_ref_params.adb
1 with Machine_X; use Machine_X;
2

3 procedure Show_By_Copy_By_Ref_Params is
4 A : aliased Integer := 5;
5 begin
6 Update_Value (A, A'Address);
7 end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_
↪Associations.By_Copy_By_Ref_Params

MD5: c066af3a7081815d0a7598733f9e6aec

Runtime output

Formal parameter at 00007FFFF01B01CC
Actual parameter at 00007FFFF01B01CC
Parameter is passed by reference.

10.1. Parameter Modes and Associations 365

Advanced Journey With Ada: A Flight In Progress

As we can see, A is now passed by reference.
Note that we can only pass aliased objects to aliased parameters. If we try to pass a non-
aliased object, we get a compilation error:

Listing 15: show_by_copy_by_ref_params.adb
1 with Machine_X; use Machine_X;
2

3 procedure Show_By_Copy_By_Ref_Params is
4 A : Integer := 5;
5 begin
6 Update_Value (A, A'Address);
7 end Show_By_Copy_By_Ref_Params;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_
↪Associations.By_Copy_By_Ref_Params

MD5: 9e6586e0b771de68040131cae81799b8

Build output

show_by_copy_by_ref_params.adb:6:18: error: actual for aliased formal "V" must be␣
↪aliased object

gprbuild: *** compilation phase failed

Again, we discussmore about aliased parameters (page 532) and aliased objects (page 525)
later on in the context of access types.

10.1.5 Parameter Associations

When actual parameters are associated with formal parameters, some rules are checked.
As a typical example, the type of each actual parameter must match the type of the corre-
sponding actual parameter. In this section, we see some details about how this association
is made and some of the potential errors.

In the Ada Reference Manual
• 6.4.1 Parameter Associations147

Parameter order and association

As we already know, when calling subprograms, we can use positional or named parameter
association — or a mixture of both. Also, parameters can have default values. Let's see
some examples:

Listing 16: operations.ads
1 package Operations is
2

3 procedure Add (Left : in out Integer;
4 Right : Float := 1.0);
5

6 end Operations;

147 http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html

366 Chapter 10. Subprograms

http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html

Advanced Journey With Ada: A Flight In Progress

Listing 17: operations.adb
1 package body Operations is
2

3 procedure Add (Left : in out Integer;
4 Right : Float := 1.0) is
5 begin
6 Left := Left + Integer (Right);
7 end Add;
8

9 end Operations;

Listing 18: show_param_association.adb
1 with Operations; use Operations;
2

3 procedure Show_Param_Association is
4 A : Integer := 5;
5 begin
6 -- Positional association
7 Add (A, 2.0);
8

9 -- Positional association
10 -- (using default value)
11 Add (A);
12

13 -- Named association
14 Add (Left => A,
15 Right => 2.0);
16

17 -- Named association (inversed order)
18 Add (Right => 2.0,
19 Left => A);
20

21 -- Mixed positional / named association
22 Add (A, Right => 2.0);
23 end Show_Param_Association;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_
↪Associations.Param_Association_1

MD5: 64d3f44ac2bf72317fae22658f6d218e

This code snippet has examples of positional and name parameter association. Also, it has
an example of mixed positional / named parameter association. In most cases, the actual
A parameter is associated with the formal Left parameter, and the actual 2.0 parameter is
associated with the formal Right parameter.
In addition to that, parameters can have default values, so, when we write Add (A), the
A variable is associated with the Left parameter and the default value (1.0) is associated
with the Right parameter.
Also, when we use named parameter association, the parameter order is irrelevant: we
can, for example, write the last parameter as the first one. Therefore, we can write Add
(Right => 2.0, Left => A) instead of Add (Left => A, Right => 2.0).

10.1. Parameter Modes and Associations 367

Advanced Journey With Ada: A Flight In Progress

Ambiguous calls

Ambiguous calls can be detected by the compiler during parameter association. For ex-
ample, when we have both default values in parameters and subprogram overloading, the
compiler might be unable to decide which subprogram we're calling:

Listing 19: operations.ads
1 package Operations is
2

3 procedure Add (Left : in out Integer);
4

5 procedure Add (Left : in out Integer;
6 Right : Float := 1.0);
7

8 end Operations;

Listing 20: operations.adb
1 package body Operations is
2

3 procedure Add (Left : in out Integer) is
4 begin
5 Left := Left + 1;
6 end Add;
7

8 procedure Add (Left : in out Integer;
9 Right : Float := 1.0) is
10 begin
11 Left := Left + Integer (Right);
12 end Add;
13

14 end Operations;

Listing 21: show_param_association.adb
1 with Operations; use Operations;
2

3 procedure Show_Param_Association is
4 A : Integer := 5;
5 begin
6 Add (A);
7 -- ERROR: cannot decide which
8 -- procedure to take
9 end Show_Param_Association;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_
↪Associations.Param_Association_1

MD5: 2725517f82d4068b669028eca1815079

Build output

show_param_association.adb:6:04: error: ambiguous expression (cannot resolve "Add")
show_param_association.adb:6:04: error: possible interpretation at operations.ads:5
show_param_association.adb:6:04: error: possible interpretation at operations.ads:3
gprbuild: *** compilation phase failed

As we see in this example, the Add procedure is overloaded. The first instance has one
parameter, and the second instance has two parameters, where the second parameter has
a default value. When we call Add with just one parameter, the compiler cannot decide

368 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

whether we intend to call
• the first instance of Add with one parameter

or
• the second instance of Add using the default value for the second parameter.

In this specific case, there are multiple options to solve the issue, but all of them involve
redesigning the package specification:
• we could just rename one of Add procedures (thereby eliminating the subprogram
overloading);

• we could rename the first parameter of one of the Add procedures and use named
parameter association in the call to the procedure;
– For example, we could rename the parameter to Value and call Add (Value =>
A).

• remove the default value from the second parameter of the second instance of Add.

Overlapping actual parameters

When we have more than one out or in out parameters in a subprogram, wemight run into
the situation where the actual parameter overlaps with another parameter. For example:

Listing 22: machine_x.ads
1 package Machine_X is
2

3 procedure Update_Value (V1 : in out Integer;
4 V2 : out Integer);
5

6 end Machine_X;

Listing 23: machine_x.adb
1 package body Machine_X is
2

3 procedure Update_Value (V1 : in out Integer;
4 V2 : out Integer) is
5 begin
6 V1 := V1 + 1;
7 V2 := V2 + 1;
8 end Update_Value;
9

10 end Machine_X;

Listing 24: show_by_copy_by_ref_params.adb
1 with Machine_X; use Machine_X;
2

3 procedure Show_By_Copy_By_Ref_Params is
4 A : Integer := 5;
5 begin
6 Update_Value (A, A);
7 end Show_By_Copy_By_Ref_Params;

Code block metadata

10.1. Parameter Modes and Associations 369

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_
↪Associations.Illegal_Calls

MD5: d18a7056463fee9298dd1fdef0a31daf

Build output

show_by_copy_by_ref_params.adb:6:18: error: writable actual for "V1" overlaps with␣
↪actual for "V2"

gprbuild: *** compilation phase failed

In this case, we're using A for both output parameters in the call to Update_Value. Passing
one variable to more than one output parameter in a given call is forbidden in Ada, so this
triggers a compilation error. Depending on the specific context, you could solve this issue
by using temporary variables for the other output parameters.

10.2 Operators

Operators are commonly used for variables of scalar types such as Integer and Float. In
these cases, they replace usual function calls. (To be more precise, operators are function
calls, but written in a different format.) For example, we simply write A := A + B +
C; when we want to add three integer variables. A hypothetical, non-intuitive version of
this operation could be A := Add (Add (A, B), C);. In such cases, operators allow for
expressing function calls in a more intuitive way.
Many primitive operators exist for scalar types. We classify them as follows:

Category Operators
Logical and, or, xor
Relational =, /=, <, <=, >, >=
Unary adding +, -
Binary adding +, -, &
Multiplying *, /, mod, rem
Highest precedence **, abs, not

In the Ada Reference Manual
• 4.5 Operators and Expression Evaluation148

10.2.1 User-defined operators

For non-scalar types, not all operators are defined. For example, it wouldn't make sense to
expect a compiler to include an addition operator for a record type with multiple compo-
nents. Exceptions to this rule are the equality and inequality operators (= and /=), which
are defined for any type (be it scalar, record types, and array types).
For array types, the concatenation operator (&) is a primitive operator:

148 http://www.ada-auth.org/standards/22rm/html/RM-4-5.html

370 Chapter 10. Subprograms

http://www.ada-auth.org/standards/22rm/html/RM-4-5.html

Advanced Journey With Ada: A Flight In Progress

Listing 25: integer_arrays.ads
1 package Integer_Arrays is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 end Integer_Arrays;

Listing 26: show_array_concatenation.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Integer_Arrays; use Integer_Arrays;
3

4 procedure Show_Array_Concatenation is
5 A, B : Integer_Array (1 .. 5);
6 R : Integer_Array (1 .. 10);
7 begin
8 A := (1 & 2 & 3 & 4 & 5);
9 B := (6 & 7 & 8 & 9 & 10);
10 R := A & B;
11

12 for E of R loop
13 Put (E'Image & ' ');
14 end loop;
15 New_Line;
16 end Show_Array_Concatenation;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Integer_Arrays_
↪Concat

MD5: 1899e66ec1d0b36b10d8b89fc2dfac0e

Runtime output

1 2 3 4 5 6 7 8 9 10

In this example, we're using the primitive & operator to concatenate the A and B arrays in
the assignment to R. Similarly, we're concatenating individual components (integer values)
to create an aggregate that we assign to A and B.
In contrast to this, the addition operator is not available for arrays:

Listing 27: integer_arrays.ads
1 package Integer_Arrays is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 end Integer_Arrays;

Listing 28: show_array_addition.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Integer_Arrays; use Integer_Arrays;
3

4 procedure Show_Array_Addition is
5 A, B, R : Integer_Array (1 .. 5);
6 begin
7 A := (1 & 2 & 3 & 4 & 5);

(continues on next page)

10.2. Operators 371

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 B := (6 & 7 & 8 & 9 & 10);
9 R := A + B;
10

11 for E of R loop
12 Put (E'Image & ' ');
13 end loop;
14 New_Line;
15

16 end Show_Array_Addition;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Integer_Arrays_
↪Addition

MD5: d94f9791523359d390a7cafd900d1268

Build output

show_array_addition.adb:9:11: error: there is no applicable operator "+" for type
↪"Integer_Array" defined at integer_arrays.ads:3

gprbuild: *** compilation phase failed

We can, however, define custom operators for any type. For example, if a specific type
doesn't have a predefined addition operator, we can define our own + operator for it.
Note that we're limited to the operator symbols that are already defined by the Ada lan-
guage (see the previous table for the complete list of operators). In other words, the op-
erator we define must be selected from one of those existing symbols; we cannot use new
symbols for custom operators.

In other languages
Some programming languages — such as Haskell — allow you to define and use custom
operator symbols. For example, in Haskell, you can create a new "broken bar" (¦) operator
for integer values:

(¦) :: Int -> Int -> Int
a ¦ b = a + a + b

main = putStrLn $ show (2 ¦ 3)

This is not possible in Ada.

Let's define a custom addition operator that adds individual components of the Inte-
ger_Array type:

Listing 29: integer_arrays.ads
1 package Integer_Arrays is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 function "+" (Left, Right : Integer_Array)
7 return Integer_Array
8 with Post =>
9 (for all I in "+"'Result'Range =>
10 "+"'Result (I) = Left (I) + Right (I));
11

12 end Integer_Arrays;

372 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

Listing 30: integer_arrays.adb
1 package body Integer_Arrays is
2

3 function "+" (Left, Right : Integer_Array)
4 return Integer_Array
5 is
6 R : Integer_Array (Left'Range);
7 begin
8 for I in Left'Range loop
9 R (I) := Left (I) + Right (I);
10 end loop;
11

12 return R;
13 end "+";
14

15 end Integer_Arrays;

Listing 31: show_array_addition.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Integer_Arrays; use Integer_Arrays;
3

4 procedure Show_Array_Addition is
5 A, B, R : Integer_Array (1 .. 5);
6 begin
7 A := (1 & 2 & 3 & 4 & 5);
8 B := (6 & 7 & 8 & 9 & 10);
9 R := A + B;
10

11 for E of R loop
12 Put (E'Image & ' ');
13 end loop;
14 New_Line;
15

16 end Show_Array_Addition;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Integer_Arrays_
↪Addition

MD5: 6f50fa47270d97d3fb50379b6275777d

Runtime output

7 9 11 13 15

Now, the R := A + B line doesn't trigger a compilation error anymore because the +
operator is defined for the Integer_Array type.
In the implementation of the +, we return an array with the range of the Left array where
each component is the sum of the Left and Right arrays. In the declaration of the +
operator, we're defining the expected behavior in the postcondition. Here, we're saying
that, for each index of the resulting array (for all I in "+"'Result'Range), the value of
each component of the resulting array at that specific index is the sum of the components
from the Left and Right arrays at the same index ("+"'Result (I) = Left (I) + Right
(I)). (for all denotes a quantified expression (page 328).)
Note that, in this implementation, we assume that the range of Right is a subset of the
range of Left. If that is not the case, the Constraint_Error exception will be raised at
runtime in the loop. (You can test this by declaring B as Integer_Array (5 .. 10), for
example.)

10.2. Operators 373

Advanced Journey With Ada: A Flight In Progress

We can also define custom operators for record types. For example, we could declare two
+ operators for a record containing the name and address of a person:

Listing 32: addresses.ads
1 package Addresses is
2

3 type Person is private;
4

5 function "+" (Name : String;
6 Address : String)
7 return Person;
8 function "+" (Left, Right : Person)
9 return Person;
10

11 procedure Display (P : Person);
12

13 private
14

15 subtype Name_String is String (1 .. 40);
16 subtype Address_String is String (1 .. 100);
17

18 type Person is record
19 Name : Name_String;
20 Address : Address_String;
21 end record;
22

23 end Addresses;

Listing 33: addresses.adb
1 with Ada.Strings.Fixed; use Ada.Strings.Fixed;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 package body Addresses is
5

6 function "+" (Name : String;
7 Address : String)
8 return Person
9 is
10 begin
11 return (Name =>
12 Head (Name,
13 Name_String'Length),
14 Address =>
15 Head (Address,
16 Address_String'Length));
17 end "+";
18

19 function "+" (Left, Right : Person)
20 return Person
21 is
22 begin
23 return (Name => Left.Name,
24 Address => Right.Address);
25 end "+";
26

27 procedure Display (P : Person) is
28 begin
29 Put_Line ("Name: " & P.Name);
30 Put_Line ("Address: " & P.Address);
31 New_Line;

(continues on next page)

374 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
32 end Display;
33

34 end Addresses;

Listing 34: show_address_addition.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Addresses; use Addresses;
3

4 procedure Show_Address_Addition is
5 John : Person := "John" + "4 Main Street";
6 Jane : Person := "Jane" + "7 High Street";
7 begin
8 Display (John);
9 Display (Jane);
10 Put_Line ("----------------");
11

12 Jane := Jane + John;
13 Display (Jane);
14 end Show_Address_Addition;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Rec_Operator
MD5: c69ff43ed5a80a0c62bad87eada14301

Runtime output

Name: John
Address: 4 Main Street

Name: Jane
Address: 7 High Street

Name: Jane
Address: 4 Main Street

In this example, the first + operator takes two strings — with the name and address of a
person — and returns an object of Person type. We use this operator to initialize the John
and Jane variables.
The second + operator in this example brings two people together. Here, the person on the
left side of the + operator moves to the home of the person on the right side. In this specific
case, Jane is moving to John's house.
As a small remark, we usually expect that the + operator is commutative. In other words,
changing the order of the elements in the operation doesn't change the result. However,
in our definition above, this is not the case, as we can confirm by comparing the operation
in both orders:

Listing 35: show_address_addition.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Addresses; use Addresses;
3

4 procedure Show_Address_Addition is
5 John : constant Person :=
6 "John" + "4 Main Street";
7 Jane : constant Person :=

(continues on next page)

10.2. Operators 375

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 "Jane" + "7 High Street";
9 begin
10 if Jane + John = John + Jane then
11 Put_Line ("It's commutative!");
12 else
13 Put_Line ("It's not commutative!");
14 end if;
15 end Show_Address_Addition;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Rec_Operator
MD5: 2af6e1a31100a1d0fa786d42cc93c09b

Runtime output

It's not commutative!

In this example, we're using the primitive = operator for the Person to assess whether the
result of the addition is commutative.

In the Ada Reference Manual
• 6.1 Subprogram Declarations149

10.3 Expression functions

Usually, we implement Ada functions with a construct like this: begin return X; end;. In
other words, we create a begin ... end; block and we have at least one return statement
in that block. An expression function, in contrast, is a function that is implemented with
a simple expression in parentheses, such as (X);. In this case, we don't use a begin ...
end; block or a return statement.
As an example of an expression, let's say we want to implement a function named Is_Zero
that checks if the value of the integer parameter I is zero. We can implement this function
with the expression I = 0. In the usual approach, we would create the implementation
by writing is begin return I = 0; end Is_Zero;. When using expression functions,
however, we can simplify the implementation by just writing is (I = 0);. This is the
complete code of Is_Zero using an expression function:

Listing 36: expr_func.ads
1 package Expr_Func is
2

3 function Is_Zero (I : Integer)
4 return Boolean is
5 (I = 0);
6

7 end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_
↪Expression_Function_1

MD5: 44779999566f764279e1c2f292226f95

149 http://www.ada-auth.org/standards/22rm/html/RM-6-1.html

376 Chapter 10. Subprograms

http://www.ada-auth.org/standards/22rm/html/RM-6-1.html

Advanced Journey With Ada: A Flight In Progress

An expression function has the same effect as the usual version using a block. In fact, the
code above is similar to this implementation of the Is_Zero function using a block:

Listing 37: expr_func.ads
1 package Expr_Func is
2

3 function Is_Zero (I : Integer)
4 return Boolean;
5

6 end Expr_Func;

Listing 38: expr_func.adb
1 package body Expr_Func is
2

3 function Is_Zero (I : Integer)
4 return Boolean is
5 begin
6 return I = 0;
7 end Is_Zero;
8

9 end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_
↪Expression_Function_2

MD5: 4d90b1c63928cbaf9c86a6cc6421bb61

The only difference between these two versions of the Expr_Func packages is that, in the
first version, the package specification contains the implementation of the Is_Zero func-
tion, while, in the second version, the implementation is in the body of the Expr_Func
package.
An expression function can be, at same time, the specification and the implementation
of a function. Therefore, in the first version of the Expr_Func package above, we don't
have a separate implementation of the Is_Zero function because (I = 0) is the actual
implementation of the function. Note that this is only possible for expression functions; you
cannot have a function implemented with a block in a package specification. For example,
the following code is wrong and won't compile:

Listing 39: expr_func.ads
1 package Expr_Func is
2

3 function Is_Zero (I : Integer)
4 return Boolean is
5 begin
6 return I = 0;
7 end Is_Zero;
8

9 end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_
↪Expression_Function_3

MD5: 919f9c101b3224006e1302130eba8dd2

We can, of course, separate the function declaration from its implementation as an expres-
sion function. For example, we can rewrite the first version of the Expr_Func package and

10.3. Expression functions 377

Advanced Journey With Ada: A Flight In Progress

move the expression function to the body of the package:

Listing 40: expr_func.ads
1 package Expr_Func is
2

3 function Is_Zero (I : Integer)
4 return Boolean;
5

6 end Expr_Func;

Listing 41: expr_func.adb
1 package body Expr_Func is
2

3 function Is_Zero (I : Integer)
4 return Boolean is
5 (I = 0);
6

7 end Expr_Func;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_
↪Expression_Function_4

MD5: 491a491da92636a35579f870969aaf08

In addition, we can use expression functions in the private part of a package specification.
For example, the following code declares the Is_Valid function in the specification of the
My_Data package, while its implementation is an expression function in the private part of
the package specification:

Listing 42: my_data.ads
1 package My_Data is
2

3 type Data is private;
4

5 function Is_Valid (D : Data)
6 return Boolean;
7

8 private
9

10 type Data is record
11 Valid : Boolean;
12 end record;
13

14 function Is_Valid (D : Data)
15 return Boolean is
16 (D.Valid);
17

18 end My_Data;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.
↪Private_Expression_Function_1

MD5: beb57eca67b3954097e0f7ac00ea70c9

Naturally, we could write the function implementation in the package body instead:

378 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

Listing 43: my_data.ads
1 package My_Data is
2

3 type Data is private;
4

5 function Is_Valid (D : Data)
6 return Boolean;
7

8 private
9

10 type Data is record
11 Valid : Boolean;
12 end record;
13

14 end My_Data;

Listing 44: my_data.adb
1 package body My_Data is
2

3 function Is_Valid (D : Data)
4 return Boolean is
5 (D.Valid);
6

7 end My_Data;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.
↪Private_Expression_Function_2

MD5: 3c6e2a3c53c7c8e1a7b86efccdc3bf8d

In the Ada Reference Manual
• 6.8 Expression functions150

10.4 Overloading

Note: This section was originally written by Robert A. Duff and published as Gem #50:
Overload Resolution151.

Ada allows overloading of subprograms, which means that two or more subprogram decla-
rations with the same name can be visible at the same place. Here, "name" can refer to
operator symbols, like "+". Ada also allows overloading of various other notations, such as
literals and aggregates.
In most languages that support overloading, overload resolution is done "bottom up" —
that is, information flows from inner constructs to outer constructs. As usual, computer
folks draw their trees upside-down, with the root at the top. For example, if we have two
procedures Print:
150 http://www.ada-auth.org/standards/22rm/html/RM-6-8.html
151 https://www.adacore.com/gems/gem-50

10.4. Overloading 379

http://www.ada-auth.org/standards/22rm/html/RM-6-8.html
https://www.adacore.com/gems/gem-50
https://www.adacore.com/gems/gem-50

Advanced Journey With Ada: A Flight In Progress

Listing 45: show_overloading.adb
1 procedure Show_Overloading is
2

3 package Types is
4 type Sequence is null record;
5 type Set is null record;
6

7 procedure Print (S : Sequence) is null;
8 procedure Print (S : Set) is null;
9 end Types;
10

11 use Types;
12

13 X : Sequence;
14 begin
15

16 -- Compiler selects Print (S : Sequence)
17 Print (X);
18 end Show_Overloading;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Overloading
MD5: 020c4f04285c80c1050d8edbaf2dbcae

the type of X determines which Print is meant in the call.
Ada is unusual in that it supports top-down overload resolution as well:

Listing 46: show_top_down_overloading.adb
1 procedure Show_Top_Down_Overloading is
2

3 package Types is
4 type Sequence is null record;
5 type Set is null record;
6

7 function Empty return Sequence is
8 ((others => <>));
9

10 function Empty return Set is
11 ((others => <>));
12

13 procedure Print_Sequence (S : Sequence) is
14 null;
15

16 procedure Print_Set (S : Set) is
17 null;
18 end Types;
19

20 use Types;
21

22 X : Sequence;
23 begin
24 -- Compiler selects function
25 -- Empty return Sequence
26 Print_Sequence (Empty);
27 end Show_Top_Down_Overloading;

Code block metadata

380 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Overloading
MD5: 3b776a3efdee3d7e583ddbf5159c9a1b

The type of the formal parameter S of Print_Sequence determines which Empty is meant
in the call. In C++, for example, the equivalent of the Print (X) example would resolve,
but the Print_Sequence (Empty) would be illegal, because C++ does not use top-down
information.
If we overload things too heavily, we can cause ambiguities:

Listing 47: show_overloading_error.adb
1 procedure Show_Overloading_Error is
2

3 package Types is
4 type Sequence is null record;
5 type Set is null record;
6

7 function Empty return Sequence is
8 ((others => <>));
9

10 function Empty return Set is
11 ((others => <>));
12

13 procedure Print (S : Sequence) is
14 null;
15

16 procedure Print (S : Set) is
17 null;
18 end Types;
19

20 use Types;
21

22 X : Sequence;
23 begin
24 Print (Empty); -- Illegal!
25 end Show_Overloading_Error;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Overloading
MD5: 5182c517a1afff4568ab2404ac66fda8

Build output

show_overloading_error.adb:24:04: error: ambiguous expression (cannot resolve
↪"Print")

show_overloading_error.adb:24:04: error: possible interpretation at line 16
show_overloading_error.adb:24:04: error: possible interpretation at line 13
show_overloading_error.adb:24:11: error: ambiguous call to "Empty"
show_overloading_error.adb:24:11: error: interpretation at line 10
show_overloading_error.adb:24:11: error: interpretation at line 7
gprbuild: *** compilation phase failed

The call is ambiguous, and therefore illegal, because there are two possible meanings. One
way to resolve the ambiguity is to use a qualified expression to say which type we mean:

Print (Sequence'(Empty));

Note that we're now using both bottom-up and top-down overload resolution: Sequence'
determines which Empty is meant (top down) and which Print is meant (bottom up). You
can qualify an expression, even if it is not ambiguous according to Ada rules — you might

10.4. Overloading 381

Advanced Journey With Ada: A Flight In Progress

want to clarify the type because it might be ambiguous for human readers.
Of course, you could instead resolve the Print (Empty) example by modifying the source
code so the names are unique, as in the earlier examples. That might well be the best
solution, assuming you can modify the relevant sources. Too much overloading can be
confusing. How much is "too much" is in part a matter of taste.
Ada really needs to have top-down overload resolution, in order to resolve literals. In some
languages, you can tell the type of a literal by looking at it, for example appending L (letter
el) means "the type of this literal is long int". That sort of kludge won't work in Ada, because
we have an open-ended set of integer types:

Listing 48: show_literal_resolution.adb
1 procedure Show_Literal_Resolution is
2

3 type Apple_Count is range 0 .. 100;
4

5 procedure Peel (Count : Apple_Count) is null;
6 begin
7 Peel (20);
8 end Show_Literal_Resolution;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Literal_
↪Resolution

MD5: f428b6b4c642c44ede6bc21e7522c532

You can't tell by looking at the literal 20what its type is. The type of formal parameter Count
tells us that 20 is an Apple_Count, as opposed to some other type, such as Standard.
Long_Integer.
Technically, the type of 20 is universal_integer, which is implicitly converted to Ap-
ple_Count— it's really the result type of that implicit conversion that is at issue. But that's
an obscure point — you won't go too far wrong if you think of the integer literal notation as
being overloaded on all integer types.
Developers sometimes wonder why the compiler can't resolve something that seems obvi-
ous. For example:

Listing 49: show_literal_resolution_error.adb
1 procedure Show_Literal_Resolution_Error is
2

3 type Apple_Count is range 0 .. 100;
4 procedure Slice (Count : Apple_Count) is null;
5

6 type Orange_Count is range 0 .. 10_000;
7 procedure Slice (Count : Orange_Count) is null;
8 begin
9 Slice (Count => (10_000)); -- Illegal!
10 end Show_Literal_Resolution_Error;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Literal_
↪Resolution_Error

MD5: 4789d8eea9b82649ba8e453bb861688a

Build output

382 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

show_literal_resolution_error.adb:9:04: error: ambiguous expression (cannot␣
↪resolve "Slice")

show_literal_resolution_error.adb:9:04: error: possible interpretation at line 7
show_literal_resolution_error.adb:9:04: error: possible interpretation at line 4
gprbuild: *** compilation phase failed

This call is ambiguous, and therefore illegal. But why? Clearly the developer must have
meant the Orange_Count one, because 10_000 is out of range for Apple_Count. And all the
relevant expressions happen to be static.
Well, a good rule of thumb in language design (for languages with overloading) is that the
overload resolution rules should not be "too smart". We want this example to be illegal to
avoid confusion on the part of developers reading the code. As usual, a qualified expression
fixes it:

Slice (Count => Orange_Count'(10_000));

Another example, similar to the literal, is the aggregate. Ada uses a simple rule: the type
of an aggregate is determined top down (i.e., from the context in which the aggregate
appears). Bottom-up information is not used; that is, the compiler does not look inside the
aggregate in order to determine its type.

Listing 50: show_record_resolution_error.adb
1 procedure Show_Record_Resolution_Error is
2

3 type Complex is record
4 Re, Im : Float;
5 end record;
6

7 procedure Grind (X : Complex) is null;
8 procedure Grind (X : String) is null;
9 begin
10 Grind (X => (Re => 1.0, Im => 1.0));
11 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12 -- Illegal!
13 end Show_Record_Resolution_Error;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Record_
↪Resolution_Error

MD5: e3dd1f1d0c403bcf672f4bab881b8ef9

Build output

show_record_resolution_error.adb:10:04: error: ambiguous expression (cannot␣
↪resolve "Grind")

show_record_resolution_error.adb:10:04: error: possible interpretation at line 8
show_record_resolution_error.adb:10:04: error: possible interpretation at line 7
gprbuild: *** compilation phase failed

There are two Grind procedures visible, so the type of the aggregate could be Complex or
String, so it is ambiguous and therefore illegal. The compiler is not required to notice that
there is only one type with components Re and Im, of some real type — in fact, the compiler
is not allowed to notice that, for overloading purposes.
We can qualify as usual:

Grind (X => Complex'(Re => 1.0, Im => 1.0));

10.4. Overloading 383

Advanced Journey With Ada: A Flight In Progress

Only after resolving that the type of the aggregate is Complex can the compiler look inside
and make sure Re and Im make sense.
This not-too-smart rule for aggregates helps prevent confusion on the part of developers
reading the code. It also simplifies the compiler, and makes the overload resolution algo-
rithm reasonably efficient.

10.5 Operator Overloading

We've seen previously (page 370) that we can define custom operators for any type. We've
also seen that subprograms can be overloaded (page 379). Since operators are functions,
we're essentially talking about operator overloading, as we're defining the same operator
(say + or -) for different types.
As another example of operator overloading, in the Ada standard library, operators are de-
fined for the Complex type of the Ada.Numerics.Generic_Complex_Types package. This
package contains not only the definition of the + operator for two objects of Complex type,
but also for combination of Complex and other types. For instance, we can find these dec-
larations:

function "+" (Left, Right : Complex)
return Complex;

function "+" (Left : Complex; Right : Real'Base)
return Complex;

function "+" (Left : Real'Base; Right : Complex)
return Complex;

This example shows that the + operator— as well as other operators— are being overloaded
in the Generic_Complex_Types package.

In the Ada Reference Manual
• 6.6 Overloading of Operators152

• G.1.1 Complex Types153

10.6 Operator Overriding

We can also override operators of derived types. This allows for modifying the behavior of
operators for the corresponding derived types.
To override an operator of a derived type, we simply implement a function for that operator.
This is the same as how we implement custom operators (as we've seen previously).
As an example, when adding two fixed-point values, the result might be out of range, which
causes an exception to be raised. A common strategy to avoid exceptions in this case is
to saturate the resulting value. This strategy is typically employed in signal processing
algorithms, for example.
In this example, we declare and use the 32-bit fixed-point type TQ31:
152 http://www.ada-auth.org/standards/22rm/html/RM-6-6.html
153 http://www.ada-auth.org/standards/22rm/html/RM-G-1-1.html

384 Chapter 10. Subprograms

http://www.ada-auth.org/standards/22rm/html/RM-6-6.html
http://www.ada-auth.org/standards/22rm/html/RM-G-1-1.html

Advanced Journey With Ada: A Flight In Progress

Listing 51: fixed_point.ads
1 package Fixed_Point is
2

3 D : constant := 2.0 ** (-31);
4 type TQ31 is delta D range -1.0 .. 1.0 - D;
5

6 end Fixed_Point;

Listing 52: show_sat_op.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Fixed_Point; use Fixed_Point;
3

4 procedure Show_Sat_Op is
5 A, B, C : TQ31;
6 begin
7 A := TQ31'Last;
8 B := TQ31'Last;
9 C := A + B;
10

11 Put_Line (A'Image & " + "
12 & B'Image & " = "
13 & C'Image);
14

15 A := TQ31'First;
16 B := TQ31'First;
17 C := A + B;
18

19 Put_Line (A'Image & " + "
20 & B'Image & " = "
21 & C'Image);
22

23 end Show_Sat_Op;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operator_Overriding.Fixed_
↪Point_Exception

MD5: 15d8860773ec7c0e505d0ee94781ae14

Runtime output

raised CONSTRAINT_ERROR : show_sat_op.adb:9 overflow check failed

Here, we're using the standard + operator, which raises a Constraint_Error exception in
the C := A + B; statement due to an overflow. Let's now override the addition operator
and enforce saturation when the result is out of range:

Listing 53: fixed_point.ads
1 package Fixed_Point is
2

3 D : constant := 2.0 ** (-31);
4 type TQ31 is delta D range -1.0 .. 1.0 - D;
5

6 function "+" (Left, Right : TQ31)
7 return TQ31;
8

9 end Fixed_Point;

10.6. Operator Overriding 385

Advanced Journey With Ada: A Flight In Progress

Listing 54: fixed_point.adb
1 package body Fixed_Point is
2

3 function "+" (Left, Right : TQ31)
4 return TQ31
5 is
6 type TQ31_2 is
7 delta TQ31'Delta
8 range TQ31'First * 2.0 .. TQ31'Last * 2.0;
9

10 L : constant TQ31_2 := TQ31_2 (Left);
11 R : constant TQ31_2 := TQ31_2 (Right);
12 Res : TQ31_2;
13 begin
14 Res := L + R;
15

16 if Res > TQ31_2 (TQ31'Last) then
17 return TQ31'Last;
18 elsif Res < TQ31_2 (TQ31'First) then
19 return TQ31'First;
20 else
21 return TQ31 (Res);
22 end if;
23 end "+";
24

25 end Fixed_Point;

Listing 55: show_sat_op.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Fixed_Point; use Fixed_Point;
3

4 procedure Show_Sat_Op is
5 A, B, C : TQ31;
6 begin
7 A := TQ31'Last;
8 B := TQ31'Last;
9 C := A + B;
10

11 Put_Line (A'Image & " + "
12 & B'Image & " = "
13 & C'Image);
14

15 A := TQ31'First;
16 B := TQ31'First;
17 C := A + B;
18

19 Put_Line (A'Image & " + "
20 & B'Image & " = "
21 & C'Image);
22

23 end Show_Sat_Op;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operator_Overriding.Fixed_
↪Point_Operator_Overloading

MD5: 6317bcf9c278c01f86dbdcb761d86240

Runtime output

386 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

0.9999999995 + 0.9999999995 = 0.9999999995
-1.0000000000 + -1.0000000000 = -1.0000000000

In the implementation of the overridden + operator of the TQ31 type, we declare another
type (TQ31_2) with a wider range than TQ31. We use variables of the TQ31_2 type to perform
the actual addition, and then we verify whether the result is still in TQ31's range. If it is, we
simply convert the result back to the TQ31 type. Otherwise, we saturate it — using either
the first or last value of the TQ31 type.
When overriding operators, the overridden operator replaces the original one. For example,
in the A + B operation of the Show_Sat_Op procedure above, we're using the overridden
version of the + operator, which performs saturation. Therefore, this operation doesn't raise
an exception (as it was the case with the original + operator).

10.7 Nonreturning procedures

Usually, when calling a procedure P, we expect that it returns to the caller's thread of con-
trol after performing some action in the body of P. However, there are situations where a
procedure never returns. We can indicate this fact by using the No_Return aspect in the
subprogram declaration.
A typical example is that of a server that is designed to run forever until the process is killed
or the machine where the server runs is switched off. This server can be implemented as
an endless loop. For example:

Listing 56: servers.ads
1 package Servers is
2

3 procedure Run_Server
4 with No_Return;
5

6 end Servers;

Listing 57: servers.adb
1 package body Servers is
2

3 procedure Run_Server is
4 begin
5 pragma Warnings
6 (Off,
7 "implied return after this statement");
8 while True loop
9 -- Processing happens here...
10 null;
11 end loop;
12 end Run_Server;
13

14 end Servers;

Listing 58: show_endless_loop.adb
1 with Servers; use Servers;
2

3 procedure Show_Endless_Loop is
4 begin

(continues on next page)

10.7. Nonreturning procedures 387

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 Run_Server;
6 end Show_Endless_Loop;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Nonreturning_Procedures.
↪Server_Proc

MD5: 3f859b6e2aca8e31367658632e84126c

In this example, Run_Server doesn't exit from the while True loop, so it never returns to
the Show_Endless_Loop procedure.
The same situation happens when we call a procedure that raises an exception uncondition-
ally. In that case, exception handling is triggered, so that the procedure never returns to
the caller. An example is that of a logging procedure that writes a message before raising
an exception internally:

Listing 59: loggers.ads
1 package Loggers is
2

3 Logged_Failure : exception;
4

5 procedure Log_And_Raise (Msg : String)
6 with No_Return;
7

8 end Loggers;

Listing 60: loggers.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Loggers is
4

5 procedure Log_And_Raise (Msg : String) is
6 begin
7 Put_Line (Msg);
8 raise Logged_Failure;
9 end Log_And_Raise;
10

11 end Loggers;

Listing 61: show_no_return_exception.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Loggers; use Loggers;
3

4 procedure Show_No_Return_Exception is
5 Check_Passed : constant Boolean := False;
6 begin
7 if not Check_Passed then
8 Log_And_Raise ("Check failed!");
9 Put_Line ("This line will not be reached!");
10 end if;
11 end Show_No_Return_Exception;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Nonreturning_Procedures.Log_
↪Exception

MD5: 10b4933d8c862d14ade54935cbd2b541

388 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

In this example, Log_And_Raise writes a message to the user and raises the
Logged_Failure, so it never returns to the Show_No_Return_Exception procedure.
We could implement exception handling in the Show_No_Return_Exception procedure,
so that the Logged_Failure exception could be handled there after it's raised in
Log_And_Raise. However, this wouldn't be considered a normal return to the procedure
because it wouldn't return to the point where it should (i.e. to the point where Put_Line is
about to be called, right after the call to the Log_And_Raise procedure).
If a nonreturning procedure returns nevertheless, this is considered a program error, so that
the Program_Error exception is raised. For example:

Listing 62: loggers.ads
1 package Loggers is
2

3 Logged_Failure : exception;
4

5 procedure Log_And_Raise (Msg : String)
6 with No_Return;
7

8 end Loggers;

Listing 63: loggers.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Loggers is
4

5 procedure Log_And_Raise (Msg : String) is
6 begin
7 Put_Line (Msg);
8 end Log_And_Raise;
9

10 end Loggers;

Listing 64: show_no_return_exception.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Loggers; use Loggers;
3

4 procedure Show_No_Return_Exception is
5 Check_Passed : constant Boolean := False;
6 begin
7 if not Check_Passed then
8 Log_And_Raise ("Check failed!");
9 Put_Line ("This line will not be reached!");
10 end if;
11 end Show_No_Return_Exception;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Nonreturning_Procedures.
↪Erroneous_Log_Exception

MD5: e44fd8df0529dda5749e85b9e300a999

Build output

loggers.adb:7:07: warning: implied return after this statement will raise Program_
↪Error [enabled by default]

loggers.adb:7:07: warning: procedure "Log_And_Raise" is marked as No_Return␣
↪[enabled by default]

10.7. Nonreturning procedures 389

Advanced Journey With Ada: A Flight In Progress

Runtime output

Check failed!

raised PROGRAM_ERROR : loggers.adb:7 implicit return with No_Return

Here, Program_Error is raised when Log_And_Raise returns to the
Show_No_Return_Exception procedure.

In the Ada Reference Manual
• 6.5.1 Nonreturning Subprograms154

10.8 Inline subprograms

Inlining155 refers to a kind of optimization where the code of a subprogram is expanded at
the point of the call in place of the call itself.
In modern compilers, inlining depends on the optimization level selected by the user. For
example, if we select the higher optimization level, the compiler will perform automatic
inlining agressively.

In the GNAT toolchain
The highest optimization level (-O3) of GNAT performs aggressive automatic inlining. This
could mean that this level inlines too much rather than not enough. As a result, the cache
may become an issue and the overall performance may be worse than the one we would
achieve by compiling the same code with optimization level 2 (-O2). Therefore, the general
recommendation is to not just select -O3 for the optimized version of an application, but
instead compare it the optimized version built with -O2.

It's important to highlight that the inlining we're referring above happens automatically, so
the decision about which subprogram is inlined depends entirely on the compiler. However,
in some cases, it's better to reduce the optimization level and perform manual inlining
instead of automatic inlining. We do that by using the Inline aspect.
Let's look at this example:

Listing 65: float_arrays.ads
1 package Float_Arrays is
2

3 type Float_Array is
4 array (Positive range <>) of Float;
5

6 function Average (Data : Float_Array)
7 return Float
8 with Inline;
9

10 end Float_Arrays;

154 http://www.ada-auth.org/standards/22rm/html/RM-6-5-1.html
155 https://en.wikipedia.org/wiki/Inline_expansion

390 Chapter 10. Subprograms

http://www.ada-auth.org/standards/22rm/html/RM-6-5-1.html
https://en.wikipedia.org/wiki/Inline_expansion

Advanced Journey With Ada: A Flight In Progress

Listing 66: float_arrays.adb
1 package body Float_Arrays is
2

3 function Average (Data : Float_Array)
4 return Float
5 is
6 Total : Float := 0.0;
7 begin
8 for Value of Data loop
9 Total := Total + Value;
10 end loop;
11 return Total / Float (Data'Length);
12 end Average;
13

14 end Float_Arrays;

Listing 67: compute_average.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Float_Arrays; use Float_Arrays;
4

5 procedure Compute_Average is
6 Values : constant Float_Array :=
7 (10.0, 11.0, 12.0, 13.0);
8 Average_Value : Float;
9 begin
10 Average_Value := Average (Values);
11 Put_Line ("Average = "
12 & Float'Image (Average_Value));
13 end Compute_Average;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Inline_Subprograms.Inlining_
↪Float_Arrays

MD5: 246bc11e8a969d69873f416f583f450e

Runtime output

Average = 1.15000E+01

When compiling this example, the compiler will most probably inline Average in the Com-
pute_Average procedure. Note, however, that the Inline aspect is just a recommendation
to the compiler. Sometimes, the compiler might not be able to follow this recommendation,
so it won't inline the subprogram.
These are some examples of situations where the compiler might not be able to inline a
subprogram:
• when the code is too large,
• when it's too complicated — for example, when it involves exception handling —, or
• when it contains tasks, etc.

In the GNAT toolchain
In order to effectively use the Inline aspect, we need to set the optimization level to at
least -O1 and use the -gnatn switch, which instructs the compiler to take the Inline aspect
into account.

10.8. Inline subprograms 391

Advanced Journey With Ada: A Flight In Progress

In addition to the Inline aspect, in GNAT, we also have the (implementation-defined) In-
line_Always aspect. In contrast to the former aspect, however, the Inline_Always aspect
isn't primarily related to performance. Instead, it should be used when the functionality
would be incorrect if inlining was not performed by the compiler. Examples of this are
procedures that insert Assembly instructions that only make sense when the procedure is
inlined, such as memory barriers.
Similar to the Inline aspect, there might be situations where a subprogram has the In-
line_Always aspect, but the compiler is unable to inline it. In this case, we get a compila-
tion error from GNAT.

Note that we can use the Inline aspect for generic subprograms as well. When we do this,
we indicate to the compiler that we wish it inlines all instances of that generic subprogram.

In the Ada Reference Manual
• 6.3.2 Inline Expansion of Subprograms156

10.9 Null Procedures

Null procedures are procedures that don't have any effect, as their body is empty. We
declare a null procedure by simply writing is null in its declaration. For example:

Listing 68: null_procs.ads
1 package Null_Procs is
2

3 procedure Do_Nothing (Msg : String) is null;
4

5 end Null_Procs;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Null_Proc_1
MD5: a8a801e6c71d8177db61e4aa131b8832

As expected, calling a null procedure doesn't have any effect. For example:

Listing 69: show_null_proc.adb
1 with Null_Procs; use Null_Procs;
2

3 procedure Show_Null_Proc is
4 begin
5 Do_Nothing ("Hello");
6 end Show_Null_Proc;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Null_Proc_1
MD5: 274eed0b0952b9aa7e422933ece42d86

Null procedures are equivalent to implementing a procedure with a body that only contains
null. Therefore, the Do_Nothing procedure above is equivalent to this:
156 http://www.ada-auth.org/standards/22rm/html/RM-6-3-2.html

392 Chapter 10. Subprograms

http://www.ada-auth.org/standards/22rm/html/RM-6-3-2.html

Advanced Journey With Ada: A Flight In Progress

Listing 70: null_procs.ads
1 package Null_Procs is
2

3 procedure Do_Nothing (Msg : String);
4

5 end Null_Procs;

Listing 71: null_procs.adb
1 package body Null_Procs is
2

3 procedure Do_Nothing (Msg : String) is
4 begin
5 null;
6 end Do_Nothing;
7

8 end Null_Procs;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Null_Proc_1
MD5: d0c9dc9265ebbaa9603681182dee1d92

10.9.1 Null procedures and overriding

We can use null procedures as a way to simulate interfaces for non-tagged types — similar
to what actual interfaces do for tagged types. For example, we may start by declaring a
type and null procedures that operate on that type. For example, let's model a very simple
API:

Listing 72: simple_storage.ads
1 package Simple_Storage is
2

3 type Storage_Model is null record;
4

5 procedure Set (S : in out Storage_Model;
6 V : String) is null;
7 procedure Display (S : Storage_Model) is null;
8

9 end Simple_Storage;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Simple_
↪Storage_Model

MD5: 553e78bc15dcec1302be4b5f484ac21f

Here, the API of the Storage_Model type consists of the Set and Display procedures. Nat-
urally, we can use objects of the Storage_Model type in an application, but this won't have
any effect:

Listing 73: show_null_proc.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Simple_Storage; use Simple_Storage;
3

4 procedure Show_Null_Proc is
(continues on next page)

10.9. Null Procedures 393

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 S : Storage_Model;
6 begin
7 Put_Line ("Setting 24...");
8 Set (S, "24");
9 Display (S);
10 end Show_Null_Proc;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Simple_
↪Storage_Model

MD5: 523b3e7239e683f2d879caa9139106ca

Runtime output

Setting 24...

By itself, the Storage_Model type is not very useful. However, we can derive other types
from it and override the null procedures. Let's say we want to implement the Inte-
ger_Storage type to store an integer value:

Listing 74: simple_storage.ads
1 package Simple_Storage is
2

3 type Storage_Model is null record;
4

5 procedure Set (S : in out Storage_Model;
6 V : String) is null;
7 procedure Display (S : Storage_Model) is null;
8

9 type Integer_Storage is private;
10

11 procedure Set (S : in out Integer_Storage;
12 V : String);
13 procedure Display (S : Integer_Storage);
14

15 private
16

17 type Integer_Storage is record
18 V : Integer := 0;
19 end record;
20

21 end Simple_Storage;

Listing 75: simple_storage.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Simple_Storage is
4

5 procedure Set (S : in out Integer_Storage;
6 V : String) is
7 begin
8 S.V := Integer'Value (V);
9 end Set;
10

11 procedure Display (S : Integer_Storage) is
12 begin
13 Put_Line ("Value: " & S.V'Image);

(continues on next page)

394 Chapter 10. Subprograms

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14 end Display;
15

16 end Simple_Storage;

Listing 76: show_null_proc.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Simple_Storage; use Simple_Storage;
3

4 procedure Show_Null_Proc is
5 S : Integer_Storage;
6 begin
7 Put_Line ("Setting 24...");
8 Set (S, "24");
9 Display (S);
10 end Show_Null_Proc;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Simple_
↪Storage_Model

MD5: 55d491d1ef72fb7be2bf0d2a212f335b

Runtime output

Setting 24...
Value: 24

In this example, we can view Storage_Model as a sort of interface for derived non-tagged
types, while the derived types — such as Integer_Storage — provide the actual imple-
mentation.
The section on null records (page 151) contains an extended example that makes use of
null procedures.

In the Ada Reference Manual
• 6.7 Null Procedures157

157 http://www.ada-auth.org/standards/22rm/html/RM-6-7.html

10.9. Null Procedures 395

http://www.ada-auth.org/standards/22rm/html/RM-6-7.html

Advanced Journey With Ada: A Flight In Progress

396 Chapter 10. Subprograms

CHAPTER

ELEVEN

EXCEPTIONS

11.1 Asserts

When we want to indicate a condition in the code that must always be valid, we can use
the pragma Assert. As the name implies, when we use this pragma, we're asserting some
truth about the source-code. (We can also use the procedural form, as we'll see later.)

Important
Another method to assert the truth about the source-code is to use pre and post-conditions.

A simple assert has this form:

Listing 1: show_pragma_assert.adb
1 procedure Show_Pragma_Assert is
2 I : constant Integer := 10;
3

4 pragma Assert (I = 10);
5 begin
6 null;
7 end Show_Pragma_Assert;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Pragma_Assert_1
MD5: 8d40817304515169d0d5670904ca1e01

In this example, we're asserting that the value of I is always 10. We could also display a
message if the assertion is false:

Listing 2: show_pragma_assert.adb
1 procedure Show_Pragma_Assert is
2 I : constant Integer := 11;
3

4 pragma Assert (I = 10, "I is not 10");
5 begin
6 null;
7 end Show_Pragma_Assert;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Pragma_Assert_2
MD5: b70fa67c92542ade39c388964ce12302

Build output

397

Advanced Journey With Ada: A Flight In Progress

show_pragma_assert.adb:4:19: warning: assertion will fail at run time [-gnatw.a]

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : I is not 10

Similarly, we can use the procedural form of Assert. For example, the code above can
implemented as follows:

Listing 3: show_procedure_assert.adb
1 with Ada.Assertions; use Ada.Assertions;
2

3 procedure Show_Procedure_Assert is
4 I : constant Integer := 11;
5

6 begin
7 Assert (I = 10, "I is not 10");
8 end Show_Procedure_Assert;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Procedure_Assert
MD5: cbab23645ff89d4adffcaaddaeb6f0e3

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : I is not 10

Note that a call to Assert is simply translated to a check — and the Assertion_Error
exception from the Ada.Assertions package being raised in the case that the check fails.
For example, the code above roughly corresponds to this:

Listing 4: show_assertion_error.adb
1 with Ada.Assertions; use Ada.Assertions;
2

3 procedure Show_Assertion_Error is
4 I : constant Integer := 11;
5

6 begin
7 if I /= 10 then
8 raise Assertion_Error with "I is not 10";
9 end if;
10

11 end Show_Assertion_Error;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Assertion_Error
MD5: 9c846acf998ca7adabd47c3b5a6ce39f

Runtime output

raised ADA.ASSERTIONS.ASSERTION_ERROR : I is not 10

In the Ada Reference Manual

398 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

• 11.4.2 Pragmas Assert and Assertion_Policy158

11.2 Assertion policies

We can activate and deactivate assertions based on assertion policies. We can do that by
using the pragma Assertion_Policy. As an argument to this pragma, we indicate whether
a specific policy must be checked or ignored.
For example, we can deactivate assertion checks by specifying Assert => Ignore. Simi-
larly, we can activate assertion checks by specifying Assert => Check. Let's see a code
example:

Listing 5: show_pragma_assertion_policy.adb
1 procedure Show_Pragma_Assertion_Policy is
2 I : constant Integer := 11;
3

4 pragma Assertion_Policy (Assert => Ignore);
5 begin
6 pragma Assert (I = 10);
7 end Show_Pragma_Assertion_Policy;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Assertion_Policies.Pragma_
↪Assertion_Policy_1

MD5: 39b8aa4a34b6169c03b54074f4136519

Build output

show_pragma_assertion_policy.adb:6:19: warning: assertion would fail at run time [-
↪gnatw.a]

Here, we're specifying that asserts shall be ignored. Therefore, the call to the pragma
Assert doesn't raise an exception. If we replace Ignore with Check in the call to Asser-
tion_Policy, the assert will raise the Assertion_Error exception.
The following table presents all policies that we can set:

Policy Descripton
Assert Check assertions
Static_Predicate Check static predicates
Dynamic_Predicate Check dynamic predicates
Pre Check pre-conditions
Pre'Class Check pre-condition of classes of tagged types
Post Check post-conditions
Post'Class Check post-condition of classes of tagged types
Type_Invariant Check type invariants
Type_Invariant'Class Check type invariant of classes of tagged types

In the GNAT toolchain
Compilers are free to include policies that go beyond the ones listed above. For example,
GNAT includes the following policies — called assertion kinds in this context:
158 http://www.ada-auth.org/standards/22rm/html/RM-11-4-2.html

11.2. Assertion policies 399

http://www.ada-auth.org/standards/22rm/html/RM-11-4-2.html

Advanced Journey With Ada: A Flight In Progress

• Assertions

• Assert_And_Cut

• Assume

• Contract_Cases

• Debug

• Ghost

• Initial_Condition

• Invariant

• Invariant'Class

• Loop_Invariant

• Loop_Variant

• Postcondition

• Precondition

• Predicate

• Refined_Post

• Statement_Assertions

• Subprogram_Variant

Also, in addtion to Check and Ignore, GNAT allows you to set a policy to Disable and
Suppressible.
You can read more about them in the GNAT Reference Manual159.

You can specify multiple policies in a single call to Assertion_Policy. For example, you
can activate all policies by writing:

Listing 6: show_multiple_assertion_policies.adb
1 procedure Show_Multiple_Assertion_Policies is
2 pragma Assertion_Policy
3 (Assert => Check,
4 Static_Predicate => Check,
5 Dynamic_Predicate => Check,
6 Pre => Check,
7 Pre'Class => Check,
8 Post => Check,
9 Post'Class => Check,
10 Type_Invariant => Check,
11 Type_Invariant'Class => Check);
12 begin
13 null;
14 end Show_Multiple_Assertion_Policies;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Assertion_Policies.Multiple_
↪Assertion_Policies

MD5: 3abbf97160b755b84cc4f7e652ca5551

159 https://gcc.gnu.org/onlinedocs/gnat_rm/Pragma-Assertion_005fPolicy.html

400 Chapter 11. Exceptions

https://gcc.gnu.org/onlinedocs/gnat_rm/Pragma-Assertion_005fPolicy.html

Advanced Journey With Ada: A Flight In Progress

In the GNAT toolchain
With GNAT, policies can be specified in multiple ways. In addition to calls to Asser-
tion_Policy, you can use configuration pragmas files160. You can use these files to specify
all pragmas that are relevant to your application, including Assertion_Policy. In addition,
you can manage the granularity for those pragmas. For example, you can use a global
configuration pragmas file for your complete application, or even different files for each
source-code file you have.
Also, by default, all policies listed in the table above are deactivated, i.e. they're all set to
Ignore. You can use the command-line switch -gnata to activate them.

Note that the Assert procedure raises an exception independently of the assertion policy
(Assertion_Policy (Assert => Ignore)). For example:

Listing 7: show_assert_procedure_policy.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Assertions; use Ada.Assertions;
3

4 procedure Show_Assert_Procedure_Policy is
5 pragma Assertion_Policy (Assert => Ignore);
6

7 I : constant Integer := 1;
8 begin
9 Put_Line ("------ Pragma Assert -----");
10 pragma Assert (I = 0);
11

12 Put_Line ("---- Procedure Assert ----");
13 Assert (I = 0);
14

15 Put_Line ("Finished.");
16 end Show_Assert_Procedure_Policy;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Assertion_Policies.Assert_
↪Procedure_Policy

MD5: 7be3bab24d856081afeddabe40afc84f

Build output

show_assert_procedure_policy.adb:10:19: warning: assertion would fail at run time␣
↪[-gnatw.a]

Runtime output

------ Pragma Assert -----
---- Procedure Assert ----

raised ADA.ASSERTIONS.ASSERTION_ERROR : a-assert.adb:42

Here, the pragma Assert is ignored due to the assertion policy. However, the call to Assert
is not ignored.

In the Ada Reference Manual
• 11.4.2 Pragmas Assert and Assertion_Policy161

160 https://gcc.gnu.org/onlinedocs/gnat_ugn/The-Configuration-Pragmas-Files.html#The-Configuration-Pragmas-Files
161 http://www.ada-auth.org/standards/22rm/html/RM-11-4-2.html

11.2. Assertion policies 401

https://gcc.gnu.org/onlinedocs/gnat_ugn/The-Configuration-Pragmas-Files.html#The-Configuration-Pragmas-Files
http://www.ada-auth.org/standards/22rm/html/RM-11-4-2.html

Advanced Journey With Ada: A Flight In Progress

11.3 Checks and exceptions

This table shows all language-defined checks and the associated exceptions:

Check Exception
Access_Check Constraint_Error
Discriminant_Check Constraint_Error
Division_Check Constraint_Error
Index_Check Constraint_Error
Length_Check Constraint_Error
Overflow_Check Constraint_Error
Range_Check Constraint_Error
Tag_Check Constraint_Error
Accessibility_Check Program_Error
Allocation_Check Program_Error
Elaboration_Check Program_Error
Storage_Check Storage_Error

In addition, we can use All_Checks to refer to all those checks above at once.
Let's discuss each check and see code examples where those checks are performed. Note
that all examples are erroneous, so please avoid reusing them elsewhere.

11.3.1 Access Check

As you know, an object of an access type might be null. It would be an error to dereference
this object, as it doesn't indicate a valid position in memory. Therefore, the access check
verifies that an access object is not null when dereferencing it. For example:

Listing 8: show_access_check.adb
1 procedure Show_Access_Check is
2

3 type Integer_Access is access Integer;
4

5 AI : Integer_Access;
6 begin
7 AI.all := 10;
8 end Show_Access_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Access_
↪Check

MD5: 4db8b63efb23caa7da926d4ec9f204bf

Build output

show_access_check.adb:5:04: warning: variable "AI" is read but never assigned [-
↪gnatwv]

show_access_check.adb:7:04: warning: null value not allowed here [enabled by␣
↪default]

show_access_check.adb:7:04: warning: Constraint_Error will be raised at run time␣
↪[enabled by default]

Runtime output

402 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

raised CONSTRAINT_ERROR : show_access_check.adb:7 access check failed

Here, the value of AI is null by default, so we cannot dereference it.
The access check also performs this verification when assigning to a subtype that excludes
null (not null access). (You can find more information about this topic in the section
about not null access (page 554).) For example:

Listing 9: show_access_check.adb
1 procedure Show_Access_Check is
2

3 type Integer_Access is
4 access all Integer;
5

6 type Safe_Integer_Access is
7 not null access all Integer;
8

9 AI : Integer_Access;
10 SAI : Safe_Integer_Access := new Integer;
11

12 begin
13 SAI := Safe_Integer_Access (AI);
14 end Show_Access_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Access_
↪Check_2

MD5: 47895a404e2a111476cd67f43c12d4b5

Build output

show_access_check.adb:9:04: warning: variable "AI" is read but never assigned [-
↪gnatwv]

show_access_check.adb:13:32: warning: null value not allowed here [enabled by␣
↪default]

show_access_check.adb:13:32: warning: Constraint_Error will be raised at run time␣
↪[enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_access_check.adb:13 access check failed

Here, the value of AI is null (by default), so we cannot assign it to SAI because its type
excludes null.
Note that, if we remove the := new Integer assignment from the declaration of SAI, the
null exclusion fails in the declaration itself (because the default value of the access type is
null).

11.3. Checks and exceptions 403

Advanced Journey With Ada: A Flight In Progress

11.3.2 Discriminant Check

As we've seen earlier, a variant record is a record with discriminants that allows for changing
its structure. In operations such as an assignment, it's important to ensure that the discrim-
inants of the objects match — i.e. to ensure that the structure of the objects matches. The
discriminant check verifies whether this is the case. For example:

Listing 10: show_discriminant_check.adb
1 procedure Show_Discriminant_Check is
2

3 type Rec (Valid : Boolean) is record
4 case Valid is
5 when True =>
6 Counter : Integer;
7 when False =>
8 null;
9 end case;
10 end record;
11

12 R : Rec (Valid => False);
13 begin
14 R := (Valid => True,
15 Counter => 10);
16 end Show_Discriminant_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.
↪Discriminant_Check

MD5: 665ab37962f8f9c129acac543b1eb15d

Build output

show_discriminant_check.adb:14:09: warning: incorrect value for discriminant "Valid
↪" [enabled by default]

show_discriminant_check.adb:14:09: warning: Constraint_Error will be raised at run␣
↪time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_discriminant_check.adb:14 discriminant check failed

Here, R's discriminant (Valid) is False, so we cannot assign an object whose Valid dis-
criminant is True.
Also, when accessing a component, the discriminant check ensures that this component
exists for the current discriminant value:

Listing 11: show_discriminant_check.adb
1 procedure Show_Discriminant_Check is
2

3 type Rec (Valid : Boolean) is record
4 case Valid is
5 when True =>
6 Counter : Integer;
7 when False =>
8 null;
9 end case;
10 end record;

(continues on next page)

404 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
11

12 R : Rec (Valid => False);
13 I : Integer;
14 begin
15 I := R.Counter;
16 end Show_Discriminant_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.
↪Discriminant_Check_2

MD5: 440973b0be7c4261ddf3c2211a2c1325

Build output

show_discriminant_check.adb:15:10: warning: component not present in subtype of
↪"Rec" defined at line 12 [enabled by default]

show_discriminant_check.adb:15:10: warning: Constraint_Error will be raised at run␣
↪time [enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_discriminant_check.adb:15 discriminant check failed

Here, R's discriminant (Valid) is False, so we cannot access the Counter component, for
it only exists when the Valid discriminant is True.

11.3.3 Division Check

The division check verifies that we're not trying to divide a value by zero when using the /,
rem and mod operators. For example:

Listing 12: ops.ads
1 package Ops is
2 function Div_Op (A, B : Integer)
3 return Integer is
4 (A / B);
5

6 function Rem_Op (A, B : Integer)
7 return Integer is
8 (A rem B);
9

10 function Mod_Op (A, B : Integer)
11 return Integer is
12 (A mod B);
13 end Ops;

Listing 13: show_division_check.adb
1 with Ops; use Ops;
2

3 procedure Show_Division_Check is
4 I : Integer;
5 begin
6 I := Div_Op (10, 0);
7 I := Rem_Op (10, 0);

(continues on next page)

11.3. Checks and exceptions 405

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 I := Mod_Op (10, 0);
9 end Show_Division_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.
↪Division_Check

MD5: 6ec0856be947eea6610cffaa0e875d45

Runtime output

raised CONSTRAINT_ERROR : ops.ads:4 divide by zero

All three calls in the Show_Division_Check procedure — to the Div_Op, Rem_Op and Mod_Op
functions — can raise an exception because we're using 0 as the second argument, which
makes the division check in those functions fail.

11.3.4 Index Check

We use indices to access components of an array. An index check verifies that the index
we're using to access a specific component is within the array's bounds. For example:

Listing 14: show_index_check.adb
1 procedure Show_Index_Check is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 function Value_Of (A : Integer_Array;
7 I : Integer)
8 return Integer
9 is
10 type Half_Integer_Array is new
11 Integer_Array (A'First ..
12 A'First + A'Length / 2);
13

14 A_2 : Half_Integer_Array := (others => 0);
15 begin
16 return A_2 (I);
17 end Value_Of;
18

19 Arr_1 : Integer_Array (1 .. 10) :=
20 (others => 1);
21

22 begin
23 Arr_1 (10) := Value_Of (Arr_1, 10);
24

25 end Show_Index_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Index_
↪Check

MD5: fa791718701c4ac805badf368df9064e

Runtime output

406 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

raised CONSTRAINT_ERROR : show_index_check.adb:16 index check failed

The range of A_2 — which is passed as an argument to the Value_Of function — is 1 to 6.
However, in that function call, we're trying to access position 10, which is outside A_2 's
bounds.

11.3.5 Length Check

In array assignments, both arrays must have the same length. To ensure that this is the
case, a length check is performed. For example:

Listing 15: show_length_check.adb
1 procedure Show_Length_Check is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 procedure Assign (To : out Integer_Array;
7 From : Integer_Array) is
8 begin
9 To := From;
10 end Assign;
11

12 Arr_1 : Integer_Array (1 .. 10);
13 Arr_2 : Integer_Array (1 .. 9) :=
14 (others => 1);
15

16 begin
17 Assign (Arr_1, Arr_2);
18 end Show_Length_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Length_
↪Check

MD5: a521afd0a46a67d260e8b0bd5f046ce4

Runtime output

raised CONSTRAINT_ERROR : show_length_check.adb:9 length check failed

Here, the length of Arr_1 is 10, while the length of Arr_2 is 9, so we cannot assign Arr_2
(From parameter) to Arr_1 (To parameter) in the Assign procedure.

11.3.6 Overflow Check

Operations on scalar objects might lead to overflow, which, if not checked, lead to wrong
information being computed and stored. Therefore, an overflow check verifies that the
value of a scalar object is within the base range of its type. For example:

Listing 16: show_overflow_check.adb
1 procedure Show_Overflow_Check is
2 A, B : Integer;
3 begin

(continues on next page)

11.3. Checks and exceptions 407

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4 A := Integer'Last;
5 B := 1;
6

7 A := A + B;
8 end Show_Overflow_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.
↪Overflow_Check

MD5: baa46d9085cbd14863aaa7e24dc7b9cc

Build output

show_overflow_check.adb:7:11: warning: value not in range of type "Standard.Integer
↪" [enabled by default]

show_overflow_check.adb:7:11: warning: Constraint_Error will be raised at run time␣
↪[enabled by default]

Runtime output

raised CONSTRAINT_ERROR : show_overflow_check.adb:7 overflow check failed

In this example, A already has the last possible value of the Integer'Base range, so in-
creasing it by one causes an overflow error.

11.3.7 Range Check

The range check verifies that a scalar value is within a specific range — for instance, the
range of a subtype. Let's see an example:

Listing 17: show_range_check.adb
1 procedure Show_Range_Check is
2

3 subtype Int_1_10 is Integer range 1 .. 10;
4

5 I : Int_1_10;
6

7 begin
8 I := 11;
9 end Show_Range_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Range_
↪Check

MD5: 54b1d67d98d97a58d4265a854fcfa992

Build output

show_range_check.adb:8:09: warning: value not in range of type "Int_1_10" defined␣
↪at line 3 [enabled by default]

show_range_check.adb:8:09: warning: Constraint_Error will be raised at run time␣
↪[enabled by default]

Runtime output

408 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

raised CONSTRAINT_ERROR : show_range_check.adb:8 range check failed

In this example, we're trying to assign 11 to the variable I of the Int_1_10 subtype, which
has a range from 1 to 10. Since 11 is outside that range, the range check fails.

11.3.8 Tag Check

The tag check ensures that the tag of a tagged object matches the expected tag in a dis-
patching operation. For example:

Listing 18: p.ads
1 package P is
2

3 type T is tagged null record;
4 type T1 is new T with null record;
5 type T2 is new T with null record;
6

7 end P;

Listing 19: show_tag_check.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Tags;
3

4 with P; use P;
5

6 procedure Show_Tag_Check is
7

8 A1 : T'Class := T1'(null record);
9 A2 : T'Class := T2'(null record);
10

11 begin
12 Put_Line ("A1'Tag: "
13 & Ada.Tags.Expanded_Name (A1'Tag));
14 Put_Line ("A2'Tag: "
15 & Ada.Tags.Expanded_Name (A2'Tag));
16

17 A2 := A1;
18

19 end Show_Tag_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Tag_
↪Check

MD5: 5a685be7804200a884649f54c175ee42

Runtime output

A1'Tag: P.T1
A2'Tag: P.T2

raised CONSTRAINT_ERROR : show_tag_check.adb:17 tag check failed

Here, A1 and A2 have different tags:
• A1'Tag = T1'Tag, while
• A2'Tag = T2'Tag.

11.3. Checks and exceptions 409

Advanced Journey With Ada: A Flight In Progress

Since the tags don't match, the tag check fails in the assignment of A1 to A2.

11.3.9 Accessibility Check

The accessibility check verifies that the accessibility level of an entity matches the expected
level. We discuss accessibility levels in a later chapter (page 534).
Let's look at an example that mixes access types and anonymous access types. Here, we
use an anonymous access type in the declaration of A1 and a named access type in the
declaration of A2:

Listing 20: p.ads
1 package P is
2

3 type T is tagged null record;
4 type T_Class is access all T'Class;
5

6 end P;

Listing 21: show_accessibility_check.adb
1 with P; use P;
2

3 procedure Show_Accessibility_Check is
4

5 A1 : access T'Class := new T;
6 A2 : T_Class;
7

8 begin
9 A2 := T_Class (A1);
10

11 end Show_Accessibility_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.
↪Accessibility_Check

MD5: 7120d908b55ef576db93e9a15db257f2

Build output

show_accessibility_check.adb:9:19: warning: accessibility check fails [enabled by␣
↪default]

show_accessibility_check.adb:9:19: warning: Program_Error will be raised at run␣
↪time [enabled by default]

Runtime output

raised PROGRAM_ERROR : show_accessibility_check.adb:9 accessibility check failed

The anonymous type (access T'Class), which is used in the declaration of A1, doesn't
have the same accessibility level as the T_Class type. Therefore, the accessibility check
fails during the T_Class (A1) conversion.
We can see the accessibility check failing in this example as well:

410 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

Listing 22: show_accessibility_check.adb
1 with P; use P;
2

3 procedure Show_Accessibility_Check is
4

5 A : access T'Class := new T;
6

7 procedure P (A : T_Class) is null;
8

9 begin
10 P (T_Class (A));
11

12 end Show_Accessibility_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.
↪Accessibility_Check

MD5: 97db82410dd3459249d0e7a97118b7ef

Build output

show_accessibility_check.adb:10:16: warning: accessibility check fails [enabled by␣
↪default]

show_accessibility_check.adb:10:16: warning: Program_Error will be raised at run␣
↪time [enabled by default]

Runtime output

raised PROGRAM_ERROR : show_accessibility_check.adb:10 accessibility check failed

Again, the check fails in the T_Class (A) conversion and raises a Program_Error exception.

11.3.10 Allocation Check

The allocation check ensures, when a task is about to be created, that its master has not
been completed. Also, it ensures that the finalization has not started.
This is an example adapted from AI-00280162:

Listing 23: p.ads
1 with Ada.Finalization;
2 with Ada.Unchecked_Deallocation;
3

4 package P is
5 type T1 is new
6 Ada.Finalization.Controlled with null record;
7 procedure Finalize (X : in out T1);
8

9 type T2 is new
10 Ada.Finalization.Controlled with null record;
11 procedure Finalize (X : in out T2);
12

13 X1 : T1;
14

(continues on next page)
162 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00280.txt?rev=1.12&raw=N

11.3. Checks and exceptions 411

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00280.txt?rev=1.12&raw=N

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
15 type T2_Ref is access T2;
16 procedure Free is new
17 Ada.Unchecked_Deallocation (T2, T2_Ref);
18 end P;

Listing 24: p.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body P is
4

5 procedure Finalize (X : in out T1) is
6 X2 : T2_Ref := new T2;
7 begin
8 Put_Line ("Finalizing T1...");
9 Free (X2);
10 end Finalize;
11

12 procedure Finalize (X : in out T2) is
13 begin
14 Put_Line ("Finalizing T2...");
15 end Finalize;
16

17 end P;

Listing 25: show_allocation_check.adb
1 with P; use P;
2

3 procedure Show_Allocation_Check is
4 X2 : T2_Ref := new T2;
5 begin
6 Free (X2);
7 end Show_Allocation_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.
↪Allocation_Check

MD5: 915e8ab21e550c981503c014bcceade1

Runtime output

Finalizing T2...

raised PROGRAM_ERROR : finalize/adjust raised exception

Here, in the finalization of the X1 object of T1 type, we're trying to create an object of T2 type
while the finalization of the master has already started. (Note that X1 was declared in the
P package.) This is forbidden, so the allocation check raises a Program_Error exception.

412 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

11.3.11 Elaboration Check

The elaboration check verifies that subprograms — or protected entries, or task activations
— have been elaborated before being called.
This is an example adapted from AI-00064163:

Listing 26: p.ads
1 function P return Integer;

Listing 27: p.adb
1 function P return Integer is
2 begin
3 return 1;
4 end P;

Listing 28: show_elaboration_check.adb
1 with P;
2

3 procedure Show_Elaboration_Check is
4

5 function F return Integer;
6

7 type Pointer_To_Func is
8 access function return Integer;
9

10 X : constant Pointer_To_Func := P'Access;
11

12 Y : constant Integer := F;
13 Z : constant Pointer_To_Func := X;
14

15 -- Renaming-as-body
16 function F return Integer renames Z.all;
17 begin
18 null;
19 end Show_Elaboration_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.
↪Elaboration_Check

MD5: 80a39df912aae8788296f81ee9d4a79e

Build output

show_elaboration_check.adb:12:28: warning: cannot call "F" before body seen␣
↪[enabled by default]

show_elaboration_check.adb:12:28: warning: Program_Error will be raised at run␣
↪time [enabled by default]

Runtime output

raised PROGRAM_ERROR : show_elaboration_check.adb:12 access before elaboration

This is a curious example: first, we declare a function F and assign the value returned by this
function to constant Y in its declaration. Then, we declare F as a renamed function, thereby
163 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00064.txt?rev=1.12&raw=N

11.3. Checks and exceptions 413

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00064.txt?rev=1.12&raw=N

Advanced Journey With Ada: A Flight In Progress

providing a body to F— this is called renaming-as-body. Consequently, the compiler doesn't
complain that a body is missing for function F. (If you comment out the function renaming,
you'll see that the compiler can then detect the missing body.) Therefore, at runtime, the
elaboration check fails because the body of the first declaration of the F function is actually
missing.

11.3.12 Storage Check

The storage check ensures that the storage pool has enough space when allocatingmemory.
Let's revisit an example that we discussed earlier (page 85):

Listing 29: custom_types.ads
1 package Custom_Types is
2

3 type UInt_7 is range 0 .. 127;
4

5 type UInt_7_Reserved_Access is access UInt_7
6 with Storage_Size => 8;
7

8 end Custom_Types;

Listing 30: show_storage_check.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Custom_Types; use Custom_Types;
4

5 procedure Show_Storage_Check is
6

7 RAV1, RAV2 : UInt_7_Reserved_Access;
8

9 begin
10 Put_Line ("Allocating RAV1...");
11 RAV1 := new UInt_7;
12

13 Put_Line ("Allocating RAV2...");
14 RAV2 := new UInt_7;
15

16 New_Line;
17 end Show_Storage_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.
↪Storage_Check

MD5: 4e4bd284adb1c1d97f8f7563068c18de

Runtime output

Allocating RAV1...
Allocating RAV2...

raised STORAGE_ERROR : s-poosiz.adb:108 explicit raise

On each allocation (new UInt_7), a storage check is performed. Because there isn't enough
reserved storage space before the second allocation, the checks fails and raises a Stor-
age_Error exception.

In the Ada Reference Manual

414 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

• 11.5 Suppressing Checks164

11.4 Ada.Exceptions package

Note: Parts of this section were originally published as Gem #142 : Exception-ally165

The standard Ada run-time library provides the package Ada.Exceptions. This package
provides a number of services to help analyze exceptions.
Each exception is associated with a (short) message that can be set by the code that raises
the exception, as in the following code:

raise Constraint_Error with "some message";

Historically
Since Ada 2005, we can use the raise Constraint_Error with "some message" syntax.
In Ada 95, you had to call the Raise_Exception procedure:

Ada.Exceptions.Raise_Exception -- Ada 95
(Constraint_Error'Identity, "some message");

In Ada 83, there was no way to do it at all.
The new syntax is now very convenient, and developers should be encouraged to provide
as much information as possible along with the exception.

In the GNAT toolchain
The length of the message is limited to 200 characters by default in GNAT, and messages
longer than that will be truncated.

In the Ada Reference Manual
• 11.4.1 The Package Exceptions166

11.4.1 Retrieving exception information

Exceptions also embed information set by the run-time itself that can be retrieved by calling
the Exception_Information function. The function Exception_Information also displays
the Exception_Message.
For example:

exception
when E : others =>

Put_Line
(Ada.Exceptions.Exception_Information (E));

164 http://www.ada-auth.org/standards/22rm/html/RM-11-5.html
165 https://www.adacore.com/gems/gem-142-exceptions
166 http://www.ada-auth.org/standards/22rm/html/RM-11-4-1.html

11.4. Ada.Exceptions package 415

http://www.ada-auth.org/standards/22rm/html/RM-11-5.html
https://www.adacore.com/gems/gem-142-exceptions
http://www.ada-auth.org/standards/22rm/html/RM-11-4-1.html

Advanced Journey With Ada: A Flight In Progress

In the GNAT toolchain
In the case of GNAT, the information provided by an exception might include the source
location where the exception was raised and a nonsymbolic traceback.

You can also retrieve this information individually. Here, you can use:
• the Exception_Name functions — and its derivatives Wide_Exception_Name and
Wide_Wide_Exception_Name — to retrieve the name of an exception.

• the Exception_Message function to retrieve the message associated with an excep-
tion.

Let's see a complete example:

Listing 31: show_exception_info.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Exceptions; use Ada.Exceptions;
3

4 procedure Show_Exception_Info is
5

6 Custom_Exception : exception;
7

8 procedure Nested is
9 begin
10 raise Custom_Exception
11 with "We got a problem";
12 end Nested;
13

14 begin
15 Nested;
16

17 exception
18 when E : others =>
19 Put_Line ("Exception info: "
20 & Exception_Information (E));
21 Put_Line ("Exception name: "
22 & Exception_Name (E));
23 Put_Line ("Exception msg: "
24 & Exception_Message (E));
25 end Show_Exception_Info;

11.4.2 Collecting exceptions

Save_Occurrence

You can save an exception occurrence using the Save_Occurrence procedure. (Note that a
Save_Occurrence function exists as well.)
For example, the following application collects exceptions into a list and displays them after
running the Test_Exceptions procedure:

Listing 32: exception_tests.ads
1 with Ada.Exceptions; use Ada.Exceptions;
2

3 package Exception_Tests is
4

(continues on next page)

416 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 Custom_Exception : exception;
6

7 type All_Exception_Occur is
8 array (Positive range <>) of
9 Exception_Occurrence;
10

11 procedure Test_Exceptions
12 (All_Occur : in out All_Exception_Occur;
13 Last_Occur : out Integer);
14

15 end Exception_Tests;

Listing 33: exception_tests.adb
1 package body Exception_Tests is
2

3 procedure Save_To_List
4 (E : Exception_Occurrence;
5 All_Occur : in out All_Exception_Occur;
6 Last_Occur : in out Integer)
7 is
8 L : Integer renames Last_Occur;
9 O : All_Exception_Occur renames All_Occur;
10 begin
11 L := L + 1;
12 if L > O'Last then
13 raise Constraint_Error
14 with "Cannot save occurrence";
15 end if;
16

17 Save_Occurrence (Target => O (L),
18 Source => E);
19 end Save_To_List;
20

21 procedure Test_Exceptions
22 (All_Occur : in out All_Exception_Occur;
23 Last_Occur : out Integer)
24 is
25

26 procedure Nested_1 is
27 begin
28 raise Custom_Exception
29 with "We got a problem";
30 exception
31 when E : others =>
32 Save_To_List (E,
33 All_Occur,
34 Last_Occur);
35 end Nested_1;
36

37 procedure Nested_2 is
38 begin
39 raise Constraint_Error
40 with "Constraint is not correct";
41 exception
42 when E : others =>
43 Save_To_List (E,
44 All_Occur,
45 Last_Occur);
46 end Nested_2;
47

(continues on next page)

11.4. Ada.Exceptions package 417

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
48 begin
49 Last_Occur := 0;
50

51 Nested_1;
52 Nested_2;
53 end Test_Exceptions;
54

55 end Exception_Tests;

Listing 34: show_exception_info.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Exceptions; use Ada.Exceptions;
3

4 with Exception_Tests; use Exception_Tests;
5

6 procedure Show_Exception_Info is
7 L : Integer;
8 O : All_Exception_Occur (1 .. 10);
9 begin
10 Test_Exceptions (O, L);
11

12 for I in O 'First .. L loop
13 Put_Line (Exception_Information (O (I)));
14 end loop;
15 end Show_Exception_Info;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Save_
↪Occurrence

MD5: da0cc5db7039e1458dbcf8be49db969d

Runtime output

raised EXCEPTION_TESTS.CUSTOM_EXCEPTION : We got a problem

raised CONSTRAINT_ERROR : Constraint is not correct

In the Save_To_List procedure of the Exception_Tests package, we call the
Save_Occurrence procedure to store the exception occurrence to the All_Occur array.
In the Show_Exception_Info, we display all the exception occurrences that we collected.

Read and Write attributes

Similarly, we can use files to read and write exception occurrences. To do that, we can
simply use the Read and Write attributes.

Listing 35: exception_occurrence_stream.adb
1 with Ada.Text_IO;
2

3 with Ada.Streams.Stream_IO;
4 use Ada.Streams.Stream_IO;
5

6 with Ada.Exceptions;
7 use Ada.Exceptions;
8

(continues on next page)

418 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 procedure Exception_Occurrence_Stream is
10

11 Custom_Exception : exception;
12

13 S : Stream_Access;
14

15 procedure Nested_1 is
16 begin
17 raise Custom_Exception
18 with "We got a problem";
19 exception
20 when E : others =>
21 Exception_Occurrence'Write (S, E);
22 end Nested_1;
23

24 procedure Nested_2 is
25 begin
26 raise Constraint_Error
27 with "Constraint is not correct";
28 exception
29 when E : others =>
30 Exception_Occurrence'Write (S, E);
31 end Nested_2;
32

33 F : File_Type;
34 File_Name : constant String :=
35 "exceptions_file.bin";
36 begin
37 Create (F, Out_File, File_Name);
38 S := Stream (F);
39

40 Nested_1;
41 Nested_2;
42

43 Close (F);
44

45 Read_Exceptions : declare
46 E : Exception_Occurrence;
47 begin
48 Open (F, In_File, File_Name);
49 S := Stream (F);
50

51 while not End_Of_File (F) loop
52 Exception_Occurrence'Read (S, E);
53

54 Ada.Text_IO.Put_Line
55 (Exception_Information (E));
56 end loop;
57 Close (F);
58 end Read_Exceptions;
59

60 end Exception_Occurrence_Stream;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Exception_
↪Occurrence_Stream

MD5: 3d9f2bd9480aa6dcc250b249b9ef4870

Runtime output

11.4. Ada.Exceptions package 419

Advanced Journey With Ada: A Flight In Progress

raised EXCEPTION_OCCURRENCE_STREAM.CUSTOM_EXCEPTION : We got a problem

raised CONSTRAINT_ERROR : Constraint is not correct

In this example, we store the exceptions raised in the application in the excep-
tions_file.bin file. In the exception part of procedures Nested_1 and Nested_2, we
call Exception_Occurrence'Write to store an exception occurence in the file. In
the Read_Exceptions block, we read the exceptions from the the file by calling
Exception_Occurrence'Read.

11.4.3 Debugging exceptions in the GNAT toolchain

Here is a typical exception handler that catches all unexpected exceptions in the applica-
tion:

Listing 36: main.adb
1 with Ada.Exceptions;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Main is
5

6 procedure Nested is
7 begin
8 raise Constraint_Error
9 with "some message";
10 end Nested;
11

12 begin
13 Nested;
14

15 exception
16 when E : others =>
17 Put_Line
18 (Ada.Exceptions.Exception_Information (E));
19 end Main;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Exception_
↪Information

MD5: f95068ca90d79b92a7c2031322349153

Runtime output

raised CONSTRAINT_ERROR : some message

The output we get when running the application is not very informative. To get more infor-
mation, we need to rerun the program in the debugger. To make the session more inter-
esting though, we should add debug information in the executable, which means using the
-g switch in the gnatmake command.
The session would look like the following (omitting some of the output from the debugger):

> rm *.o # Cleanup previous compilation
> gnatmake -g main.adb
> gdb ./main
(gdb) catch exception

(continues on next page)

420 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
(gdb) run
Catchpoint 1, CONSTRAINT_ERROR at 0x0000000000402860 in main.nested () at main.

↪adb:8
8 raise Constraint_Error with "some message";

(gdb) bt
#0 <__gnat_debug_raise_exception> (e=0x62ec40 <constraint_error>) at s-excdeb.

↪adb:43
#1 0x000000000040426f in ada.exceptions.complete_occurrence (x=x@entry=0x637050)
at a-except.adb:934
#2 0x000000000040427b in ada.exceptions.complete_and_propagate_occurrence (
x=x@entry=0x637050) at a-except.adb:943
#3 0x00000000004042d0 in <__gnat_raise_exception> (e=0x62ec40 <constraint_error>,
message=...) at a-except.adb:982
#4 0x0000000000402860 in main.nested ()
#5 0x000000000040287c in main ()

And we now know exactly where the exception was raised. But in fact, we could have this
information directly when running the application. For this, we need to bind the applica-
tion with the switch -E, which tells the binder to store exception tracebacks in exception
occurrences. Let's recompile and rerun the application.

> rm *.o # Cleanup previous compilation
> gnatmake -g main.adb -bargs -E
> ./main

Exception name: CONSTRAINT_ERROR
Message: some message
Call stack traceback locations:
0x10b7e24d1 0x10b7e24ee 0x10b7e2472

The traceback, as is, is not very useful. We now need to use another tool that is bundled
with GNAT, called addr2line. Here is an example of its use:

> addr2line -e main --functions --demangle 0x10b7e24d1 0x10b7e24ee 0x10b7e2472
/path/main.adb:8
_ada_main
/path/main.adb:12
main
/path/b~main.adb:240

This time we do have a symbolic backtrace, which shows information similar to what we
got in the debugger.
For users on OSX machines, addr2line does not exist. On these machines, however, an
equivalent solution exists. You need to link your application with an additional switch, and
then use the tool atos, as in:

> rm *.o
> gnatmake -g main.adb -bargs -E -largs -Wl,-no_pie
> ./main

Exception name: CONSTRAINT_ERROR
Message: some message
Call stack traceback locations:
0x1000014d1 0x1000014ee 0x100001472
> atos -o main 0x1000014d1 0x1000014ee 0x100001472
main__nested.2550 (in main) (main.adb:8)
_ada_main (in main) (main.adb:12)
main (in main) + 90

11.4. Ada.Exceptions package 421

Advanced Journey With Ada: A Flight In Progress

We will now discuss a relatively new switch of the compiler, namely -gnateE. When used,
this switch will generate extra information in exception messages.
Let's amend our test program to:

Listing 37: main.adb
1 with Ada.Exceptions;
2 with Ada.Text_IO; use Ada.Text_IO;
3

4 procedure Main is
5

6 procedure Nested (Index : Integer) is
7 type T_Array is array (1 .. 2) of Integer;
8 T : constant T_Array := (10, 20);
9 begin
10 Put_Line (T (Index)'Img);
11 end Nested;
12

13 begin
14 Nested (3);
15

16 exception
17 when E : others =>
18 Put_Line
19 (Ada.Exceptions.Exception_Information (E));
20 end Main;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Exception_
↪Information

MD5: 3590f2bf48f6ed1cf7745d576924cad4

Runtime output

raised CONSTRAINT_ERROR : main.adb:10:17 index check failed
index 3 not in 1..2

When running the application, we see that the exception information (traceback) is the
same as before, but this time the exception message is set automatically by the compiler.
So we know we got a Constraint_Error because an incorrect index was used at the named
source location (main.adb, line 10). But the significant addition is the second line of the
message, which indicates exactly the cause of the error. Here, we wanted to get the ele-
ment at index 3, in an array whose range of valid indexes is from 1 to 2. (No need for a
debugger in this case.)
The column information on the first line of the exception message is also very useful when
dealing with null pointers. For instance, a line such as:

A := Rec1.Rec2.Rec3.Rec4.all;

where each of the Rec is itself a pointer, might raise Constraint_Error with a message
"access check failed". This indicates for sure that one of the pointers is null, and by using
the column information it is generally easy to find out which one it is.

422 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

11.5 Exception renaming

We can rename exceptions by using the an exception renaming declaration in this form
Renamed_Exception : exception renames Existing_Exception;. For example:

Listing 38: show_exception_renaming.adb
1 procedure Show_Exception_Renaming is
2 CE : exception renames Constraint_Error;
3 begin
4 raise CE;
5 end Show_Exception_Renaming;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exception_Renaming.Exception_
↪Renaming

MD5: ff20825162ee9eef6ac8ed329da2a80f

Runtime output

raised CONSTRAINT_ERROR : show_exception_renaming.adb:4

Exception renaming creates a new view of the original exception. If we rename an exception
from package A in package B, that exception will become visible in package B. For example:

Listing 39: internal_exceptions.ads
1 package Internal_Exceptions is
2

3 Int_E : exception;
4

5 end Internal_Exceptions;

Listing 40: test_constraints.ads
1 with Internal_Exceptions;
2

3 package Test_Constraints is
4

5 Ext_E : exception renames
6 Internal_Exceptions.Int_E;
7

8 end Test_Constraints;

Listing 41: show_exception_renaming_view.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Ada.Exceptions; use Ada.Exceptions;
3

4 with Test_Constraints; use Test_Constraints;
5

6 procedure Show_Exception_Renaming_View is
7 begin
8 raise Ext_E;
9 exception
10 when E : others =>
11 Put_Line
12 (Ada.Exceptions.Exception_Information (E));
13 end Show_Exception_Renaming_View;

11.5. Exception renaming 423

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exception_Renaming.Exception_
↪Renaming_View

MD5: a44e2698170c6fab79241d0f33ef8c2e

Runtime output

raised INTERNAL_EXCEPTIONS.INT_E : show_exception_renaming_view.adb:8

Here, we're renaming the Int_E exception in the Test_Constraints package. The Int_E
exception isn't directly visible in the Show_Exception_Renaming procedure because we're
not withing the Internal_Exceptions package. However, it is indirectly visible in that
procedure via the renaming (Ext_E) in the Test_Constraints package.

In the Ada Reference Manual
• 8.5.2 Exception Renaming Declarations167

11.6 Out and Uninitialized

Note: This section was originally written by Robert Dewar and published as Gem #150:
Out and Uninitialized168

Perhaps surprisingly, the Ada standard indicates cases where objects passed to out and in
out parameters might not be updated when a procedure terminates due to an exception.
Let's take an example:

Listing 42: show_out_uninitialized.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Show_Out_Uninitialized is
3

4 procedure Local (A : in out Integer;
5 Error : Boolean) is
6 begin
7 A := 1;
8

9 if Error then
10 raise Program_Error;
11 end if;
12 end Local;
13

14 B : Integer := 0;
15

16 begin
17 Local (B, Error => True);
18 exception
19 when Program_Error =>
20 Put_Line ("Value for B is"
21 & Integer'Image (B)); -- "0"
22 end Show_Out_Uninitialized;

167 http://www.ada-auth.org/standards/22rm/html/RM-8-5-2.html
168 https://www.adacore.com/gems/gem-150out-and-uninitialized

424 Chapter 11. Exceptions

http://www.ada-auth.org/standards/22rm/html/RM-8-5-2.html
https://www.adacore.com/gems/gem-150out-and-uninitialized
https://www.adacore.com/gems/gem-150out-and-uninitialized

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_
↪Uninitialized_1

MD5: cebcf14e9fd088e38b98a5132d9fd998

Runtime output

Value for B is 0

This program outputs a value of 0 for B, whereas the code indicates that A is assigned before
raising the exception, and so the reader might expect B to also be updated.
The catch, though, is that a compiler must by default pass objects of elementary types
(scalars and access types) by copy and might choose to do so for other types (records, for
example), including when passing out and in out parameters. So what happens is that
while the formal parameter A is properly initialized, the exception is raised before the new
value of A has been copied back into B (the copy will only happen on a normal return).

In the GNAT toolchain
In general, any code that reads the actual object passed to an out or in out parameter
after an exception is suspect and should be avoided. GNAT has useful warnings here, so
that if we simplify the above code to:

Listing 43: show_out_uninitialized_warnings.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Out_Uninitialized_Warnings is
4

5 procedure Local (A : in out Integer) is
6 begin
7 A := 1;
8 raise Program_Error;
9 end Local;
10

11 B : Integer := 0;
12

13 begin
14 Local (B);
15 exception
16 when others =>
17 Put_Line ("Value for B is"
18 & Integer'Image (B));
19 end Show_Out_Uninitialized_Warnings;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_
↪Uninitialized_2

MD5: 5b6960974c729ea37a70fb313d6e5084

Build output

show_out_uninitialized_warnings.adb:7:10: warning: assignment to pass-by-copy␣
↪formal may have no effect [enabled by default]

show_out_uninitialized_warnings.adb:7:10: warning: "raise" statement may result in␣
↪abnormal return (RM 6.4.1(17)) [enabled by default]

Runtime output

11.6. Out and Uninitialized 425

Advanced Journey With Ada: A Flight In Progress

Value for B is 0

We now get a compilation warning that the pass-by-copy formal may have no effect.
Of course, GNAT is not able to point out all such errors (see first example above), which in
general would require full flow analysis.

The behavior is different when using parameter types that the standard mandates be
passed by reference, such as tagged types for instance. So the following code will work
as expected, updating the actual parameter despite the exception:

Listing 44: show_out_initialized_rec.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Out_Initialized_Rec is
4

5 type Rec is tagged record
6 Field : Integer;
7 end record;
8

9 procedure Local (A : in out Rec) is
10 begin
11 A.Field := 1;
12 raise Program_Error;
13 end Local;
14

15 V : Rec;
16

17 begin
18 V.Field := 0;
19 Local (V);
20 exception
21 when others =>
22 Put_Line ("Value of Field is"
23 & V.Field'Img); -- "1"
24 end Show_Out_Initialized_Rec;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_
↪Uninitialized_3

MD5: 370031a404657ea18ffabf3c1d507cd4

Runtime output

Value of Field is 1

In the GNAT toolchain
It's worth mentioning that GNAT provides a pragma called Export_Procedure that forces
reference semantics on out parameters. Use of this pragma would ensure updates of the
actual parameter prior to abnormal completion of the procedure. However, this pragma
only applies to library-level procedures, so the examples above have to be rewritten to
avoid the use of a nested procedure, and really this pragma is intended mainly for use in
interfacing with foreign code. The code below shows an example that ensures that B is set
to 1 after the call to Local:

426 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

Listing 45: exported_procedures.ads
1 package Exported_Procedures is
2

3 procedure Local (A : in out Integer;
4 Error : Boolean);
5 pragma Export_Procedure
6 (Local,
7 Mechanism => (A => Reference));
8

9 end Exported_Procedures;

Listing 46: exported_procedures.adb
1 package body Exported_Procedures is
2

3 procedure Local (A : in out Integer;
4 Error : Boolean) is
5 begin A := 1;
6 if Error then
7 raise Program_Error;
8 end if;
9 end Local;
10

11 end Exported_Procedures;

Listing 47: show_out_reference.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Exported_Procedures;
4 use Exported_Procedures;
5

6 procedure Show_Out_Reference is
7 B : Integer := 0;
8 begin
9 Local (B, Error => True);
10 exception
11 when Program_Error =>
12 Put_Line ("Value for B is"
13 & Integer'Image (B)); -- "1"
14 end Show_Out_Reference;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_
↪Uninitialized_4

MD5: aed2788be2b3ceeec19b28421c53fc66

Runtime output

Value for B is 1

In the case of direct assignments to global variables, the behavior in the presence of excep-
tions is somewhat different. For predefined exceptions, most notably Constraint_Error,
the optimization permissions allow some flexibility in whether a global variable is or is not
updated when an exception occurs (see Ada RM 11.6169). For instance, the following code
makes an incorrect assumption:
169 http://www.ada-auth.org/standards/22rm/html/RM-11-6.html

11.6. Out and Uninitialized 427

http://www.ada-auth.org/standards/22rm/html/RM-11-6.html

Advanced Journey With Ada: A Flight In Progress

X := 0; -- about to try addition
Y := Y + 1; -- see if addition raises exception
X := 1 -- addition succeeded

A program is not justified in assuming that X = 0 if the addition raises an exception (as-
suming X is a global here). So any such assumptions in a program are incorrect code which
should be fixed.

In the Ada Reference Manual
• 11.6 Exceptions and Optimization170

11.7 Suppressing checks

11.7.1 pragma Suppress

Note: This section was originally written by Gary Dismukes and published as Gem #63:
The Effect of Pragma Suppress171.

One of Ada's key strengths has always been its strong typing. The language imposes strin-
gent checking of type and subtype properties to help prevent accidental violations of the
type system that are a common source of program bugs in other less-strict languages such
as C. This is done using a combination of compile-time restrictions (legality rules), that pro-
hibit mixing values of different types, together with run-time checks to catch violations of
various dynamic properties. Examples are checking values against subtype constraints and
preventing dereferences of null access values.
At the same time, Ada does provide certain "loophole" features, such as
Unchecked_Conversion, that allow selective bypassing of the normal safety features,
which is sometimes necessary when interfacing with hardware or code written in other
languages.
Ada also permits explicit suppression of the run-time checks that are there to ensure that
various properties of objects are not violated. This suppression can be done using pragma
Suppress, as well as by using a compile-time switch on most implementations — in the
case of GNAT, with the -gnatp switch.
In addition to allowing all checks to be suppressed, pragma Suppress supports suppression
of specific forms of check, such as Index_Check for array indexing, Range_Check for scalar
bounds checking, and Access_Check for dereferencing of access values. (See section 11.5
of the Ada Reference Manual for further details.)
Here's a simple example of suppressing index checks within a specific subprogram:

procedure Main is
procedure Sort_Array (A : in out Some_Array) is

pragma Suppress (Index_Check);
-- ^^^^^^^^^^^^^^^^^^^^^
-- eliminate check overhead

begin
...

end Sort_Array;
end Main;

170 http://www.ada-auth.org/standards/22rm/html/RM-11-6.html
171 https://www.adacore.com/gems/gem-63

428 Chapter 11. Exceptions

http://www.ada-auth.org/standards/22rm/html/RM-11-6.html
https://www.adacore.com/gems/gem-63
https://www.adacore.com/gems/gem-63

Advanced Journey With Ada: A Flight In Progress

Unlike a feature such as Unchecked_Conversion, however, the purpose of check suppres-
sion is not to enable programs to subvert the type system, though many programmers
seem to have that misconception.
What's important to understand about pragma Suppress is that it only gives permission to
the implementation to remove checks, but doesn't require such elimination. The intention
of Suppress is not to allow bypassing of Ada semantics, but rather to improve efficiency,
and the Ada Reference Manual has a clear statement to that effect in the note in RM-11.5,
paragraph 29:

There is no guarantee that a suppressed check is actually removed; hence a
pragma Suppress should be used only for efficiency reasons.

There is associated Implementation Advice that recommends that implementations should
minimize the code executed for checks that have been suppressed, but it's still the respon-
sibility of the programmer to ensure that the correct functioning of the program doesn't
depend on checks not being performed.
There are various reasons why a compiler might choose not to remove a check. On some
hardware, certain checks may be essentially free, such as null pointer checks or arithmetic
overflow, and it might be impractical or add extra cost to suppress the check. Another
example where it wouldn't make sense to remove checks is for an operation implemented
by a call to a run-time routine, where the check might be only a small part of a more
expensive operation done out of line.
Furthermore, in many cases GNAT can determine at compile time that a given run-time
check is guaranteed to be violated. In such situations, it gives a warning that an exception
will be raised, and generates code specifically to raise the exception. Here's an example:

X : Integer range 1..10 := ...;

..

if A > B then
X := X + 1;

..
end if;

For the assignment incrementing X, the compiler will normally generate machine code
equivalent to:

Temp := X + 1;
if Temp > 10 then

raise Constraint_Error;
end if;
X := Temp;

If range checks are suppressed, then the compiler can just generate the increment and
assignment. However, if the compiler is able to somehow prove that X = 10 at this point,
it will issue a warning, and replace the entire assignment with simply:

raise Constraint_Error;

even though checks are suppressed. This is appropriate, because
1. we don't care about the efficiency of buggy code, and
2. there is no "extra" cost to the check, because if we reach that point, the code will
unconditionally fail.

One other important thing to note about checks and pragma Suppress is this statement in
the Ada RM (RM-11.5, paragraph 26):

If a given check has been suppressed, and the corresponding error situation oc-
curs, the execution of the program is erroneous.

11.7. Suppressing checks 429

Advanced Journey With Ada: A Flight In Progress

In Ada, erroneous execution is a bad situation to be in, because it means that the execu-
tion of your program could have arbitrary nasty effects, such as unintended overwriting
of memory. Note also that a program whose "correct" execution somehow depends on a
given check being suppressed might work as the programmer expects, but could still fail
when compiled with a different compiler, or for a different target, or even with a newer
version of the same compiler. Other changes such as switching on optimization or making
a change to a totally unrelated part of the code could also cause the code to start failing.
So it's definitely not wise to write code that relies on checks being removed. In fact, it really
only makes sense to suppress checks once there's good reason to believe that the checks
can't fail, as a result of testing or other analysis. Otherwise, you're removing an important
safety feature of Ada that's intended to help catch bugs.

11.7.2 pragma Unsuppress

We can use pragma Unsuppress to reverse the effect of a pragma Suppress. While pragma
Suppress gives permission to the compiler to remove a specific check, pragma Unsuppress
revokes that permission.
Let's see an example:

Listing 48: show_index_check.adb
1 procedure Show_Index_Check is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 pragma Suppress (Index_Check);
7 -- from now on, the compiler may
8 -- eliminate index checks...
9

10 function Unchecked_Value_Of
11 (A : Integer_Array;
12 I : Integer)
13 return Integer
14 is
15 type Half_Integer_Array is new
16 Integer_Array (A'First ..
17 A'First + A'Length / 2);
18

19 A_2 : Half_Integer_Array := (others => 0);
20 begin
21 return A_2 (I);
22 end Unchecked_Value_Of;
23

24 pragma Unsuppress (Index_Check);
25 -- from now on, index checks are
26 -- typically performed...
27

28 function Value_Of
29 (A : Integer_Array;
30 I : Integer)
31 return Integer
32 is
33 type Half_Integer_Array is new
34 Integer_Array (A'First ..
35 A'First + A'Length / 2);
36

37 A_2 : Half_Integer_Array := (others => 0);
(continues on next page)

430 Chapter 11. Exceptions

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
38 begin
39 return A_2 (I);
40 end Value_Of;
41

42 Arr_1 : Integer_Array (1 .. 10) :=
43 (others => 1);
44

45 begin
46 Arr_1 (10) := Unchecked_Value_Of (Arr_1, 10);
47 Arr_1 (10) := Value_Of (Arr_1, 10);
48

49 end Show_Index_Check;

Code block metadata

Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Pragma_Unsuppress.Pragma_
↪Unsuppress

MD5: 0585b78fd57913d3172c7ab1ea6f4864

Runtime output

raised CONSTRAINT_ERROR : show_index_check.adb:39 index check failed

In this example, we first use a pragma Suppress (Index_Check), so the compiler is allowed
to remove the index check from the Unchecked_Value_Of function. (Therefore, depending
on the compiler, the call to the Unchecked_Value_Of function may complete without raising
an exception.) Of course, in this specific example, suppressing the index check masks a
severe issue.
In contrast, an index check is performed in the Value_Of function because of the pragma
Unsuppress. As a result, the index checks fails in the call to this function, which raises a
Constraint_Error exception.

In the Ada Reference Manual
• 11.5 Suppressing Checks172

172 http://www.ada-auth.org/standards/22rm/html/RM-11-5.html

11.7. Suppressing checks 431

http://www.ada-auth.org/standards/22rm/html/RM-11-5.html

Advanced Journey With Ada: A Flight In Progress

432 Chapter 11. Exceptions

Part III

Modular programming

433

CHAPTER

TWELVE

PACKAGES

12.1 Package renaming

We've seen in the Introduction to Ada course that we can rename packages173.

In the Ada Reference Manual
• 10.1.1 Compilation Units - Library Units174

12.1.1 Grouping packages

A use-case that we haven't mentioned in that course is that we can apply package renaming
to group individual packages into a common hierarchy. For example:

Listing 1: driver_m1.ads
1 package Driver_M1 is
2

3 end Driver_M1;

Listing 2: driver_m2.ads
1 package Driver_M2 is
2

3 end Driver_M2;

Listing 3: drivers.ads
1 package Drivers
2 with Pure is
3

4 end Drivers;

Listing 4: drivers-m1.ads
1 with Driver_M1;
2

3 package Drivers.M1 renames Driver_M1;

173 https://learn.adacore.com/courses/intro-to-ada/chapters/modular_programming.html#
intro-ada-package-renaming
174 http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html

435

https://learn.adacore.com/courses/intro-to-ada/chapters/modular_programming.html#intro-ada-package-renaming
http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html

Advanced Journey With Ada: A Flight In Progress

Listing 5: drivers-m2.ads
1 with Driver_M2;
2

3 package Drivers.M2 renames Driver_M2;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_
↪Renaming_1

MD5: 8d6a6bec32f7ec4397de1faf9f0b44d9

Here, we're renaming the Driver_M1 and Driver_M2 packages as child packages of the
Drivers package, which is a pure package.

Important
Note that a package that is renamed as a child package cannot refer to information from its
(non-renamed) parent. In other words, Driver_M1 (renamed as Drivers.M1) cannot refer
to information from the Drivers package. For example:

Listing 6: driver_m1.ads
1 package Driver_M1 is
2

3 Counter_2 : Integer := Drivers.Counter;
4

5 end Driver_M1;

Listing 7: drivers.ads
1 package Drivers is
2

3 Counter : Integer := 0;
4

5 end Drivers;

Listing 8: drivers-m1.ads
1 with Driver_M1;
2

3 package Drivers.M1 renames Driver_M1;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_
↪Renaming_1_Refer_To_Parent

MD5: d174746d8151d9a2cd048ad44e853850

Build output

driver_m1.ads:3:27: error: "Drivers" is undefined
gprbuild: *** compilation phase failed

As expected, compilation fails here because Drivers.Counter isn't visible in Driver_M1,
even though the renaming (Drivers.M1) creates a virtual hierarchy.

436 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

12.1.2 Child of renamed package

Note that we cannot create a child package using a parent package name that was intro-
duced by a renaming. For example, let's say we want to create a child package Ext for
the Drivers.M1 package we've seen earlier. We cannot just declare a Drivers.M1.Ext
package like this:

package Drivers.M1.Ext is

end Drivers.M1.Ext;

because the parent unit cannot be a renaming. The solution is to actually extend the original
(non-renamed) package:

Listing 9: driver_m1-ext.ads
1 package Driver_M1.Ext is
2

3 end Driver_M1.Ext;

Listing 10: dummy.adb
1 -- A package called Drivers.M1.Ext is
2 -- automatically available!
3

4 with Drivers.M1.Ext;
5

6 procedure Dummy is
7 begin
8 null;
9 end Dummy;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_
↪Renaming_1

MD5: e338d668dbd98b1a3917a8d3d948a439

This works fine because any child package of a package P is also a child package of a
renamed version of P. (Therefore, because Ext is a child package of Driver_M1, it is also a
child package of the renamed Drivers.M1 package.)

12.1.3 Backwards-compatibility via renaming

We can also use renaming to ensure backwards-compatibility when changing the package
hierarchy. For example, we could adapt the previous source-code by:
• converting Driver_M1 and Driver_M2 to child packages of Drivers, and
• using package renaming to mimic the original names (Driver_M1 and Driver_M2).

This is the adapted code:

Listing 11: drivers.ads
1 package Drivers
2 with Pure is
3

4 end Drivers;

12.1. Package renaming 437

Advanced Journey With Ada: A Flight In Progress

Listing 12: drivers-m1.ads
1 -- We've converted Driver_M1 to
2 -- Drivers.M1:
3

4 package Drivers.M1 is
5

6 end Drivers.M1;

Listing 13: drivers-m2.ads
1 -- We've converted Driver_M2 to
2 -- Drivers.M2:
3

4 package Drivers.M2 is
5

6 end Drivers.M2;

Listing 14: driver_m1.ads
1 -- Original Driver_M1 package still
2 -- available via package renaming:
3

4 with Drivers.M1;
5

6 package Driver_M1 renames Drivers.M1;

Listing 15: driver_m2.ads
1 -- Original Driver_M2 package still
2 -- available via package renaming:
3

4 with Drivers.M2;
5

6 package Driver_M2 renames Drivers.M2;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_
↪Renaming_2

MD5: 27f8066b5f5954514fea51b6e9b9de81

Now, M1 and M2 are actual child packages of Drivers, but their original names are still
available. By doing so, we ensure that existing software that makes use of the original
packages doesn't break.

12.2 Private packages

In this section, we discuss the concept of private packages. However, before we proceed
with the discussion, let's recapitulate some important ideas that we've seen earlier.
In the Introduction to Ada course175, we've seen that encapsulation plays an important
role in modular programming. By using the private part of a package specification, we
can disclose some information, but, at the same time, prevent that this information gets
accessed where it shouldn't be used directly. Similarly, we've seen that we can use the
175 https://learn.adacore.com/courses/intro-to-ada/chapters/privacy.html#intro-ada-course-privacy

438 Chapter 12. Packages

https://learn.adacore.com/courses/intro-to-ada/chapters/privacy.html#intro-ada-course-privacy

Advanced Journey With Ada: A Flight In Progress

private part of a package to distinguish between the partial and full view (page 35) of a
data type.
Themain application of private packages is to create private child packages, whose purpose
is to serve as internal implementation packages within a package hierarchy. By doing so,
we can expose the internals to other public child packages, but prevent that external clients
can directly access them.
As we'll see next, there are many rules that ensure that internal visibility is enforced for
those private child packages. At the same time, the same rules ensure that private pack-
ages aren't visible outside of the package hierarchy.

12.2.1 Declaration and usage

We declare private packages by using the private keyword. For example, let's say we have
a package named Data_Processing:

Listing 16: data_processing.ads
1 package Data_Processing is
2

3 -- ...
4

5 end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package_Decl

MD5: 502811212890785d90c6f891d7f8e557

We simply write private package to declare a private child package named Calculations:

Listing 17: data_processing-calculations.ads
1 private package Data_Processing.Calculations is
2

3 -- ...
4

5 end Data_Processing.Calculations;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package_Decl

MD5: 20df8b2ac4c9aa93f03a12afd9b7ef30

Let's see a complete example:

Listing 18: data_processing.ads
1 package Data_Processing is
2

3 type Data is private;
4

5 procedure Process (D : in out Data);
6

7 private
8

9 type Data is null record;
(continues on next page)

12.2. Private packages 439

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10

11 end Data_Processing;

Listing 19: data_processing-calculations.ads
1 private package Data_Processing.Calculations is
2

3 procedure Calculate (D : in out Data);
4

5 end Data_Processing.Calculations;

Listing 20: data_processing.adb
1 with Data_Processing.Calculations;
2 use Data_Processing.Calculations;
3

4 package body Data_Processing is
5

6 procedure Process (D : in out Data) is
7 begin
8 Calculate (D);
9 end Process;
10

11 end Data_Processing;

Listing 21: data_processing-calculations.adb
1 package body Data_Processing.Calculations is
2

3 procedure Calculate (D : in out Data) is
4 begin
5 -- Dummy implementation...
6 null;
7 end Calculate;
8

9 end Data_Processing.Calculations;

Listing 22: test_data_processing.adb
1 with Data_Processing; use Data_Processing;
2

3 procedure Test_Data_Processing is
4 D : Data;
5 begin
6 Process (D);
7 end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package

MD5: 3edd5f73938e809994347b5876014d0d

In this example, we refer to the private child package Calculations in the body of the
Data_Processing package — by simply writing with Data_Processing.Calculations.
After that, we can call the Calculate procedure normally in the Process procedure.

440 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

12.2.2 Private sibling packages

We can introduce another private package Advanced_Calculations as a child of
Data_Processing and refer to the Calculations package in its specification:

Listing 23: data_processing.ads
1 package Data_Processing is
2

3 type Data is private;
4

5 procedure Process (D : in out Data);
6

7 private
8

9 type Data is null record;
10

11 end Data_Processing;

Listing 24: data_processing-calculations.ads
1 private package Data_Processing.Calculations is
2

3 procedure Calculate (D : in out Data);
4

5 end Data_Processing.Calculations;

Listing 25: data_processing-advanced_calculations.ads
1 with Data_Processing.Calculations;
2 use Data_Processing.Calculations;
3

4 private
5 package Data_Processing.Advanced_Calculations is
6

7 procedure Advanced_Calculate (D : in out Data)
8 renames Calculate;
9

10 end Data_Processing.Advanced_Calculations;

Listing 26: data_processing.adb
1 with Data_Processing.Advanced_Calculations;
2 use Data_Processing.Advanced_Calculations;
3

4 package body Data_Processing is
5

6 procedure Process (D : in out Data) is
7 begin
8 Advanced_Calculate (D);
9 end Process;
10

11 end Data_Processing;

Listing 27: data_processing-calculations.adb
1 package body Data_Processing.Calculations is
2

3 procedure Calculate (D : in out Data) is
4 begin
5 -- Dummy implementation...

(continues on next page)

12.2. Private packages 441

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 null;
7 end Calculate;
8

9 end Data_Processing.Calculations;

Listing 28: test_data_processing.adb
1 with Data_Processing; use Data_Processing;
2

3 procedure Test_Data_Processing is
4 D : Data;
5 begin
6 Process (D);
7 end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package_2

MD5: 32fc76ae13f1eecdd854a029793034d8

Note that, in the body of the Data_Processing package, we're now referring to the new
Advanced_Calculations package instead of the Calculations package.
Referring to a private child package in the specification of another private child package is
OK, but we cannot do the same in the specification of a non-private package. For example,
let's change the specification of the Advanced_Calculations and make it non-private:

Listing 29: data_processing-advanced_calculations.ads
1 with Data_Processing.Calculations;
2 use Data_Processing.Calculations;
3

4 package Data_Processing.Advanced_Calculations is
5

6 procedure Advanced_Calculate (D : in out Data)
7 renames Calculate;
8

9 end Data_Processing.Advanced_Calculations;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package_2

MD5: 27fd3bdb063a11ed7797cc44fa1e8349

Build output

data_processing-advanced_calculations.ads:1:06: error: current unit must also be␣
↪private descendant of "Data_Processing"

gprbuild: *** compilation phase failed

Now, the compilation doesn't work anymore. However, we could still refer to Calculations
packages in the body of the Advanced_Calculations package:

Listing 30: data_processing-advanced_calculations.ads
1 package Data_Processing.Advanced_Calculations is
2

3 procedure Advanced_Calculate (D : in out Data);
(continues on next page)

442 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4

5 end Data_Processing.Advanced_Calculations;

Listing 31: data_processing-advanced_calculations.adb
1 with Data_Processing.Calculations;
2 use Data_Processing.Calculations;
3

4 package body Data_Processing.Advanced_Calculations
5 is
6

7 procedure Advanced_Calculate (D : in out Data)
8 is
9 begin
10 Calculate (D);
11 end Advanced_Calculate;
12

13 end Data_Processing.Advanced_Calculations;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package_2

MD5: 3f37c129a6994c6b71a25ad17dcb440e

This works fine as expected: we can refer to private child packages in the body of another
package — as long as both packages belong to the same package tree.

12.2.3 Outside the package tree

While we can use a with-clause of a private child package in the body of the
Data_Processing package, we cannot do the same outside the package tree. For example,
we cannot refer to it in the Test_Data_Processing procedure:

Listing 32: test_data_processing.adb
1 with Data_Processing; use Data_Processing;
2

3 with Data_Processing.Calculations;
4 use Data_Processing.Calculations;
5

6 procedure Test_Data_Processing is
7 D : Data;
8 begin
9 Calculate (D);
10 end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package

MD5: c844327995b28d60c9a79b138a0f21d2

Build output

test_data_processing.adb:3:06: error: unit in with clause is private child unit
test_data_processing.adb:3:06: error: current unit must also have parent "Data_

↪Processing"
gprbuild: *** compilation phase failed

12.2. Private packages 443

Advanced Journey With Ada: A Flight In Progress

As expected, we get a compilation error because Calculations is only accessible within
the Data_Processing, but not in the Test_Data_Processing procedure.
The same restrictions apply to child packages of private packages. For example, if we
implement a child package of the Calculations package — let's name it Calculations.
Child —, we cannot refer to it in the Test_Data_Processing procedure:

Listing 33: data_processing-calculations-child.ads
1 package Data_Processing.Calculations.Child is
2

3 procedure Process (D : in out Data);
4

5 end Data_Processing.Calculations.Child;

Listing 34: data_processing-calculations-child.adb
1 package body Data_Processing.Calculations.Child is
2

3 procedure Process (D : in out Data) is
4 begin
5 Calculate (D);
6 end Process;
7

8 end Data_Processing.Calculations.Child;

Listing 35: test_data_processing.adb
1 with Data_Processing; use Data_Processing;
2

3 with Data_Processing.Calculations.Child;
4 use Data_Processing.Calculations.Child;
5

6 procedure Test_Data_Processing is
7 D : Data;
8 begin
9 Calculate (D);
10 end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package

MD5: 2eaf23ddbab72578246ac07424008d9d

Build output

test_data_processing.adb:3:06: error: unit in with clause is private child unit
test_data_processing.adb:3:06: error: current unit must also have parent "Data_

↪Processing"
test_data_processing.adb:9:04: error: "Calculate" is not visible
test_data_processing.adb:9:04: error: non-visible declaration at data_processing-

↪calculations.ads:3
gprbuild: *** compilation phase failed

Again, as expected, we get an error because Calculations.Child — being a child of a
private package — has the same restricted view as its parent package. Therefore, it can-
not be visible in the Test_Data_Processing procedure as well. We'll discuss more about
visibility later (page 454).
Note that subprograms can also be declared private. We'll see this in another section
(page 473).

444 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

Important
We've discussed package renaming in a previous section (page 435). We can rename a
package as a private package, too. For example:

Listing 36: driver_m1.ads
1 package Driver_M1 is
2

3 end Driver_M1;

Listing 37: drivers.ads
1 package Drivers
2 with Pure is
3

4 end Drivers;

Listing 38: drivers-m1.ads
1 with Driver_M1;
2

3 private package Drivers.M1 renames Driver_M1;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package_Renaming

MD5: c03584dc26abb108c9c04074234b9637

Obviously, Drivers.M1 has the same restrictions as any private package:

Listing 39: test_driver.adb
1 with Driver_M1;
2 with Drivers.M1;
3

4 procedure Test_Driver is
5 begin
6 null;
7 end Test_Driver;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_
↪Package_Renaming

MD5: 55415978604ccea4eeaeb02df13cd2f4

Build output

test_driver.adb:2:06: error: unit in with clause is private child unit
test_driver.adb:2:06: error: current unit must also have parent "Drivers"
gprbuild: *** compilation phase failed

As expected, although we can have the Driver_M1 package in a with clause of the
Test_Driver procedure, we cannot do the same in the case of the Drivers.M1 package
because it is private.

In the Ada Reference Manual

12.2. Private packages 445

Advanced Journey With Ada: A Flight In Progress

• 10.1.1 Compilation Units - Library Units176

12.3 Private with clauses

12.3.1 Definition and usage

A private with clause allows us to refer to a package in the private part of another package.
For example, if we want to refer to package P in the private part of Data, we can write
private with P:

Listing 40: p.ads
1 package P is
2

3 type T is null record;
4

5 end P;

Listing 41: data.ads
1 private with P;
2

3 package Data is
4

5 type T2 is private;
6

7 private
8

9 -- Information from P is
10 -- visible here
11 type T2 is new P.T;
12

13 end Data;

Listing 42: main.adb
1 with Data; use Data;
2

3 procedure Main is
4 A : T2;
5 begin
6 null;
7 end Main;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Simple_
↪Private_With_Clause

MD5: d0705add0dd7861c83822b0d35dacba4

As you can see in the example, as the information from P is available in the private part of
Data, we can derive a new type T2 based on T from P. However, we cannot do the same in
the visible part of Data:
176 http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html

446 Chapter 12. Packages

http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html

Advanced Journey With Ada: A Flight In Progress

Listing 43: data.ads
1 private with P;
2

3 package Data is
4

5 -- ERROR: information from P
6 -- isn't visible here
7

8 type T2 is new P.T;
9

10 end Data;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Simple_
↪Private_With_Clause

MD5: b454e875f73432f5632a20ab40ae7da6

Build output

data.ads:8:19: error: "P" is not visible
data.ads:8:19: error: non-visible declaration at p.ads:1
gprbuild: *** compilation phase failed

Also, the information from P is available in the package body. For example, let's declare a
Process procedure in the P package and use it in the body of the Data package:

Listing 44: p.ads
1 package P is
2

3 type T is null record;
4

5 procedure Process (A : T) is null;
6

7 end P;

Listing 45: data.ads
1 private with P;
2

3 package Data is
4

5 type T2 is private;
6

7 procedure Process (A : T2);
8

9 private
10

11 -- Information from P is
12 -- visible here
13 type T2 is new P.T;
14

15 end Data;

Listing 46: data.adb
1 package body Data is
2

3 procedure Process (A : T2) is
(continues on next page)

12.3. Private with clauses 447

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4 begin
5 P.Process (P.T (A));
6 end Process;
7

8 end Data;

Listing 47: main.adb
1 with Data; use Data;
2

3 procedure Main is
4 A : T2;
5 begin
6 null;
7 end Main;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Simple_
↪Private_With_Clause

MD5: cecc09f95bd43dd7fd34a9e289bd2674

In the body of the Data, we can access information from the P package — as we do in the
P.Process (P.T (A)) statement of the Process procedure.

12.3.2 Referring to private child package

There's one case where using a private with clause is the only way to refer to a package:
when we want to refer to a private child package in another child package. For example,
here we have a package P and its two child packages: Private_Child and Public_Child:

Listing 48: p.ads
1 package P is
2

3 end P;

Listing 49: p-private_child.ads
1 private package P.Private_Child is
2

3 type T is null record;
4

5 end P.Private_Child;

Listing 50: p-public_child.ads
1 private with P.Private_Child;
2

3 package P.Public_Child is
4

5 type T2 is private;
6

7 private
8

9 type T2 is new P.Private_Child.T;
10

11 end P.Public_Child;

448 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

Listing 51: test_parent_child.adb
1 with P.Public_Child; use P.Public_Child;
2

3 procedure Test_Parent_Child is
4 A : T2;
5 begin
6 null;
7 end Test_Parent_Child;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Private_
↪With_Clause

MD5: a6028416a957184be55a54f96a319e61

In this example, we're referring to the P.Private_Child package in the P.Public_Child
package. As expected, this works fine. However, using a normal with clause doesn't work
in this case:

Listing 52: p-public_child.ads
1 with P.Private_Child;
2

3 package P.Public_Child is
4

5 type T2 is private;
6

7 private
8

9 type T2 is new P.Private_Child.T;
10

11 end P.Public_Child;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Private_
↪With_Clause

MD5: 2f32f29ecb4ae13bb4487c94d3bf18d9

Build output

p-public_child.ads:1:06: error: current unit must also be private descendant of "P"
gprbuild: *** compilation phase failed

This gives an error because the information from the P.Private_Child, being a private
child package, cannot be accessed in the public part of another child package. In summary,
unless both packages are private packages, it's only possible to access the information from
a private package in the private part of a non-private child package.

In the Ada Reference Manual
• 10.1.2 Context Clauses - With Clauses177

177 http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html

12.3. Private with clauses 449

http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html

Advanced Journey With Ada: A Flight In Progress

12.4 Limited Visibility

Sometimes, we might face the situation where two packages depend on information from
each other. Let's consider a package A that depends on a package B, and vice-versa:

Listing 53: a.ads
1 with B; use B;
2

3 package A is
4

5 type T1 is record
6 Value : T2;
7 end record;
8

9 end A;

Listing 54: b.ads
1 with A; use A;
2

3 package B is
4

5 type T2 is record
6 Value : T1;
7 end record;
8

9 end B;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Circular_
↪Dependency

MD5: ae64f33706f1c58603aff2c33b02c910

Build output

a.ads:1:06: error: circular unit dependency
a.ads:1:06: error: "A (spec)" depends on "B (spec)"
a.ads:1:06: error: "B (spec)" depends on "A (spec)"
a.ads:1:06: error: "A (spec)" depends on "A (spec)"
gprbuild: *** compilation phase failed

Here, we have two mutually dependent types (page 149) T1 and T2, which are declared
in two packages A and B that refer to each other. These with clauses constitute a circular
dependency, so the compiler cannot compile either of those packages.
One way to solve this problem is by transforming this circular dependency into a partial
dependency. We do this by limiting the visibility — using a limited with clause. To use a
limited with clause for a package P, we simply write limited with P.
If a package A has limited visibility to a package B, then all types from package B are vis-
ible as if they had been declared as incomplete types (page 34). For the specific case of
the previous source-code example, this would be the limited visibility to package B from
package A's perspective:

package B is

-- Incomplete type
type T2;

(continues on next page)

450 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)

end B;

As we've seen previously,
• we cannot declare objects of incomplete types, but we can declare access types and
anonymous access objects of incomplete types. Also,

• we can use anonymous access types to declaremutually dependent types (page 149).
Keeping this information inmind, we can now correct the previous code by using limited with
clauses for package A and declaring the component of the T1 record using an anonymous
access type:

Listing 55: a.ads
1 limited with B;
2

3 package A is
4

5 type T1 is record
6 Ref : access B.T2;
7 end record;
8

9 end A;

Listing 56: b.ads
1 with A; use A;
2

3 package B is
4

5 type T2 is record
6 Value : T1;
7 end record;
8

9 end B;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_
↪Visibility

MD5: 48591850665085a6fbb184f51b658a1b

As expected, we can now compile the code without issues.
Note that we can also use limited with clauses for both packages. If we do that, we must
declare all components using anonymous access types:

Listing 57: a.ads
1 limited with B;
2

3 package A is
4

5 type T1 is record
6 Ref : access B.T2;
7 end record;
8

9 end A;

12.4. Limited Visibility 451

Advanced Journey With Ada: A Flight In Progress

Listing 58: b.ads
1 limited with A;
2

3 package B is
4

5 type T2 is record
6 Ref : access A.T1;
7 end record;
8

9 end B;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_
↪Visibility_2

MD5: 3884086e89400245346acfbbf0691906

Now, both packages A and B have limited visibility to each other.

In the Ada Reference Manual
• 10.1.2 Context Clauses - With Clauses178

12.4.1 Limited visibility and private with clauses

We can limit the visibility and use private with clauses (page 446) at the same time. For a
package P, we do this by simply writing limited private with P.
Let's reuse the previous source-code example and convert types T1 and T2 to private types:

Listing 59: a.ads
1 limited private with B;
2

3 package A is
4

5 type T1 is private;
6

7 private
8

9 -- Here, we have limited visibility
10 -- of package B
11

12 type T1 is record
13 Ref : access B.T2;
14 end record;
15

16 end A;

Listing 60: b.ads
1 private with A;
2

3 package B is
4

(continues on next page)
178 http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html

452 Chapter 12. Packages

http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 type T2 is private;
6

7 private
8

9 use A;
10

11 -- Here, we have full visibility
12 -- of package A
13

14 type T2 is record
15 Value : T1;
16 end record;
17

18 end B;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_
↪Private_Visibility

MD5: b3ac546e2f55fb91229e834ca7a9783d

In this updated version of the source-code example, we have not only limited visibility to
package B, but also, each package is just visible in the private part of the other package.

12.4.2 Limited visibility and other elements

It's important to mention that the limited visibility we've been discussing so far is restricted
to type declarations — which are seen as incomplete types. In fact, when we use a limited
with clause, all other declarations have no visibility at all! For example, let's say we have
a package Info that declares a constant Zero_Const and a function Zero_Func:

Listing 61: info.ads
1 package Info is
2

3 function Zero_Func return Integer is (0);
4

5 Zero_Const : constant := 0;
6

7 end Info;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_
↪Private_Visibility_Other_Elements

MD5: e9b01b4d59db5982532634f9162518ce

Also, let's say we want to use the information (from package Info) in package A. If we have
limited visibility to package Info, however, this information won't be visible. For example:

Listing 62: a.ads
1 limited private with Info;
2

3 package A is
4

5 type T1 is private;
6

7 private
(continues on next page)

12.4. Limited Visibility 453

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8

9 type T1 is record
10 V : Integer := Info.Zero_Const;
11 W : Integer := Info.Zero_Func;
12 end record;
13

14 end A;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_
↪Private_Visibility_Other_Elements

MD5: 61ecb5dc2617eecac62a05d7d2c6c0df

Build output

a.ads:10:26: error: "Zero_Const" not declared in "Info"
a.ads:11:26: error: "Zero_Func" not declared in "Info"
gprbuild: *** compilation phase failed

As expected, compilation fails because of the limited visibility — as Zero_Const and
Zero_Func from the Info package are not visible in the private part of A. (Of course, if
we revert to full visibility by simply removing the limited keyword from the example, the
code compiles just fine.)

12.5 Visibility

In the previous sections, we already discussed visibility from various angles. However, it
can be interesting to recapitulate this information with the help of diagrams that illustrate
the different parts of a package and its relation with other units.

12.5.1 Automatic visibility

First, let's consider we have a package A, its children (A.G and A.H), and the grandchild
A.G.T. As we've seen before, information of a parent package is automatically visible in its
children. The following diagrams illustrates this:

454 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

Because of this automatic visibility, many with clauses would be redundant in child pack-
ages. For example, we don't have to write with A; package A.G is, since the specification
of package A is already visible in its child packages.
If we focus on package A.G (highlighted in the figure above), we see that it only has auto-
matic visibility to its parent A, but not its child A.G.T. Also, it doesn't have visibility to its
sibling A.H.

12.5.2 With clauses and visibility

In the rest of this section, we discuss all the situations where using with clauses is necessary
to access the information of a package. Let's consider this example where we refer to a
package B in the specification of a package A (using with B):

12.5. Visibility 455

Advanced Journey With Ada: A Flight In Progress

As we already know, the information from the public part of package B is visible in the public
part of package A. In addition to that, it's also visible in the private part and in the body of
package A. This is indicated by the dotted green arrows in the figure above.
Now, let's see the case where we refer to package B in the private part of package A (using
private with B):

456 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

Here, the information is visible in the private part of package A, as well as in its body. Finally,
let's see the case where we refer to package B in the body of package A:

12.5. Visibility 457

Advanced Journey With Ada: A Flight In Progress

Here, the information is only visible in the body of package A.

12.5.3 Circular dependency

Let's return to package A and its descendants. As we've seen in previous sections, we
cannot refer to a child package in the specification of its parent package because that
would constitute circular dependency. (For example, we cannot write with A.G; package
A is.) This situation — which causes a compilation error — is indicated by the red arrows
in the figure below:

458 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

Note that referring to the child package A.G in the body of its parent is perfectly fine.

12.5. Visibility 459

Advanced Journey With Ada: A Flight In Progress

12.5.4 Private packages

The previous examples of this section only showed public packages. As we've seen before,
we cannot refer to private packages outside of a package hierarchy, as we can see in the
following example where we try to refer to package A and its descendants in the Test
procedure:

460 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

As indicated by the red arrows, we cannot refer to the private child packages of A in the
Test procedure, only the public child packages. Within the package hierarchy itself, we

12.5. Visibility 461

Advanced Journey With Ada: A Flight In Progress

cannot refer to the private package A.G in public sibling packages. For example:

Here, we cannot refer to the private package A.G in the public package A.H — as indi-
cated by the red arrow. However, we can refer to the private package A.G in other private
packages, such as A.I — as indicated by the green arrows.

12.6 Use type clause

Back in the Introduction to Ada course179, we saw that use clauses provide direct visibility
— in the scope where they're used — to the content of a package's visible part.
For example, consider this simple procedure:

Listing 63: display_message.adb
1 with Ada.Text_IO;
2

3 procedure Display_Message is
4 begin

(continues on next page)
179 https://learn.adacore.com/courses/intro-to-ada/chapters/modular_programming.html#intro-ada-use-clause

462 Chapter 12. Packages

https://learn.adacore.com/courses/intro-to-ada/chapters/modular_programming.html#intro-ada-use-clause

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 Ada.Text_IO.Put_Line ("Hello World!");
6 end Display_Message;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.No_Use_Clause
MD5: 4c6ff19809c13ebd2fdfda482914e5f8

Runtime output

Hello World!

By adding use Ada.Text_IO to this code, we make the visible part of the Ada.Text_IO
package directly visible in the scope of the Display_Message procedure, so we can now
just write Put_Line instead of Ada.Text_IO.Put_Line:

Listing 64: display_message.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Display_Message is
4 begin
5 Put_Line ("Hello World!");
6 end Display_Message;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Clause
MD5: b105a777a1afd79008f8580cda432cfe

Runtime output

Hello World!

In this section, we discuss another example of use clauses. In addition, we introduce two
specific forms of use clauses: use type and use all type.

In the Ada Reference Manual
• 8.4 Use Clauses180

12.6.1 Another use clause example

Let's now consider a simple package called Points, which contains the declaration of the
Point type and two primitive: an Init function and an addition operator.

Listing 65: points.ads
1 package Points is
2

3 type Point is private;
4

5 function Init return Point;
6

7 function "+" (P : Point;
8 I : Integer) return Point;

(continues on next page)
180 http://www.ada-auth.org/standards/22rm/html/RM-8-4.html

12.6. Use type clause 463

http://www.ada-auth.org/standards/22rm/html/RM-8-4.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9

10 private
11

12 type Point is record
13 X, Y : Integer;
14 end record;
15

16 function Init return Point is (0, 0);
17

18 function "+" (P : Point;
19 I : Integer) return Point is
20 (P.X + I, P.Y + I);
21

22 end Points;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: 1a43740d7231a3cc497e778866a12c55

We can implement a simple procedure that makes use of this package:

Listing 66: show_point.adb
1 with Points; use Points;
2

3 procedure Show_Point is
4 P : Point;
5 begin
6 P := Init;
7 P := P + 1;
8 end Show_Point;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: f5d44dd1fee8cf4d1a7e730f9a7c64cc

Here, we have a use clause, so we have direct visibility to the content of Points's visible
part.

12.6.2 Visibility and Readability

In certain situations, however, we might want to avoid the use clause. If that's the case,
we can rewrite the previous implementation by removing the use clause and specifying the
Points package in the prefixed form:

Listing 67: show_point.adb
1 with Points;
2

3 procedure Show_Point is
4 P : Points.Point;
5 begin
6 P := Points.Init;
7 P := Points."+" (P, 1);
8 end Show_Point;

Code block metadata

464 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: ca896b456a90c19b29ec4f262144c131

Although this code is correct, it might be difficult to read, as we have to specify the package
whenever we're referring to a type or a subprogram from that package. Even worse: we
now have to write operators in the prefixed form — such as Points."+" (P, 1).

12.6.3 use type

As a compromise, we can have direct visibility to the operators of a certain type. We do
this by using a use clause in the form use type. This allows us to simplify the previous
example:

Listing 68: show_point.adb
1 with Points;
2

3 procedure Show_Point is
4 use type Points.Point;
5

6 P : Points.Point;
7 begin
8 P := Points.Init;
9 P := P + 1;
10 end Show_Point;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: a9527276c27a67be8b5a59efcf6e5cfd

Note that use type just gives us direct visibility to the operators of a certain type, but not
other primitives. For this reason, we still have to write Points.Init in the code example.

12.6.4 use all type

If we want to have direct visibility to all primitives of a certain type (and not just its opera-
tors), we need to write a use clause in the form use all type. This allows us to simplify
the previous example even further:

Listing 69: show_point.adb
1 with Points;
2

3 procedure Show_Point is
4 use all type Points.Point;
5

6 P : Points.Point;
7 begin
8 P := Init;
9 P := P + 1;
10 end Show_Point;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: 4a8f6edd4e1811c4e8acb24393690282

12.6. Use type clause 465

Advanced Journey With Ada: A Flight In Progress

Now, we've removed the prefix from all operations on the P variable.

12.7 Use clauses and naming conflicts

Visibility issues may arise when we have multiple use clauses. For instance, we might
have types with the same name declared in multiple packages. This constitutes a naming
conflict; in this case, the types become hidden — so they're not directly visible anymore,
even if we have a use clause.

In the Ada Reference Manual
• 8.4 Use Clauses181

12.7.1 Code example

Let's start with a code example. First, we declare and implement a generic procedure that
shows the value of a Complex object:

Listing 70: show_any_complex.ads
1 with Ada.Numerics.Generic_Complex_Types;
2

3 generic
4 with package Complex_Types is new
5 Ada.Numerics.Generic_Complex_Types (<>);
6 procedure Show_Any_Complex
7 (Msg : String;
8 Val : Complex_Types.Complex);

Listing 71: show_any_complex.adb
1 with Ada.Text_IO;
2 with Ada.Text_IO.Complex_IO;
3

4 procedure Show_Any_Complex
5 (Msg : String;
6 Val : Complex_Types.Complex)
7 is
8 package Complex_Float_Types_IO is new
9 Ada.Text_IO.Complex_IO (Complex_Types);
10 use Complex_Float_Types_IO;
11

12 use Ada.Text_IO;
13 begin
14 Put (Msg & " ");
15 Put (Val);
16 New_Line;
17 end Show_Any_Complex;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.
↪Use_Type_Clause_Complex_Types

MD5: 2527291906d3a600eecd6d36e4359c1a

181 http://www.ada-auth.org/standards/22rm/html/RM-8-4.html

466 Chapter 12. Packages

http://www.ada-auth.org/standards/22rm/html/RM-8-4.html

Advanced Journey With Ada: A Flight In Progress

Then, we implement a test procedure where we declare the Complex_Float_Types package
as an instance of the Generic_Complex_Types package:

Listing 72: show_use.adb
1 with Ada.Numerics; use Ada.Numerics;
2

3 with Ada.Numerics.Generic_Complex_Types;
4

5 with Show_Any_Complex;
6

7 procedure Show_Use is
8 package Complex_Float_Types is new
9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use Complex_Float_Types;
12

13 procedure Show_Complex_Float is new
14 Show_Any_Complex (Complex_Float_Types);
15

16 C, D, X : Complex;
17 begin
18 C := Compose_From_Polar (3.0, Pi / 2.0);
19 D := Compose_From_Polar (5.0, Pi / 2.0);
20 X := C + D;
21

22 Show_Complex_Float ("C:", C);
23 Show_Complex_Float ("D:", D);
24 Show_Complex_Float ("X:", X);
25 end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.
↪Use_Type_Clause_Complex_Types

MD5: cc2a612c9884539f33154680854a4c82

Runtime output

C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)

In this example, we declare variables of the Complex type, initialize them and use them in
operations. Note that we have direct visibility to the package instance because we've added
a simple use clause after the package instantiation — see use Complex_Float_Types in
the example.

12.7.2 Naming conflict

Now, let's add the declaration of the Complex_Long_Float_Types package — a second
instantiation of the Generic_Complex_Types package — to the code example:

Listing 73: show_use.adb
1 with Ada.Numerics; use Ada.Numerics;
2

3 with Ada.Numerics.Generic_Complex_Types;
4

5 with Show_Any_Complex;
(continues on next page)

12.7. Use clauses and naming conflicts 467

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6

7 procedure Show_Use is
8 package Complex_Float_Types is new
9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use Complex_Float_Types;
12

13 package Complex_Long_Float_Types is new
14 Ada.Numerics.Generic_Complex_Types
15 (Real => Long_Float);
16 use Complex_Long_Float_Types;
17

18 procedure Show_Complex_Float is new
19 Show_Any_Complex (Complex_Float_Types);
20

21 C, D, X : Complex;
22 -- ^ ERROR: type is hidden!
23 begin
24 C := Compose_From_Polar (3.0, Pi / 2.0);
25 D := Compose_From_Polar (5.0, Pi / 2.0);
26 X := C + D;
27

28 Show_Complex_Float ("C:", C);
29 Show_Complex_Float ("D:", D);
30 Show_Complex_Float ("X:", X);
31 end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.
↪Use_Type_Clause_Complex_Types

MD5: 30b562e2f81ae62912ec4e067150d5cd

Build output

show_use.adb:21:14: error: "Complex" is not visible
show_use.adb:21:14: error: multiple use clauses cause hiding
show_use.adb:21:14: error: hidden declaration at a-ngcoty.ads:42, instance at line␣

↪13
show_use.adb:21:14: error: hidden declaration at a-ngcoty.ads:42, instance at line␣

↪8
gprbuild: *** compilation phase failed

This example doesn't compile because we have direct visibility to both Com-
plex_Float_Types and Complex_Long_Float_Types packages, and both of them declare
the Complex type. In this case, the type declaration becomes hidden, as the compiler can-
not decide which declaration of Complex it should take.

12.7.3 Circumventing naming conflicts

As we know, a simple fix for this compilation error is to add the package prefix in the variable
declaration:

Listing 74: show_use.adb
1 with Ada.Numerics; use Ada.Numerics;
2

3 with Ada.Numerics.Generic_Complex_Types;
4

(continues on next page)

468 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 with Show_Any_Complex;
6

7 procedure Show_Use is
8 package Complex_Float_Types is new
9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use Complex_Float_Types;
12

13 package Complex_Long_Float_Types is new
14 Ada.Numerics.Generic_Complex_Types
15 (Real => Long_Float);
16 use Complex_Long_Float_Types;
17

18 procedure Show_Complex_Float is new
19 Show_Any_Complex (Complex_Float_Types);
20

21 C, D, X : Complex_Float_Types.Complex;
22 -- ^ SOLVED: package is now specified.
23 begin
24 C := Compose_From_Polar (3.0, Pi / 2.0);
25 D := Compose_From_Polar (5.0, Pi / 2.0);
26 X := C + D;
27

28 Show_Complex_Float ("C:", C);
29 Show_Complex_Float ("D:", D);
30 Show_Complex_Float ("X:", X);
31 end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.
↪Use_Type_Clause_Complex_Types

MD5: 0b3285364ea0188a678db2fc406741b8

Runtime output

C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)

Another possibility is to write a use clause in the form use all type:

Listing 75: show_use.adb
1 with Ada.Numerics; use Ada.Numerics;
2

3 with Ada.Numerics.Generic_Complex_Types;
4

5 with Show_Any_Complex;
6

7 procedure Show_Use is
8 package Complex_Float_Types is new
9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use all type Complex_Float_Types.Complex;
12

13 package Complex_Long_Float_Types is new
14 Ada.Numerics.Generic_Complex_Types
15 (Real => Long_Float);
16 use all type Complex_Long_Float_Types.Complex;
17

(continues on next page)

12.7. Use clauses and naming conflicts 469

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
18 procedure Show_Complex_Float is new
19 Show_Any_Complex (Complex_Float_Types);
20

21 C, D, X : Complex_Float_Types.Complex;
22 begin
23 C := Compose_From_Polar (3.0, Pi / 2.0);
24 D := Compose_From_Polar (5.0, Pi / 2.0);
25 X := C + D;
26

27 Show_Complex_Float ("C:", C);
28 Show_Complex_Float ("D:", D);
29 Show_Complex_Float ("X:", X);
30 end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.
↪Use_Type_Clause_Complex_Types

MD5: 90333ff41e25afb1399f7f94f7e2b566

Runtime output

C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)

For the sake of completeness, let's declare and use variables of both Complex types:

Listing 76: show_use.adb
1 with Ada.Numerics; use Ada.Numerics;
2

3 with Ada.Numerics.Generic_Complex_Types;
4

5 with Show_Any_Complex;
6

7 procedure Show_Use is
8 package Complex_Float_Types is new
9 Ada.Numerics.Generic_Complex_Types
10 (Real => Float);
11 use all type Complex_Float_Types.Complex;
12

13 package Complex_Long_Float_Types is new
14 Ada.Numerics.Generic_Complex_Types
15 (Real => Long_Float);
16 use all type Complex_Long_Float_Types.Complex;
17

18 procedure Show_Complex_Float is new
19 Show_Any_Complex (Complex_Float_Types);
20

21 procedure Show_Complex_Long_Float is new
22 Show_Any_Complex (Complex_Long_Float_Types);
23

24 C, D, X : Complex_Float_Types.Complex;
25 E, F, Y : Complex_Long_Float_Types.Complex;
26 begin
27 C := Compose_From_Polar (3.0, Pi / 2.0);
28 D := Compose_From_Polar (5.0, Pi / 2.0);
29 X := C + D;
30

31 Show_Complex_Float ("C:", C);
(continues on next page)

470 Chapter 12. Packages

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
32 Show_Complex_Float ("D:", D);
33 Show_Complex_Float ("X:", X);
34

35 E := Compose_From_Polar (3.0, Pi / 2.0);
36 F := Compose_From_Polar (5.0, Pi / 2.0);
37 Y := E + F;
38

39 Show_Complex_Long_Float ("E:", E);
40 Show_Complex_Long_Float ("F:", F);
41 Show_Complex_Long_Float ("Y:", Y);
42 end Show_Use;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.
↪Use_Type_Clause_Complex_Types

MD5: 48f31250116f107d3143703debb3107d

Runtime output

C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)
E: (1.83697019872103E-16, 3.00000000000000E+00)
F: (3.06161699786838E-16, 5.00000000000000E+00)
Y: (4.89858719658941E-16, 8.00000000000000E+00)

As expected, the code compiles correctly.

12.7. Use clauses and naming conflicts 471

Advanced Journey With Ada: A Flight In Progress

472 Chapter 12. Packages

CHAPTER

THIRTEEN

SUBPROGRAMS AND MODULARITY

13.1 Private subprograms

We've seen previously (page 438) that we can declare private packages. Because packages
and subprograms can both be library units, we can declare private subprograms as well.
We do this by using the private keyword. For example:

Listing 1: test.ads
1 private procedure Test;

Listing 2: test.adb
1 procedure Test is
2 begin
3 null;
4 end Test;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_
↪Subprograms.Private_Test_Procedure

MD5: 2ea1770a5fd5dee40f015b9d33d2f309

Such a subprogram as the one above isn't really useful. For example, we cannot write a
with clause that refers to the Test procedure, as it's not visible anywhere:

Listing 3: show_test.adb
1 with Test;
2

3 procedure Show_Test is
4 begin
5 Test;
6 end Show_Test;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_
↪Subprograms.Private_Test_Procedure

MD5: 0702378a034f65a69a4c5b5258f7b32e

Build output

show_test.adb:1:06: error: current unit must also be private descendant of
↪"Standard"

gprbuild: *** compilation phase failed

473

Advanced Journey With Ada: A Flight In Progress

As expected, since Test is private, we get a compilation error because this procedure can-
not be referenced in the Show_Test procedure.

In the Ada Reference Manual
• 10.1.1 Compilation Units - Library Units182

• 10.1.2 Context Clauses - With Clauses183

13.1.1 Private subprograms of a package

A more useful example is to declare private subprograms of a package. For example:

Listing 4: data_processing.ads
1 package Data_Processing is
2

3 type Data is private;
4

5 procedure Process (D : in out Data);
6

7 private
8

9 type Data is record
10 F : Float;
11 end record;
12

13 end Data_Processing;

Listing 5: data_processing.adb
1 with Data_Processing.Calculate;
2

3 package body Data_Processing is
4

5 procedure Process (D : in out Data) is
6 begin
7 Calculate (D);
8 end Process;
9

10 end Data_Processing;

Listing 6: data_processing-calculate.ads
1 private
2 procedure Data_Processing.Calculate
3 (D : in out Data);

Listing 7: data_processing-calculate.adb
1 procedure Data_Processing.Calculate
2 (D : in out Data)
3 is
4 begin
5 -- Dummy implementation...

(continues on next page)
182 http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html
183 http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html

474 Chapter 13. Subprograms and Modularity

http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html
http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 D.F := 0.0;
7 end Data_Processing.Calculate;

Listing 8: test_data_processing.adb
1 with Data_Processing; use Data_Processing;
2

3 procedure Test_Data_Processing is
4 D : Data;
5 begin
6 Process (D);
7 end Test_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_
↪Subprograms.Private_Package_Procedure

MD5: 0f6af1b02f37e011abac5b2a6dfc482d

In this example, we declare Calculate as a private procedure of the Data_Processing
package. Therefore, it's visible in that package (but not in the Test_Data_Processing
procedure). Also, in the Calculate procedure, we're able to initialize the private component
F of the D object because the child subprogram has access to the private part of its parent
package.

13.1.2 Private subprograms and private packages

We can also use private subprograms to test private packages. As we know, in most cases,
we cannot access private packages in external clients — such as external subprograms.
However, by declaring a subprogram private, we're allowed to access private packages.
This can be very useful to create applications that we can use to test private packages.
(Note that these applications must be library-level parameterless subprograms, because
only those can be main programs.)
Let's see an example:

Listing 9: private_data_processing.ads
1 private package Private_Data_Processing is
2

3 type Data is private;
4

5 procedure Process (D : in out Data);
6

7 private
8

9 type Data is record
10 F : Float;
11 end record;
12

13 end Private_Data_Processing;

Listing 10: private_data_processing.adb
1 package body Private_Data_Processing is
2

3 procedure Process (D : in out Data) is
4 begin

(continues on next page)

13.1. Private subprograms 475

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 D.F := 0.0;
6 end Process;
7

8 end Private_Data_Processing;

Listing 11: test_private_data_processing.ads
1 private procedure Test_Private_Data_Processing;

Listing 12: test_private_data_processing.adb
1 with Private_Data_Processing;
2 use Private_Data_Processing;
3

4 procedure Test_Private_Data_Processing is
5 D : Data;
6 begin
7 Process (D);
8 end Test_Private_Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_
↪Subprograms.Private_Subprogram_Private_Package

MD5: 3527e54f99eb2cb52317c987b499caaf

In this code example, we have the private Private_Data_Processing package. In order
to test it, we implement the private procedure Test_Private_Data_Processing. The fact
that this procedure is private allows us to use the Private_Data_Processing package as
if it was a non-private package. We then use the private Test_Private_Data_Processing
procedure as our main application, so we can run it to test application the private package.

Child subprograms of private packages

We could also implement the Test subprogram that we use to test a private package P as
a child subprogram of that package. In other words, we could write a procedure P.Test
and use it as our main application. The advantage here is that this allows us to access the
private part of the parent package P in the test procedure.
Let's rewrite the Test_Private_Data_Processing procedure from the previous example
as the child procedure Private_Data_Processing.Test:

Listing 13: private_data_processing.ads
1 private package Private_Data_Processing is
2

3 type Data is private;
4

5 procedure Process (D : in out Data);
6

7 private
8

9 type Data is record
10 F : Float;
11 end record;
12

13 end Private_Data_Processing;

476 Chapter 13. Subprograms and Modularity

Advanced Journey With Ada: A Flight In Progress

Listing 14: private_data_processing.adb
1 package body Private_Data_Processing is
2

3 procedure Process (D : in out Data) is
4 begin
5 null;
6 end Process;
7

8 end Private_Data_Processing;

Listing 15: private_data_processing-test.ads
1 procedure Private_Data_Processing.Test;

Listing 16: private_data_processing-test.adb
1 procedure Private_Data_Processing.Test is
2 D : Data := (F => 0.0);
3 begin
4 Process (D);
5 end Private_Data_Processing.Test;

Code block metadata

Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_
↪Subprograms.Private_Package_Child_Subprogram

MD5: 0726f5890a5b3847244d1ae08989e158

In this code example, we now implement the Test procedure as a child of the Pri-
vate_Data_Processing package. In this procedure, we're able to initialize the private com-
ponent F of the D object. As we know, this initialization of a private component wouldn't be
possible if Test wasn't a child procedure. (For instance, writing such an initialization in the
Test_Private_Data_Processing procedure from the previous code example would trigger
a compilation error.)

13.1. Private subprograms 477

Advanced Journey With Ada: A Flight In Progress

478 Chapter 13. Subprograms and Modularity

Part IV

Resource Management

479

CHAPTER

FOURTEEN

ACCESS TYPES

We discussed access types back in the Introduction to Ada course184. In this chapter, we
discuss further details about access types and techniques when using them. Before we dig
into details, however, we're going to make sure we understand the terminology.

14.1 Access types: Terminology

In this section, we discuss some of the terminology associated with access types. Usu-
ally, the terms used in Ada when discussing references and dynamic memory allocation
are different than the ones you might encounter in other languages, so it's necessary you
understand what each term means.

14.1.1 Access type, designated subtype and profile

The first term we encounter is (obviously) access type, which is a type that provides us
access to an object or a subprogram. We declare access types by using the access keyword:

Listing 1: show_access_type_declaration.ads
1 package Show_Access_Type_Declaration is
2

3 --
4 -- Declaring access types:
5 --
6

7 -- Access-to-object type
8 type Integer_Access is access Integer;
9

10 -- Access-to-subprogram type
11 type Init_Integer_Access is access
12 function return Integer;
13

14 end Show_Access_Type_Declaration;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Terminology.Access_
↪Type_Declaration

MD5: 64e4e0847a73a9ed23e29e09798934de

Here, we're declaring two access types: the access-to-object type Integer_Access and
the access-to-subprogram type Init_Integer_Access. (We discuss access-to-subprogram
types later on (page 566)).
184 https://learn.adacore.com/courses/intro-to-ada/chapters/access_types.html#intro-ada-access-types-overview

481

https://learn.adacore.com/courses/intro-to-ada/chapters/access_types.html#intro-ada-access-types-overview

Advanced Journey With Ada: A Flight In Progress

In the declaration of an access type, we always specify — after the access keyword — the
kind of thing we want to designate. In the case of an access-to-object type declaration,
we declare a subtype we want to access, which is known as the designated subtype of
an access type. In the case of an access-to-subprogram type declaration, the subprogram
prototype is known as the designated profile.
In our previous code example, Integer is the designated subtype of the Integer_Access
type, and function return Integer is the designated profile of the Init_Integer_Access
type.

Important
In contrast to other programming languages, an access type is not a pointer, and it doesn't
just indicate an address in memory. We discuss more about addresses (page 595) later on.

14.1.2 Access object and designated object

We use an access-to-object type by first declaring a variable (or constant) of an access
type and then allocating an object. (This is actually just one way of using access types; we
discuss other methods later in this chapter.) The actual variable or constant of an access
type is called access object, while the object we allocate (via new) is the designated object.
For example:

Listing 2: show_simple_allocation.adb
1 procedure Show_Simple_Allocation is
2

3 -- Access-to-object type
4 type Integer_Access is access Integer;
5

6 -- Access object
7 I1 : Integer_Access;
8

9 begin
10 I1 := new Integer;
11 -- ^^^^^^^^^^^ allocating an object,
12 -- which becomes the designated
13 -- object for I1
14

15 end Show_Simple_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Terminology.Simple_
↪Allocation

MD5: 32ca8cf523e19b25dabb55da6df1f18d

In this example, I1 is an access object and the object allocated via new Integer is its
designated object.

482 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

14.1.3 Access value and designated value

An access object and a designated (allocated) object, both store values. The value of an
access object is the access value and the value of a designated object is the designated
value. For example:

Listing 3: show_values.adb
1 procedure Show_Values is
2

3 -- Access-to-object type
4 type Integer_Access is access Integer;
5

6 I1, I2, I3 : Integer_Access;
7

8 begin
9 I1 := new Integer;
10 I3 := new Integer;
11

12 -- Copying the access value of I1 to I2
13 I2 := I1;
14

15 -- Copying the designated value of I1
16 I3.all := I1.all;
17

18 end Show_Values;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Terminology.Values
MD5: a152ee813b8ed9fad985cf4e2c25d847

In this example, the assignment I2 := I1 copies the access value of I1 to I2. The assign-
ment I3.all := I1.all copies I1's designated value to I3's designated object. (As we
already know, .all is used to dereference an access object. We discuss this topic again
later in this chapter (page 512).)

In the Ada Reference Manual
• 3.10 Access Types185

14.2 Access types: Allocation

Ada makes the distinction between pool-specific and general access types, as we'll discuss
in this section. Before doing so, however, let's talk about memory allocation.
In general terms, memory can be allocated dynamically on the heap or statically on the
stack. (Strictly speaking, both are dynamic allocations, in that they occur at run-time with
amounts not previously specified.) For example:

Listing 4: show_simple_allocation.adb
1 procedure Show_Simple_Allocation is
2

3 -- Declaring access type:
4 type Integer_Access is access Integer;

(continues on next page)
185 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

14.2. Access types: Allocation 483

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5

6 -- Declaring access object:
7 A1 : Integer_Access;
8

9 begin
10 -- Allocating an Integer object on the heap
11 A1 := new Integer;
12

13 declare
14 -- Allocating an Integer object on the
15 -- stack
16 I : Integer;
17 begin
18 null;
19 end;
20

21 end Show_Simple_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_
↪Allocation.Simple_Allocation

MD5: 4144feb99e6e0b1a0749fce0b20370a1

Build output

show_simple_allocation.adb:16:07: warning: variable "I" is never read and never␣
↪assigned [-gnatwv]

When we allocate an object on the heap via new, the allocation happens in a memory pool
that is associated with the access type. In our code example, there's a memory pool associ-
ated with the Integer_Access type, and each new Integer allocates a new integer object
in that pool. Therefore, access types of this kind are called pool-specific access types. (We
discuss more about these types (page 486) later.)
It is also possible to access objects that were allocated on the stack. To do that, however,
we cannot use pool-specific access types because — as the name suggests — they're only
allowed to access objects that were allocated in the specific pool associated with the type.
Instead, we have to use general access types in this case:

Listing 5: show_general_access_type.adb
1 procedure Show_General_Access_Type is
2

3 -- Declaring general access type:
4 type Integer_Access is access all Integer;
5

6 -- Declaring access object:
7 A1 : Integer_Access;
8

9 -- Allocating an Integer object on the
10 -- stack:
11 I : aliased Integer;
12

13 begin
14 -- Getting access to an Integer object that
15 -- was allocated on the stack
16 A1 := I'Access;
17

18 end Show_General_Access_Type;

Code block metadata

484 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_
↪Allocation.General_Access_Types

MD5: f166291ad1975396131775d0aff6ad9d

In this example, we declare the general access type Integer_Access and the access object
A1. To initialize A1, we write I'Access to get access to an integer object I that was allocated
on the stack. (For the moment, don't worry much about these details: we'll talk about
general access types again when we introduce the topic of aliased objects (page 525) later
on.)

For further reading...
Note that it is possible to use general access types to allocate objects on the heap:

Listing 6: show_simple_allocation.adb
1 procedure Show_Simple_Allocation is
2

3 -- Declaring general access type:
4 type Integer_Access is access all Integer;
5

6 -- Declaring access object:
7 A1 : Integer_Access;
8

9 begin
10 --
11 -- Allocating an Integer object on the heap
12 -- and initializing an access object of
13 -- the general access type Integer_Access.
14 --
15 A1 := new Integer;
16

17 end Show_Simple_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_
↪Allocation.General_Access_Types_Heap

MD5: 3fa5efeac2f66794f066ab29f26bf7ca

Here, we're using a general access type Integer_Access, but allocating an integer object
on the heap.

Important
In many code examples, we have used the Integer type as the designated subtype of the
access types — by writing access Integer. Although we have used this specific scalar
type, we aren't really limited to those types. In fact, we can use any type as the designated
subtype, including user-defined types, composite types, task types and protected types.

In the Ada Reference Manual
• 3.10 Access Types186

186 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

14.2. Access types: Allocation 485

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

14.2.1 Pool-specific access types

We've already discussed many aspects about pool-specific access types. In this section, we
recapitulate some of those aspects, and discuss some new details that haven't seen yet.
As we know, we cannot directly assign an object Distance_Miles of type Miles to an
object Distance_Meters of type Meters, even if both share a common Float type an-
cestor. The assignment is only possible if we perform a type conversion from Miles
to Meters, or vice-versa — e.g.: Distance_Meters := Meters (Distance_Miles) *
Miles_To_Meters_Factor.
Similarly, in the case of pool-specific access types, a direct assignment between objects of
different access types isn't possible. However, even if both access types have the same
designated subtype (let's say, they are both declared using is access Integer), it's still
not possible to perform a type conversion between those access types. The only situation
when an access type conversion is allowed is when both types have a common ancestor.
Let's see an example:

Listing 7: show_simple_allocation.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Simple_Allocation is
6

7 -- Declaring pool-specific access type:
8 type Integer_Access_1 is access Integer;
9 type Integer_Access_2 is access Integer;
10 type Integer_Access_2B is new Integer_Access_2;
11

12 -- Declaring access object:
13 A1 : Integer_Access_1;
14 A2 : Integer_Access_2;
15 A2B : Integer_Access_2B;
16

17 begin
18 A1 := new Integer;
19 Put_Line ("A1 : " & A1'Image);
20 Put_Line ("Pool: " & A1'Storage_Pool'Image);
21

22 A2 := new Integer;
23 Put_Line ("A2: " & A2'Image);
24 Put_Line ("Pool: " & A2'Storage_Pool'Image);
25

26 -- ERROR: Cannot directly assign access values
27 -- for objects of unrelated access
28 -- types; also, cannot convert between
29 -- these types.
30 --
31 -- A1 := A2;
32 -- A1 := Integer_Access_1 (A2);
33

34 A2B := Integer_Access_2B (A2);
35 Put_Line ("A2B: " & A2B'Image);
36 Put_Line ("Pool: " & A2B'Storage_Pool'Image);
37

38 end Show_Simple_Allocation;

Code block metadata

486 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_
↪Allocation.Pool_Specific_Access_Types

MD5: 8984cb9cb9083f09b9b4096da812f805

Runtime output

A1 : (access ec12a0)
Pool: SYSTEM.POOL_GLOBAL.UNBOUNDED_NO_RECLAIM_POOL'{SYSTEM.STORAGE_POOLS.TROOT_

↪STORAGE_POOLC object}
A2: (access ec1360)
Pool: SYSTEM.POOL_GLOBAL.UNBOUNDED_NO_RECLAIM_POOL'{SYSTEM.STORAGE_POOLS.TROOT_

↪STORAGE_POOLC object}
A2B: (access ec1360)
Pool: SYSTEM.POOL_GLOBAL.UNBOUNDED_NO_RECLAIM_POOL'{SYSTEM.STORAGE_POOLS.TROOT_

↪STORAGE_POOLC object}

In this example, we declare three access types: Integer_Access_1, Integer_Access_2
and Integer_Access_2B. Also, the Integer_Access_2B type is derived from the Inte-
ger_Access_2 type. Therefore, we can convert an object of Integer_Access_2 type to
the Integer_Access_2B type — we do this in the A2B := Integer_Access_2B (A2) as-
signment. However, we cannot directly assign to or convert between unrelated types such
as Integer_Access_1 and Integer_Access_2. (We would get a compilation error if we
included the A1 := A2 or the A1 := Integer_Access_1 (A2) assignment.)

Important
Remember that:
• As mentioned in the Introduction to Ada course187:

– an access type can be unconstrained, but the actual object allocation must be
constrained;

– we can use a qualified expression (page 61) to allocate an object.
• We can use the Storage_Size attribute to limit the size of the memory pool associ-
ated with an access type, as discussed previously in the section about storage size
(page 84).

• When running out of memory while allocating via new, we get a Storage_Error ex-
ception because of the storage check (page 414).

For example:

Listing 8: show_array_allocation.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Array_Allocation is
6

7 -- Unconstrained array type:
8 type Integer_Array is
9 array (Positive range <>) of Integer;
10

11 -- Access type with unconstrained
12 -- designated subtype and limited storage
13 -- size.
14 type Integer_Array_Access is
15 access Integer_Array

(continues on next page)
187 https://learn.adacore.com/courses/intro-to-ada/chapters/access_types.html#intro-ada-access-type-allocation-constraints

14.2. Access types: Allocation 487

https://learn.adacore.com/courses/intro-to-ada/chapters/access_types.html#intro-ada-access-type-allocation-constraints

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
16 with Storage_Size => 128;
17

18 -- An access object:
19 A1 : Integer_Array_Access;
20

21 procedure Show_Info
22 (IAA : Integer_Array_Access) is
23 begin
24 Put_Line ("Allocated: " & IAA'Image);
25 Put_Line ("Length: "
26 & IAA.all'Length'Image);
27 Put_Line ("Values: "
28 & IAA.all'Image);
29 end Show_Info;
30

31 begin
32 -- Allocating an integer array with
33 -- constrained range on the heap:
34 A1 := new Integer_Array (1 .. 3);
35 A1.all := [others => 42];
36 Show_Info (A1);
37

38 -- Allocating an integer array on the
39 -- heap using a qualified expression:
40 A1 := new Integer_Array'(5, 10);
41 Show_Info (A1);
42

43 -- A third allocation fails at run time
44 -- because of the constrained storage
45 -- size:
46 A1 := new Integer_Array (1 .. 100);
47 Show_Info (A1);
48

49 exception
50 when Storage_Error =>
51 Put_Line ("Out of memory!");
52

53 end Show_Array_Allocation;

14.2.2 Multiple allocation

Up to now, we have seen examples of allocating a single object on the heap. It's possible
to allocate multiple objects at once as well — i.e. syntactic sugar is available to simplify
the code that performs this allocation. For example:

Listing 9: show_access_array_allocation.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 procedure Show_Access_Array_Allocation is
6

7 type Integer_Access is access Integer;
8

9 type Integer_Access_Array is
10 array (Positive range <>) of Integer_Access;
11

(continues on next page)

488 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
12 -- An array of access objects:
13 Arr : Integer_Access_Array (1 .. 10);
14

15 begin
16 --
17 -- Allocating 10 access objects and
18 -- initializing the corresponding designated
19 -- object with zero:
20 --
21 Arr := (others => new Integer'(0));
22

23 -- Same as:
24 for I in Arr'Range loop
25 Arr (I) := new Integer'(0);
26 end loop;
27

28 Put_Line ("Arr: " & Arr'Image);
29

30 Put_Line ("Arr (designated values): ");
31 for E of Arr loop
32 Put (E.all'Image);
33 end loop;
34

35 end Show_Access_Array_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_
↪Allocation.Integer_Access_Array

MD5: c32af182dc35879d76df989a689ee35c

Runtime output

Arr:
[(access 12453e0), (access 1245400), (access 1245420), (access 1245440),
(access 1245460), (access 1245480), (access 12454a0), (access 12454c0),
(access 12454e0), (access 1245500)]
Arr (designated values):
0 0 0 0 0 0 0 0 0 0

In this example, we have the access type Integer_Access and an array type of this access
type (Integer_Access_Array). We also declare an array Arr of Integer_Access_Array
type. This means that each component of Arr is an access object. We allocate all ten com-
ponents of the Arr array by simply writing Arr := (others => new Integer). This array
aggregate (page 182) is syntactic sugar for a loop over Arr that allocates each component.
(Note that, by writing Arr := (others => new Integer'(0)), we're also initializing the
designated objects with zero.)
Let's see another code example, this time with task types:

Listing 10: workers.ads
1 package Workers is
2

3 task type Worker is
4 entry Start (Id : Positive);
5 entry Stop;
6 end Worker;
7

8 type Worker_Access is access Worker;
9

(continues on next page)

14.2. Access types: Allocation 489

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10 type Worker_Array is
11 array (Positive range <>) of Worker_Access;
12

13 end Workers;

Listing 11: workers.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Workers is
4

5 task body Worker is
6 Id : Positive;
7 begin
8 accept Start (Id : Positive) do
9 Worker.Id := Id;
10 end Start;
11 Put_Line ("Started Worker #"
12 & Id'Image);
13

14 accept Stop;
15

16 Put_Line ("Stopped Worker #"
17 & Id'Image);
18 end Worker;
19

20 end Workers;

Listing 12: show_workers.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Workers; use Workers;
4

5 procedure Show_Workers is
6 Worker_Arr : Worker_Array (1 .. 20);
7 begin
8 --
9 -- Allocating 20 workers at once:
10 --
11 Worker_Arr := (others => new Worker);
12

13 for I in Worker_Arr'Range loop
14 Worker_Arr (I).Start (I);
15 end loop;
16

17 Put_Line ("Some processing...");
18 delay 1.0;
19

20 for W of Worker_Arr loop
21 W.Stop;
22 end loop;
23

24 end Show_Workers;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_
↪Allocation.Workers

MD5: d29e3d56585f8d9a63b805c680e5dc54

490 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Runtime output

Started Worker # 1
Started Worker # 4
Started Worker # 2
Started Worker # 3
Started Worker # 5
Started Worker # 6
Started Worker # 7
Started Worker # 8
Started Worker # 9
Started Worker # 10
Started Worker # 11
Started Worker # 12
Started Worker # 13
Started Worker # 14
Started Worker # 15
Started Worker # 16
Started Worker # 17
Started Worker # 18
Started Worker # 19
Started Worker # 20
Some processing...
Stopped Worker # 5
Stopped Worker # 2
Stopped Worker # 1
Stopped Worker # 3
Stopped Worker # 4
Stopped Worker # 6
Stopped Worker # 7
Stopped Worker # 15
Stopped Worker # 16
Stopped Worker # 8
Stopped Worker # 17
Stopped Worker # 9
Stopped Worker # 12
Stopped Worker # 10
Stopped Worker # 14
Stopped Worker # 13
Stopped Worker # 19
Stopped Worker # 11
Stopped Worker # 18
Stopped Worker # 20

In this example, we declare the task type Worker, the access type Worker_Access and
an array of access to tasks Worker_Array. Using this approach, a task is only created
when we allocate an individual component of an array of Worker_Array type. Thus, when
we declare the Worker_Arr array in this example, we're only preparing a container of 20
workers, but we don't have any actual tasks yet. We bring the 20 tasks into existence by
writing Worker_Arr := (others => new Worker).

14.2. Access types: Allocation 491

Advanced Journey With Ada: A Flight In Progress

14.3 Discriminants as Access Values

We can use access types when declaring discriminants. Let's see an example:

Listing 13: custom_recs.ads
1 package Custom_Recs is
2

3 -- Declaring an access type:
4 type Integer_Access is access Integer;
5

6 -- Declaring a discriminant with this
7 -- access type:
8 type Rec (IA : Integer_Access) is record
9

10 I : Integer := IA.all;
11 -- ^^^^^^^^^
12 -- Setting I's default to use the
13 -- designated value of IA:
14 end record;
15

16 procedure Show (R : Rec);
17

18 end Custom_Recs;

Listing 14: custom_recs.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Custom_Recs is
4

5 procedure Show (R : Rec) is
6 begin
7 Put_Line ("R.IA = "
8 & Integer'Image (R.IA.all));
9 Put_Line ("R.I = "
10 & Integer'Image (R.I));
11 end Show;
12

13 end Custom_Recs;

Listing 15: show_discriminants_as_access_values.adb
1 with Custom_Recs; use Custom_Recs;
2

3 procedure Show_Discriminants_As_Access_Values is
4

5 IA : constant Integer_Access :=
6 new Integer'(10);
7 R : Rec (IA);
8

9 begin
10 Show (R);
11

12 IA.all := 20;
13 R.I := 30;
14 Show (R);
15

16 -- As expected, we cannot change the
17 -- discriminant. The following line is
18 -- triggers a compilation error:

(continues on next page)

492 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
19 --
20 -- R.IA := new Integer;
21

22 end Show_Discriminants_As_Access_Values;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_
↪Access_Values.Discriminant_Access_Values

MD5: c7850acefd8e5227f4be654faed13055

Runtime output

R.IA = 10
R.I = 10
R.IA = 20
R.I = 30

In the Custom_Recs package from this example, we declare the access type Inte-
ger_Access. We then use this type to declare the discriminant (IA) of the Rec type. In the
Show_Discriminants_As_Access_Values procedure, we see that (as expected) we cannot
change the discriminant of an object of Rec type: an assignment such as R.IA := new
Integer would trigger a compilation error.
Note that we can use a default for the discriminant:

Listing 16: custom_recs.ads
1 package Custom_Recs is
2

3 type Integer_Access is access Integer;
4

5 type Rec (IA : Integer_Access
6 := new Integer'(0)) is
7 -- ^^^^^^^^^^^^^^^
8 -- default value
9 record
10 I : Integer := IA.all;
11 end record;
12

13 procedure Show (R : Rec);
14

15 end Custom_Recs;

Listing 17: show_discriminants_as_access_values.adb
1 with Custom_Recs; use Custom_Recs;
2

3 procedure Show_Discriminants_As_Access_Values is
4

5 R1 : Rec;
6 -- ^^^
7 -- no discriminant: use default
8

9 R2 : Rec (new Integer'(20));
10 -- ^^^^^^^^^^^^^^^^
11 -- allocating an unnamed integer object
12

13 begin
14 Show (R1);

(continues on next page)

14.3. Discriminants as Access Values 493

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
15 Show (R2);
16 end Show_Discriminants_As_Access_Values;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_
↪Access_Values.Discriminant_Access_Values

MD5: 968cb88ed7e9e6958ab66fb6f5a7ce2d

Runtime output

R.IA = 0
R.I = 0
R.IA = 20
R.I = 20

Here, we've changed the declaration of the Rec type to allocate an integer object if the
type's discriminant isn't provided — we can see this in the declaration of the R1 object
in the Show_Discriminants_As_Access_Values procedure. Also, in this procedure, we're
allocating an unnamed integer object in the declaration of R2.

In the Ada Reference Manual
• 3.10 Access Types188

• 3.7.1 Discriminant Constraints189

14.3.1 Unconstrained type as designated subtype

Notice that we were using a scalar type as the designated subtype of the Integer_Access
type. We could have used an unconstrained type as well. In fact, this is often used for the
sake of having the effect of an unconstrained discriminant type.
Let's see an example:

Listing 18: persons.ads
1 package Persons is
2

3 -- Declaring an access type whose
4 -- designated subtype is unconstrained:
5 type String_Access is access String;
6

7 -- Declaring a discriminant with this
8 -- access type:
9 type Person (Name : String_Access) is record
10 Age : Integer;
11 end record;
12

13 procedure Show (P : Person);
14

15 end Persons;

188 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html
189 http://www.ada-auth.org/standards/22rm/html/RM-3-7-1.html

494 Chapter 14. Access Types

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html
http://www.ada-auth.org/standards/22rm/html/RM-3-7-1.html

Advanced Journey With Ada: A Flight In Progress

Listing 19: persons.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Persons is
4

5 procedure Show (P : Person) is
6 begin
7 Put_Line ("Name = "
8 & P.Name.all);
9 Put_Line ("Age = "
10 & Integer'Image (P.Age));
11 end Show;
12

13 end Persons;

Listing 20: show_person.adb
1 with Persons; use Persons;
2

3 procedure Show_Person is
4 P : Person (new String'("John"));
5 begin
6 P.Age := 30;
7 Show (P);
8 end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_
↪Access_Values.Persons

MD5: 9b1109d076b6f06632c8685a41616210

Runtime output

Name = John
Age = 30

In this example, the discriminant of the Person type has an unconstrained designated type.
In the Show_Person procedure, we declare the P object and specify the constraints of the
allocated string object— in this case, a four-character string initialized with the name "John".

For further reading...
In the previous code example, we used an array — actually, a string — to demonstrate the
advantage of using discriminants as access values, for we can use an unconstrained type
as the designated subtype. In fact, as we discussed earlier in another chapter (page 24),
we can only use discrete types (or access types) as discriminants. Therefore, you wouldn't
be able to use a string, for example, directly as a discriminant without using access types:

Listing 21: persons.ads
1 package Persons is
2

3 -- ERROR: Declaring a discriminant with an
4 -- unconstrained type:
5 type Person (Name : String) is record
6 Age : Integer;
7 end record;
8

(continues on next page)

14.3. Discriminants as Access Values 495

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 end Persons;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_
↪Access_Values.Persons_Error

MD5: 4144852aaf95da62bc4781b1e8dc2717

Build output

persons.ads:5:24: error: discriminants must have a discrete or access type
gprbuild: *** compilation phase failed

As expected, compilation fails for this code because the discriminant of the Person type is
indefinite.
However, the advantage of discriminants as access values isn't restricted to being able to
use unconstrained types such as arrays: we could really use any type as the designated
subtype! In fact, we can generalized this to:

Listing 22: gen_custom_recs.ads
1 generic
2 type T (<>); -- any type
3 type T_Access is access T;
4 package Gen_Custom_Recs is
5 -- Declare a type whose discriminant D can
6 -- access any type:
7 type T_Rec (D : T_Access) is null record;
8 end Gen_Custom_Recs;

Listing 23: custom_recs.ads
1 with Gen_Custom_Recs;
2

3 package Custom_Recs is
4

5 type Incomp;
6 -- Incomplete type declaration!
7

8 type Incomp_Access is access Incomp;
9

10 -- Instantiating package using
11 -- incomplete type Incomp:
12 package Inst is new
13 Gen_Custom_Recs
14 (T => Incomp,
15 T_Access => Incomp_Access);
16 subtype Rec is Inst.T_Rec;
17

18 -- At this point, Rec (Inst.T_Rec) uses
19 -- an incomplete type as the designated
20 -- subtype of its discriminant type
21

22 procedure Show (R : Rec) is null;
23

24 -- Now, we complete the Incomp type:
25 type Incomp (B : Boolean := True) is private;
26

27 private
28 -- Finally, we have the full view of the

(continues on next page)

496 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
29 -- Incomp type:
30 type Incomp (B : Boolean := True) is
31 null record;
32

33 end Custom_Recs;

Listing 24: show_rec.adb
1 with Custom_Recs; use Custom_Recs;
2

3 procedure Show_Rec is
4 R : Rec (new Incomp);
5 begin
6 Show (R);
7 end Show_Rec;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_
↪Access_Values.Generic_Access

MD5: c65510e8c6a7625cbd08aa9e68f05115

In the Gen_Custom_Recs package, we're using type T (<>) — which can be any type —
for the designated subtype of the access type T_Access, which is the type of T_Rec's dis-
criminant. In the Custom_Recs package, we use the incomplete type Incomp to instantiate
the generic package. Only after the instantiation, we declare the complete type.

Later on, we'll discuss discriminants again when we look into anonymous access discrimi-
nants (page 615), which provide some advantages in terms of accessibility rules (page 534).

14.3.2 Whole object assignments

As expected, we cannot change the discriminant value in whole object assignments. If we
do that, the Constraint_Error exception is raised at runtime:

Listing 25: show_person.adb
1 with Persons; use Persons;
2

3 procedure Show_Person is
4 S1 : String_Access := new String'("John");
5 S2 : String_Access := new String'("Mark");
6 P : Person := (Name => S1,
7 Age => 30);
8 begin
9 P := (Name => S1, Age => 31);
10 -- ^^ OK: we didn't change the
11 -- discriminant.
12 Show (P);
13

14 -- We can just repeat the discriminant:
15 P := (Name => P.Name, Age => 32);
16 -- ^^^^^^ OK: we didn't change the
17 -- discriminant.
18 Show (P);
19

20 -- Of course, we can change the string itself:
21 S1.all := "Mark";

(continues on next page)

14.3. Discriminants as Access Values 497

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
22 Show (P);
23

24 P := (Name => S2, Age => 40);
25 -- ^^ ERROR: we changed the
26 -- discriminant!
27 Show (P);
28 end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_
↪Access_Values.Persons

MD5: 96f4742365eb6a07c377a5dec28b5767

Runtime output

Name = John
Age = 31
Name = John
Age = 32
Name = Mark
Age = 32

raised CONSTRAINT_ERROR : show_person.adb:24 discriminant check failed

The first and the second assignments to P are OK because we didn't change the discrim-
inant. However, the last assignment raises the Constraint_Error exception at runtime
because we're changing the discriminant.

14.4 Parameters as Access Values

In addition to using discriminants as access values (page 492), we can use access types
for subprogram formal parameters. For example, the N parameter of the Show procedure
below has an access type:

Listing 26: names.ads
1 package Names is
2

3 type Name is access String;
4

5 procedure Show (N : Name);
6

7 end Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Names

MD5: 82ce94987dce9026aed54a0deb3cc548

This is the complete code example:

Listing 27: names.ads
1 package Names is
2

3 type Name is access String;
(continues on next page)

498 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4

5 procedure Show (N : Name);
6

7 end Names;

Listing 28: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Names is
4

5 procedure Show (N : Name) is
6 begin
7 Put_Line ("Name: " & N.all);
8 end Show;
9

10 end Names;

Listing 29: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 N : Name := new String'("John");
5 begin
6 Show (N);
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Names

MD5: 526baf1996b4a2970c3fa2e3485dcbad

Runtime output

Name: John

Note that in this example, the Show procedure is basically just displaying the string. Since
the procedure isn't doing anything that justifies the need for an access type, we could have
implemented it with a simpler type:

Listing 30: names.ads
1 package Names is
2

3 type Name is access String;
4

5 procedure Show (N : String);
6

7 end Names;

Listing 31: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Names is
4

5 procedure Show (N : String) is
6 begin

(continues on next page)

14.4. Parameters as Access Values 499

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 Put_Line ("Name: " & N);
8 end Show;
9

10 end Names;

Listing 32: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 N : Name := new String'("John");
5 begin
6 Show (N.all);
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Names_String

MD5: 097ec1ff781fda9deed1de23cae39ae5

Runtime output

Name: John

It's important to highlight the difference between passing an access value to a subprogram
and passing an object by reference. In both versions of this code example, the compiler will
make use of a reference for the actual parameter of the N parameter of the Show procedure.
However, the difference between these two cases is that:
• N : Name is a reference to an object (because it's an access value) that is passed by
value, and

• N : String is an object passed by reference.

14.4.1 Changing the referenced object

Since the Name type gives us access to an object in the Show procedure, we could actually
change this object inside the procedure. To illustrate this, let's change the Show procedure
to lower each character of the string before displaying it (and rename the procedure to
Lower_And_Show):

Listing 33: names.ads
1 package Names is
2

3 type Name is access String;
4

5 procedure Lower_And_Show (N : Name);
6

7 end Names;

Listing 34: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Characters.Handling;
4 use Ada.Characters.Handling;
5

(continues on next page)

500 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 package body Names is
7

8 procedure Lower_And_Show (N : Name) is
9 begin
10 for I in N'Range loop
11 N (I) := To_Lower (N (I));
12 end loop;
13 Put_Line ("Name: " & N.all);
14 end Lower_And_Show;
15

16 end Names;

Listing 35: show_changed_names.adb
1 with Names; use Names;
2

3 procedure Show_Changed_Names is
4 N : Name := new String'("John");
5 begin
6 Lower_And_Show (N);
7 end Show_Changed_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Changed_Names

MD5: 063a507284f5e7ffa669db2c8fdd3d6f

Runtime output

Name: john

Notice that, again, we could have implemented the Lower_And_Show procedure without
using an access type:

Listing 36: names.ads
1 package Names is
2

3 type Name is access String;
4

5 procedure Lower_And_Show (N : in out String);
6

7 end Names;

Listing 37: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Characters.Handling;
4 use Ada.Characters.Handling;
5

6 package body Names is
7

8 procedure Lower_And_Show (N : in out String) is
9 begin
10 for I in N'Range loop
11 N (I) := To_Lower (N (I));
12 end loop;
13 Put_Line ("Name: " & N);

(continues on next page)

14.4. Parameters as Access Values 501

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14 end Lower_And_Show;
15

16 end Names;

Listing 38: show_changed_names.adb
1 with Names; use Names;
2

3 procedure Show_Changed_Names is
4 N : Name := new String'("John");
5 begin
6 Lower_And_Show (N.all);
7 end Show_Changed_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Changed_Names_String

MD5: 783ea8c45ed8ad3e0007524c11b6bcc4

Runtime output

Name: john

14.4.2 Replace the access value

Instead of changing the object in the Lower_And_Show procedure, we could replace the
access value by another one— for example, by allocating a new string inside the procedure.
In this case, we have to pass the access value by reference using the in out parameter
mode:

Listing 39: names.ads
1 package Names is
2

3 type Name is access String;
4

5 procedure Lower_And_Show (N : in out Name);
6

7 end Names;

Listing 40: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Ada.Characters.Handling;
4 use Ada.Characters.Handling;
5

6 package body Names is
7

8 procedure Lower_And_Show (N : in out Name) is
9 begin
10 N := new String'(To_Lower (N.all));
11 Put_Line ("Name: " & N.all);
12 end Lower_And_Show;
13

14 end Names;

502 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 41: show_changed_names.adb
1 with Names; use Names;
2

3 procedure Show_Changed_Names is
4 N : Name := new String'("John");
5 begin
6 Lower_And_Show (N);
7 end Show_Changed_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Replaced_Names

MD5: a4abfe6fdb1e5029e8eea17641cd960b

Runtime output

Name: john

Now, instead of changing the object referenced by N, we're actually replacing it with a new
object that we allocate inside the Lower_And_Show procedure.
As expected, contrary to the previous examples, we cannot implement this code by relying
on parameter modes to replace the object. In fact, we have to use access types for this
kind of operations.
Note that this implementation creates a memory leak. In a proper implementation, we
should make sure to deallocate the object (page 546), as explained later on.

14.4.3 Side-effects on designated objects

In previous code examples from this section, we've seen that passing a parameter by ref-
erence using the in or in out parameter modes is an alternative to using access values as
parameters. Let's focus on the subprogram declarations of those code examples and their
parameter modes:

Subprogram Parameter type Parameter mode
Show Name in
Show String in
Lower_And_Show Name in
Lower_And_Show String in out

When we analyze the information from this table, we see that in the case of using strings
with different parameter modes, we have a clear indication whether the subprogram might
change the object or not. For example, we know that a call to Show (N : String) won't
change the string object that we're passing as the actual parameter.
In the case of passing an access value, we cannot know whether the designated object is
going to be altered by a call to the subprogram. In fact, in both Show and Lower_And_Show
procedures, the parameter is the same: N : Name — in other words, the parameter mode
is in in both cases. Here, there's no clear indication about the effects of a subprogram call
on the designated object.
The simplest way to ensure that the object isn't changed in the subprogram is by using
access-to-constant types (page 526), which we discuss later on. In this case, we're basically
saying that the object we're accessing in Show is constant, so we cannot possibly change
it:

14.4. Parameters as Access Values 503

Advanced Journey With Ada: A Flight In Progress

Listing 42: names.ads
1 package Names is
2

3 type Name is access String;
4

5 type Constant_Name is access constant String;
6

7 procedure Show (N : Constant_Name);
8

9 end Names;

Listing 43: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 -- with Ada.Characters.Handling;
4 -- use Ada.Characters.Handling;
5

6 package body Names is
7

8 procedure Show (N : Constant_Name) is
9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15

16 end Names;

Listing 44: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 N : Name := new String'("John");
5 begin
6 Show (Constant_Name (N));
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Names_Constant

MD5: 77526e0a159bf1bcbef08a21be250f3c

Runtime output

Name: John

In this case, the Constant_Name type ensures that the N parameter won't be changed in
the Show procedure. Note that we need to convert from Name to Constant_Name to be able
to call the Show procedure (in the Show_Names procedure). Although using in String is still
a simpler solution, this approach works fine.
(Feel free to uncomment the call to To_Lower in the Show procedure and the corresponding
with- and use-clauses to see that the compilation fails when trying to change the constant
object.)
We could also mitigate the problem by using contracts. For example:

504 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 45: names.ads
1 package Names is
2

3 type Name is access String;
4

5 procedure Show (N : Name)
6 with Post => N.all'Old = N.all;
7 -- ^^^^^^^^^^^^^^^^^
8 -- we promise that we won't change
9 -- the object
10

11 end Names;

Listing 46: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 -- with Ada.Characters.Handling;
4 -- use Ada.Characters.Handling;
5

6 package body Names is
7

8 procedure Show (N : Name) is
9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15

16 end Names;

Listing 47: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 N : Name := new String'("John");
5 begin
6 Show (N);
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Names_Postcondition

MD5: 2a70993232baca9d58d36e537a6fd32b

Runtime output

Name: John

Although a bit more verbose than a simple in String, the information in the specification
of Show at least gives us an indication that the object won't be affected by the call to this
subprogram. Note that this code actually compiles if we try to modify N.all in the Show
procedure, but the post-condition fails at runtime when we do that.
(By uncommentating and building the code again, you'll see an exception being raised at
runtime when trying to change the object.)
In the postcondition above, we're using 'Old to refer to the original object before the sub-

14.4. Parameters as Access Values 505

Advanced Journey With Ada: A Flight In Progress

program call. Unfortunately, we cannot use this attribute when dealing with limited private
types (page 677) — or limited types in general. For example, let's change the declaration
of Name and have it as a limited private type instead:

Listing 48: names.ads
1 package Names is
2

3 type Name is limited private;
4

5 function Init (S : String) return Name;
6

7 function Equal (N1, N2 : Name)
8 return Boolean;
9

10 procedure Show (N : Name)
11 with Post => Equal (N'Old = N);
12

13 private
14

15 type Name is access String;
16

17 function Init (S : String) return Name is
18 (new String'(S));
19

20 function Equal (N1, N2 : Name)
21 return Boolean is
22 (N1.all = N2.all);
23

24 end Names;

Listing 49: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 -- with Ada.Characters.Handling;
4 -- use Ada.Characters.Handling;
5

6 package body Names is
7

8 procedure Show (N : Name) is
9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15

16 end Names;

506 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 50: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 N : Name := Init ("John");
5 begin
6 Show (N);
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Names_Limited_Private

MD5: 39691394d7a934869dc569eb72d1bf3a

Build output

names.ads:11:26: error: attribute "Old" cannot apply to limited objects
gprbuild: *** compilation phase failed

In this case, we have no means to indicate that a call to Show won't change the internal
state of the actual parameter.

For further reading...
As an alternative, we could declare a new Constant_Name type that is also limited private.
If we use this type in Show procedure, we're at least indicating (in the type name) that
the type is supposed to be constant — even though we're not directly providing means to
actually ensure that no modifications occur in a call to the procedure. However, the fact
that we declare this type as an access-to-constant (in the private part of the specification)
makes it clear that a call to Show won't change the designated object.
Let's look at the adapted code:

Listing 51: names.ads
1 package Names is
2

3 type Name is limited private;
4

5 type Constant_Name is limited private;
6

7 function Init (S : String) return Name;
8

9 function To_Constant_Name
10 (N : Name)
11 return Constant_Name;
12

13 procedure Show (N : Constant_Name);
14

15 private
16

17 type Name is
18 access String;
19

20 type Constant_Name is
21 access constant String;
22

23 function Init (S : String) return Name is
24 (new String'(S));

(continues on next page)

14.4. Parameters as Access Values 507

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
25

26 function To_Constant_Name
27 (N : Name)
28 return Constant_Name is
29 (Constant_Name (N));
30

31 end Names;

Listing 52: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 -- with Ada.Characters.Handling;
4 -- use Ada.Characters.Handling;
5

6 package body Names is
7

8 procedure Show (N : Constant_Name) is
9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15

16 end Names;

Listing 53: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 N : Name := Init ("John");
5 begin
6 Show (To_Constant_Name (N));
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_
↪Access_Values.Names_Constant_Limited_Private

MD5: 30da588b57e6b4dfbf9934f77d348473

Runtime output

Name: John

In this version of the source code, the Show procedure doesn't have any side-effects, as we
cannot modify N inside the procedure.

Having the information about the effects of a subprogram call to an object is very important:
we can use this information to set expectations — and avoid unexpected changes to an
object. Also, this information can be used to prove that a program works as expected.
Therefore, whenever possible, we should avoid access values as parameters. Instead, we
can rely on appropriate parameter modes and pass an object by reference.
There are cases, however, where the design of our application doesn't permit replacing
the access type with simple parameter modes. Whenever we have an abstract data type
encapsulated as a limited private type — such as in the last code example —, we might
have no means to avoid access values as parameters. In this case, using the access type

508 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

is of course justifiable. We'll see such a case in the next section (page 509).

14.5 Self-reference

As we've discussed in the section about incomplete types
<Adv_Ada_Incomplete_Types>, we can use incomplete types to create a recursive,
self-referencing type. Let's revisit a code example from that section:

Listing 54: linked_list_example.ads
1 package Linked_List_Example is
2

3 type Integer_List;
4

5 type Next is access Integer_List;
6

7 type Integer_List is record
8 I : Integer;
9 N : Next;
10 end record;
11

12 end Linked_List_Example;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Self_Reference.
↪Linked_List_Example

MD5: b2d3a048473d498bbe691bc6e38ca1e9

Here, we're using the incomplete type Integer_List in the declaration of the Next type,
which we then use in the complete declaration of the Integer_List type.
Self-references are useful, for example, to create unbounded containers — such as the
linked lists mentioned in the example above. Let's extend this code example and partially
implement a generic package for linked lists:

Listing 55: linked_lists.ads
1 generic
2 type T is private;
3 package Linked_Lists is
4

5 type List is limited private;
6

7 procedure Append_Front
8 (L : in out List;
9 E : T);
10

11 procedure Append_Rear
12 (L : in out List;
13 E : T);
14

15 procedure Show (L : List);
16

17 private
18

19 -- Incomplete type declaration:
20 type Component;
21

22 -- Using incomplete type:
(continues on next page)

14.5. Self-reference 509

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
23 type List is access Component;
24

25 type Component is record
26 Value : T;
27 Next : List;
28 -- ^^^^
29 -- Self-reference via access type
30 end record;
31

32 end Linked_Lists;

Listing 56: linked_lists.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 package body Linked_Lists is
6

7 procedure Append_Front
8 (L : in out List;
9 E : T)
10 is
11 New_First : constant List := new
12 Component'(Value => E,
13 Next => L);
14 begin
15 L := New_First;
16 end Append_Front;
17

18 procedure Append_Rear
19 (L : in out List;
20 E : T)
21 is
22 New_Last : constant List := new
23 Component'(Value => E,
24 Next => null);
25 begin
26 if L = null then
27 L := New_Last;
28 else
29 declare
30 Last : List := L;
31 begin
32 while Last.Next /= null loop
33 Last := Last.Next;
34 end loop;
35 Last.Next := New_Last;
36 end;
37 end if;
38 end Append_Rear;
39

40 procedure Show (L : List) is
41 Curr : List := L;
42 begin
43 if L = null then
44 Put_Line ("[]");
45 else
46 Put ("[");
47 loop
48 Put (Curr.Value'Image);

(continues on next page)

510 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
49 Put (" ");
50 exit when Curr.Next = null;
51 Curr := Curr.Next;
52 end loop;
53 Put_Line ("]");
54 end if;
55 end Show;
56

57 end Linked_Lists;

Listing 57: test_linked_list.adb
1 with Linked_Lists;
2

3 procedure Test_Linked_List is
4 package Integer_Lists is new
5 Linked_Lists (T => Integer);
6 use Integer_Lists;
7

8 L : List;
9 begin
10 Append_Front (L, 3);
11 Append_Rear (L, 4);
12 Append_Rear (L, 5);
13 Append_Front (L, 2);
14 Append_Front (L, 1);
15 Append_Rear (L, 6);
16 Append_Rear (L, 7);
17

18 Show (L);
19 end Test_Linked_List;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Self_Reference.
↪Linked_List_Example

MD5: 8af1ff7bbda44362802ba4f93b9c5741

Runtime output

[1 2 3 4 5 6 7]

In this example, we declare an incomplete type Component in the private part of the generic
Linked_Lists package. We use this incomplete type to declare the access type List, which
is then used as a self-reference in the Next component of the Component type.
Note that we're using the List type as a parameter (page 498) for the Append_Front,
Append_Rear and Show procedures.

In the Ada Reference Manual
• 3.10.1 Incomplete Type Declarations190

190 http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html

14.5. Self-reference 511

http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html

Advanced Journey With Ada: A Flight In Progress

14.6 Mutually dependent types using access types

In the section on mutually dependent types (page 149), we've seen a code example where
each type depends on the other one. We could rewrite that code example using access
types:

Listing 58: mutually_dependent.ads
1 package Mutually_Dependent is
2

3 type T2;
4 type T2_Access is access T2;
5

6 type T1 is record
7 B : T2_Access;
8 end record;
9

10 type T1_Access is access T1;
11

12 type T2 is record
13 A : T1_Access;
14 end record;
15

16 end Mutually_Dependent;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Mutually_Dependent_
↪Access_Types.Example

MD5: b21ffc4cdfe3db939dfc841cf8434344

In this example, T1 and T2 are mutually dependent types via the access types T1_Access
and T2_Access — we're using those access types in the declaration of the B and A compo-
nents.

14.7 Dereferencing

In the Introduction to Ada course191, we discussed the .all syntax to dereference access
values:

Listing 59: show_dereferencing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Dereferencing is
4

5 -- Declaring access type:
6 type Integer_Access is access Integer;
7

8 -- Declaring access object:
9 A1 : Integer_Access;
10

11 begin
12 A1 := new Integer;
13

14 -- Dereferencing access value:
(continues on next page)

191 https://learn.adacore.com/courses/intro-to-ada/chapters/access_types.html#intro-ada-access-dereferencing

512 Chapter 14. Access Types

https://learn.adacore.com/courses/intro-to-ada/chapters/access_types.html#intro-ada-access-dereferencing

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
15 A1.all := 22;
16

17 Put_Line ("A1: " & Integer'Image (A1.all));
18 end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.
↪Simple_Dereferencing

MD5: 65655768c17a02991ffeda9a853b6ffb

Runtime output

A1: 22

In this example, we declare A1 as an access object, which allows us to access objects of
Integer type. We dereference A1 by writing A1.all.
Here's another example, this time with an array:

Listing 60: show_dereferencing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Dereferencing is
4

5 type Integer_Array is
6 array (Positive range <>) of Integer;
7

8 type Integer_Array_Access is
9 access Integer_Array;
10

11 Arr : constant Integer_Array_Access :=
12 new Integer_Array (1 .. 6);
13 begin
14 Arr.all := (1, 2, 3, 5, 8, 13);
15

16 for I in Arr'Range loop
17 Put_Line ("Arr (: "
18 & Integer'Image (I) & "): "
19 & Integer'Image (Arr.all (I)));
20 end loop;
21 end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_
↪Dereferencing

MD5: 0e533dfd8ec1a74af17c99633c292e95

Runtime output

Arr (: 1): 1
Arr (: 2): 2
Arr (: 3): 3
Arr (: 4): 5
Arr (: 5): 8
Arr (: 6): 13

In this example, we dereference the access value by writing Arr.all. We then assign an
array aggregate to it — this becomes Arr.all := (..., ...);. Similarly, in the loop, we
write Arr.all (I) to access the I component of the array.

14.7. Dereferencing 513

Advanced Journey With Ada: A Flight In Progress

In the Ada Reference Manual
• 4.1 Names192

14.7.1 Implicit Dereferencing

Implicit dereferencing allows us to omit the .all suffix without getting a compilation error.
In this case, the compiler knows that the dereferenced object is implied, not the access
value.
Ada supports implicit dereferencing in these use cases:
• when accessing components of a record or an array — including array slices.
• when accessing subprograms that have at least one parameter (we discuss this topic
later in this chapter);

• when accessing some attributes — such as some array and task attributes.

Arrays

Let's start by looking into an example of implicit dereferencing of arrays. We can take the
previous code example and replace Arr.all (I) by Arr (I):

Listing 61: show_dereferencing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Dereferencing is
4

5 type Integer_Array is
6 array (Positive range <>) of Integer;
7

8 type Integer_Array_Access is
9 access Integer_Array;
10

11 Arr : constant Integer_Array_Access :=
12 new Integer_Array (1 .. 6);
13 begin
14 Arr.all := (1, 2, 3, 5, 8, 13);
15

16 Arr (1 .. 6) := (1, 2, 3, 5, 8, 13);
17

18 for I in Arr'Range loop
19 Put_Line
20 ("Arr (: "
21 & Integer'Image (I) & "): "
22 & Integer'Image (Arr (I)));
23 -- ^ .all is implicit.
24 end loop;
25 end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_
↪Implicit_Dereferencing

MD5: ade602a9e6976018e0c00f930a2399f1

192 http://www.ada-auth.org/standards/22rm/html/RM-4-1.html

514 Chapter 14. Access Types

http://www.ada-auth.org/standards/22rm/html/RM-4-1.html

Advanced Journey With Ada: A Flight In Progress

Runtime output

Arr (: 1): 1
Arr (: 2): 2
Arr (: 3): 3
Arr (: 4): 5
Arr (: 5): 8
Arr (: 6): 13

Both forms — Arr.all (I) and Arr (I) — are equivalent. Note, however, that there's
no implicit dereferencing when we want to access the whole array. (Therefore, we cannot
write Arr := (1, 2, 3, 5, 8, 13);.) However, as slices are implicitly dereferenced, we
can write Arr (1 .. 6) := (1, 2, 3, 5, 8, 13); instead of Arr.all (1 .. 6) := (1,
2, 3, 5, 8, 13);. Alternatively, we can assign to the array components individually and
use implicit dereferencing for each component:

Arr (1) := 1;
Arr (2) := 2;
Arr (3) := 3;
Arr (4) := 5;
Arr (5) := 8;
Arr (6) := 13;

Implicit dereferencing isn't available for the whole array because we have to distinguish
between assigning to access objects and assigning to actual arrays. For example:

Listing 62: show_array_assignments.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Array_Assignments is
4

5 type Integer_Array is
6 array (Positive range <>) of Integer;
7

8 type Integer_Array_Access is
9 access Integer_Array;
10

11 procedure Show_Array
12 (Name : String;
13 Arr : Integer_Array_Access) is
14 begin
15 Put (Name);
16 for E of Arr.all loop
17 Put (Integer'Image (E));
18 end loop;
19 New_Line;
20 end Show_Array;
21

22 Arr_1 : constant Integer_Array_Access :=
23 new Integer_Array (1 .. 6);
24 Arr_2 : Integer_Array_Access :=
25 new Integer_Array (1 .. 6);
26 begin
27 Arr_1.all := (1, 2, 3, 5, 8, 13);
28 Arr_2.all := (21, 34, 55, 89, 144, 233);
29

30 -- Array assignment
31 Arr_2.all := Arr_1.all;
32

33 Show_Array ("Arr_2", Arr_2);
34

(continues on next page)

14.7. Dereferencing 515

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
35 -- Access value assignment
36 Arr_2 := Arr_1;
37

38 Arr_1.all := (377, 610, 987, 1597, 2584, 4181);
39

40 Show_Array ("Arr_2", Arr_2);
41 end Show_Array_Assignments;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_
↪Assignments

MD5: 9b1f99af081000c28a6bf9b033127ea3

Runtime output

Arr_2 1 2 3 5 8 13
Arr_2 377 610 987 1597 2584 4181

Here, Arr_2.all := Arr_1.all is an array assignment, while Arr_2 := Arr_1 is an access
value assignment. By forcing the usage of the .all suffix, the distinction is clear. Implicit
dereferencing, however, could be confusing here. (For example, the .all suffix in Arr_2
:= Arr_1.all is an oversight by the programmer when the intention actually was to use
access values on both sides.) Therefore, implicit dereferencing is only supported in those
cases where there's no risk of ambiguities or oversights.

Records

Let's see an example of implicit dereferencing of a record:

Listing 63: show_dereferencing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Dereferencing is
4

5 type Rec is record
6 I : Integer;
7 F : Float;
8 end record;
9

10 type Rec_Access is access Rec;
11

12 R : constant Rec_Access := new Rec;
13 begin
14 R.all := (I => 1, F => 5.0);
15

16 Put_Line ("R.I: "
17 & Integer'Image (R.I));
18 Put_Line ("R.F: "
19 & Float'Image (R.F));
20 end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.
↪Record_Implicit_Dereferencing

MD5: 9af72502d04f128785f77dcc829d5d48

Runtime output

516 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

R.I: 1
R.F: 5.00000E+00

Again, we can replace R.all.I by R.I, as record components are implicitly dereferenced.
Also, we could use implicit dereference when assigning to record components individually:

R.I := 1;
R.F := 5.0;

However, we have to write R.all when assigning to the whole record R.

Attributes

Finally, let's see an example of implicit dereference when using attributes:

Listing 64: show_dereferencing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Dereferencing is
4

5 type Integer_Array is
6 array (Positive range <>) of Integer;
7

8 type Integer_Array_Access is
9 access Integer_Array;
10

11 Arr : constant Integer_Array_Access :=
12 new Integer_Array (1 .. 6);
13 begin
14 Put_Line
15 ("Arr'First: "
16 & Integer'Image (Arr'First));
17 Put_Line
18 ("Arr'Last: "
19 & Integer'Image (Arr'Last));
20

21 Put_Line
22 ("Arr'Component_Size: "
23 & Integer'Image (Arr'Component_Size));
24 Put_Line
25 ("Arr.all'Component_Size: "
26 & Integer'Image (Arr.all'Component_Size));
27

28 Put_Line
29 ("Arr'Size: "
30 & Integer'Image (Arr'Size));
31 Put_Line
32 ("Arr.all'Size: "
33 & Integer'Image (Arr.all'Size));
34 end Show_Dereferencing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_
↪Implicit_Dereferencing

MD5: 5730e18c8d2ed5e26a4d7d325a46a7e9

Runtime output

14.7. Dereferencing 517

Advanced Journey With Ada: A Flight In Progress

Arr'First: 1
Arr'Last: 6
Arr'Component_Size: 32
Arr.all'Component_Size: 32
Arr'Size: 128
Arr.all'Size: 192

Here, we can write Arr'First and Arr'Last instead of Arr.all'First and Arr.
all'Last, respectively, because Arr is implicitly dereferenced. The same applies to
Arr'Component_Size. Note that we can write both Arr'Size and Arr.all'Size, but they
have different meanings:
• Arr'Size is the size of the access object; while
• Arr.all'Size indicates the size of the actual array Arr.

In other words, the Size attribute is not implicitly dereferenced. In fact, any attribute that
could potentially be ambiguous is not implicitly dereferenced. Therefore, in those cases,
we must explicitly indicate (by using .all or not) how we want to use the attribute.

Summary

The following table summarizes all instances where implicit dereferencing is supported:

Entities Standard Usage Implicit Dereference
Array components Arr.all (I) Arr (I)
Array slices Arr.all (F .. L) Arr (F .. L)
Record components Rec.all.C Rec.C
Array attributes Arr.all’First Arr’First

Arr.all’First (N) Arr’First (N)
Arr.all’Last Arr’Last
Arr.all’Last (N) Arr’Last (N)
Arr.all’Range Arr’Range
Arr.all’Range (N) Arr’Range (N)
Arr.all’Length Arr’Length
Arr.all’Length (N) Arr’Length (N)
Arr.all’Component_Size Arr’Component_Size

Task attributes T.all'Identity T'Identity
T.all'Storage_Size T'Storage_Size
T.all'Terminated T'Terminated
T.all'Callable T'Callable

Tagged type attributes X.all’Tag X’Tag
Other attributes X.all'Valid X'Valid

X.all'Old X'Old
A.all’Constrained A’Constrained

In the Ada Reference Manual
• 4.1 Names193

• 4.1.1 Indexed Components194

• 4.1.2 Slices195
193 http://www.ada-auth.org/standards/22rm/html/RM-4-1.html
194 http://www.ada-auth.org/standards/22rm/html/RM-4-1-1.html
195 http://www.ada-auth.org/standards/22rm/html/RM-4-1-2.html

518 Chapter 14. Access Types

http://www.ada-auth.org/standards/22rm/html/RM-4-1.html
http://www.ada-auth.org/standards/22rm/html/RM-4-1-1.html
http://www.ada-auth.org/standards/22rm/html/RM-4-1-2.html

Advanced Journey With Ada: A Flight In Progress

• 4.1.3 Selected Components196

• 4.1.4 Attributes197

14.8 Ragged arrays

Ragged arrays — also known as jagged arrays — are non-uniform, multidimensional arrays.
They can be useful to implement tables with varying number of coefficients, as we discuss
as an example in this section.

14.8.1 Uniform multidimensional arrays

Consider an algorithm that processes data based on coefficients that depends on a selected
quality level:

Quality level Number of coefficients #1 #2 #3 #4 #5
Simplified 1 0.15
Better 3 0.02 0.16 0.27
Best 5 0.01 0.08 0.12 0.20 0.34

(Note that this is just a bogus table with no real purpose, as we're not trying to implement
any actual algorithm.)
We can implement this table as a two-dimensional array (Calc_Table), where each quality
level has an associated array:

Listing 65: data_processing.ads
1 package Data_Processing is
2

3 type Quality_Level is
4 (Simplified, Better, Best);
5

6 private
7

8 Calc_Table : constant array
9 (Quality_Level, 1 .. 5) of Float :=
10 (Simplified =>
11 (0.15, 0.00, 0.00, 0.00, 0.00),
12 Better =>
13 (0.02, 0.16, 0.27, 0.00, 0.00),
14 Best =>
15 (0.01, 0.08, 0.12, 0.20, 0.34));
16

17 Last : constant array
18 (Quality_Level) of Positive :=
19 (Simplified => 1,
20 Better => 3,
21 Best => 5);
22

23 end Data_Processing;

Code block metadata
196 http://www.ada-auth.org/standards/22rm/html/RM-4-1-3.html
197 http://www.ada-auth.org/standards/22rm/html/RM-4-1-4.html

14.8. Ragged arrays 519

http://www.ada-auth.org/standards/22rm/html/RM-4-1-3.html
http://www.ada-auth.org/standards/22rm/html/RM-4-1-4.html

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.
↪Uniform_Table

MD5: befa8d2b684ee20495f2dd6907dc44d4

Note that, in this implementation, we have a separate table Last that indicates the actual
number of coefficients of each quality level.
Alternatively, we could use a record (Table_Coefficient) that stores the number of coef-
ficients and the actual coefficients:

Listing 66: data_processing.ads
1 package Data_Processing is
2

3 type Quality_Level is
4 (Simplified, Better, Best);
5

6 type Data is
7 array (Positive range <>) of Float;
8

9 private
10

11 type Table_Coefficient is record
12 Last : Positive;
13 Coef : Data (1 .. 5);
14 end record;
15

16 Calc_Table : constant array
17 (Quality_Level) of Table_Coefficient :=
18 (Simplified =>
19 (1, (0.15, 0.00, 0.00, 0.00, 0.00)),
20 Better =>
21 (3, (0.02, 0.16, 0.27, 0.00, 0.00)),
22 Best =>
23 (5, (0.01, 0.08, 0.12, 0.20, 0.34)));
24

25 end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.
↪Uniform_Table

MD5: 4c8602f6ecede0ac1231838c0a0a54b7

In this case, we have a unidimensional array where each component (of Ta-
ble_Coefficient type) contains an array (Coef) with the coefficients.
This is an example of a Process procedure that references the Calc_Table:

Listing 67: data_processing-operations.ads
1 package Data_Processing.Operations is
2

3 procedure Process (D : in out Data;
4 Q : Quality_Level);
5

6 end Data_Processing.Operations;

Listing 68: data_processing-operations.adb
1 package body Data_Processing.Operations is
2

(continues on next page)

520 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 procedure Process (D : in out Data;
4 Q : Quality_Level) is
5 begin
6 for I in D'Range loop
7 for J in 1 .. Calc_Table (Q).Last loop
8 -- ... * Calc_Table (Q).Coef (J)
9 null;
10 end loop;
11 -- D (I) := ...
12 null;
13 end loop;
14 end Process;
15

16 end Data_Processing.Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.
↪Uniform_Table

MD5: 2b0d2cee265509e64e507cfa6289bdcc

Note that, to loop over the coefficients, we're using for J in 1 .. Calc_Table (Q).
Last loop instead of for J in Calc_Table (Q)'Range loop. As we're trying to make
a non-uniform array fit in a uniform array, we cannot simply loop over all elements using
the Range attribute, but must be careful to use the correct number of elements in the loop
instead.
Also, note that Calc_Table has 15 coefficients in total. Out of those coefficients, 6 coef-
ficients (or 40 percent of the table) aren't being used. Naturally, this is wasted memory
space. We can improve this by using ragged arrays.

14.8.2 Non-uniform multidimensional array

Ragged arrays are declared by using an access type to an array. By doing that, each ar-
ray can be declared with a different size, thereby creating a non-uniform multidimensional
array.
For example, we can declare a constant array Table as a ragged array:

Listing 69: data_processing.ads
1 package Data_Processing is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 private
7

8 type Integer_Array_Access is
9 access constant Integer_Array;
10

11 Table : constant array (1 .. 3) of
12 Integer_Array_Access :=
13 (1 => new Integer_Array'(1 => 15),
14 2 => new Integer_Array'(1 => 12,
15 2 => 15,
16 3 => 20),
17 3 => new Integer_Array'(1 => 12,
18 2 => 15,

(continues on next page)

14.8. Ragged arrays 521

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
19 3 => 20,
20 4 => 20,
21 5 => 25,
22 6 => 30));
23

24 end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.
↪Simple_Ragged_Array

MD5: 28e044a43bf45585a0268c60d63c629e

Here, each component of Table is an access to another array. As each array is allocated
via new, those arrays may have different sizes.
We can rewrite the example from the previous subsection using a ragged array for the
Calc_Table:

Listing 70: data_processing.ads
1 package Data_Processing is
2

3 type Quality_Level is
4 (Simplified, Better, Best);
5

6 type Data is
7 array (Positive range <>) of Float;
8

9 private
10

11 type Coefficients is access constant Data;
12

13 Calc_Table : constant array (Quality_Level) of
14 Coefficients :=
15 (Simplified =>
16 new Data'(1 => 0.15),
17 Better =>
18 new Data'(0.02, 0.16, 0.27),
19 Best =>
20 new Data'(0.01, 0.08, 0.12,
21 0.20, 0.34));
22

23 end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.
↪Ragged_Table

MD5: 0781b27cba27dbd1e74da54e425a1f4b

Now, we aren't wastingmemory space because each data component has the right size that
is required for each quality level. Also, we don't need to store the number of coefficients, as
this information is automatically available from the array initialization — via the allocation
of the Data array for the Coefficients type.
Note that the Coefficients type is defined as access constant. We discuss access-to-
constant types (page 526) in more details later on.
This is the adapted Process procedure:

522 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 71: data_processing-operations.ads
1 package Data_Processing.Operations is
2

3 procedure Process (D : in out Data;
4 Q : Quality_Level);
5

6 end Data_Processing.Operations;

Listing 72: data_processing-operations.adb
1 package body Data_Processing.Operations is
2

3 procedure Process (D : in out Data;
4 Q : Quality_Level) is
5 begin
6 for I in D'Range loop
7 for J in Calc_Table (Q)'Range loop
8 -- ... * Calc_Table (Q).Coef (J)
9 null;
10 end loop;
11 -- D (I) := ...
12 null;
13 end loop;
14 end Process;
15

16 end Data_Processing.Operations;

Now, we can simply loop over the coefficients by writing for J in Calc_Table (Q)'Range
loop, as each element of Calc_Table automatically has the correct range.

14.9 Aliasing

The term aliasing198 refers to objects in memory that we can access using more than a
single reference. In Ada, if we allocate an object via new, we have a potentially aliased
object. We can then have multiple references to this object:

Listing 73: show_aliasing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Aliasing is
4 type Integer_Access is access Integer;
5

6 A1, A2 : Integer_Access;
7 begin
8 A1 := new Integer;
9 A2 := A1;
10

11 A1.all := 22;
12 Put_Line ("A1: " & Integer'Image (A1.all));
13 Put_Line ("A2: " & Integer'Image (A2.all));
14

15 A2.all := 24;
16 Put_Line ("A1: " & Integer'Image (A1.all));
17 Put_Line ("A2: " & Integer'Image (A2.all));
18 end Show_Aliasing;

198 https://en.wikipedia.org/wiki/Aliasing_(computing)

14.9. Aliasing 523

https://en.wikipedia.org/wiki/Aliasing_(computing)

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliasing_
↪Via_Access

MD5: 2fde6073cec9823a1a9d93aec82384e1

Runtime output

A1: 22
A2: 22
A1: 24
A2: 24

In this example, we access the object allocated via new by using either A1 or A2, as both
refer to the same aliased object. In other words, A1 or A2 allow us to access the same object
in memory.

Important
Note that aliasing is unrelated to renaming. For example, we could use renaming to write
a program that looks similar to the one above:

Listing 74: show_renaming.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Renaming is
4 A1 : Integer;
5 A2 : Integer renames A1;
6 begin
7 A1 := 22;
8 Put_Line ("A1: " & Integer'Image (A1));
9 Put_Line ("A2: " & Integer'Image (A2));
10

11 A2 := 24;
12 Put_Line ("A1: " & Integer'Image (A1));
13 Put_Line ("A2: " & Integer'Image (A2));
14 end Show_Renaming;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Renaming
MD5: 99a47d02000b91f7464dffe994fd8ee6

Runtime output

A1: 22
A2: 22
A1: 24
A2: 24

Here, A1 or A2 are two different names for the same object. However, the object itself isn't
aliased.

In the Ada Reference Manual
• 3.10 Access Types199

199 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

524 Chapter 14. Access Types

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

14.9.1 Aliased objects

As we discussed previously (page 483), we use new to create aliased objects on the heap.
We can also use general access types to access objects that were created on the stack.
By default, objects created on the stack aren't aliased. Therefore, we have to indicate
that an object is aliased by using the aliased keyword in the object's declaration: Obj :
aliased Integer;.
Let's see an example:

Listing 75: show_aliased_obj.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Aliased_Obj is
4 type Integer_Access is access all Integer;
5

6 I_Var : aliased Integer;
7 A1 : Integer_Access;
8 begin
9 A1 := I_Var'Access;
10

11 A1.all := 22;
12 Put_Line ("A1: " & Integer'Image (A1.all));
13 end Show_Aliased_Obj;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Access_
↪Aliased_Obj

MD5: 98c8e47d7c2b5df8075918b239a8d476

Runtime output

A1: 22

Here, we declare I_Var as an aliased integer variable and get a reference to it, which we
assign to A1. Naturally, we could also have two accesses A1 and A2:

Listing 76: show_aliased_obj.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Aliased_Obj is
4 type Integer_Access is access all Integer;
5

6 I_Var : aliased Integer;
7 A1, A2 : Integer_Access;
8 begin
9 A1 := I_Var'Access;
10 A2 := A1;
11

12 A1.all := 22;
13 Put_Line ("A1: " & Integer'Image (A1.all));
14 Put_Line ("A2: " & Integer'Image (A2.all));
15

16 A2.all := 24;
17 Put_Line ("A1: " & Integer'Image (A1.all));
18 Put_Line ("A2: " & Integer'Image (A2.all));
19

20 end Show_Aliased_Obj;

14.9. Aliasing 525

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Access_
↪Aliased_Obj

MD5: ac331285456462f05abe7e1fd5e3ca2b

Runtime output

A1: 22
A2: 22
A1: 24
A2: 24

In this example, both A1 and A2 refer to the I_Var variable.
Note that these examples make use of these two features:
1. The declaration of a general access type (Integer_Access) using access all.
2. The retrieval of a reference to I_Var using the Access attribute.

In the next sections, we discuss these features in more details.

In the Ada Reference Manual
• 3.3.1 Object Declarations200

• 3.10 Access Types201

General access modifiers

Let's now discuss how to declare general access types. In addition to the standard (pool-
specific) access type declarations, Ada provides two access modifiers:

Type Declaration
Access-to-variable type T_Acc is access all T
Access-to-constant type T_Acc is access constant T

Let's look at an example:

Listing 77: integer_access_types.ads
1 package Integer_Access_Types is
2

3 type Integer_Access is
4 access Integer;
5

6 type Integer_Access_All is
7 access all Integer;
8

9 type Integer_Access_Const is
10 access constant Integer;
11

12 end Integer_Access_Types;

Code block metadata
200 http://www.ada-auth.org/standards/22rm/html/RM-3-3-1.html
201 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

526 Chapter 14. Access Types

http://www.ada-auth.org/standards/22rm/html/RM-3-3-1.html
http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Show_
↪Access_Modifiers

MD5: 98ccaa703194ae88222ccc5a4400e967

As we've seen previously, we can use a type such as Integer_Access to allocate objects
dynamically. However, we cannot use this type to refer to declared objects, for example. In
this case, we have to use an access-to-variable type such as Integer_Access_All. Also, if
we want to access constants — or access objects that we want to treat as constants —, we
use a type such as Integer_Access_Const.

Access attribute

To get access to a variable or a constant, we make use of the Access attribute. For example,
I_Var'Access gives us access to the I_Var object.
Let's look at an example of how to use the integer access types from the previous code
snippet:

Listing 78: integer_access_types.ads
1 package Integer_Access_Types is
2

3 type Integer_Access is
4 access Integer;
5

6 type Integer_Access_All is
7 access all Integer;
8

9 type Integer_Access_Const is
10 access constant Integer;
11

12 procedure Show;
13

14 end Integer_Access_Types;

Listing 79: integer_access_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Integer_Access_Types is
4

5 I_Var : aliased Integer := 0;
6 Fact : aliased constant Integer := 42;
7

8 Dyn_Ptr : constant Integer_Access
9 := new Integer'(30);
10 I_Var_Ptr : constant Integer_Access_All
11 := I_Var'Access;
12 I_Var_C_Ptr : constant Integer_Access_Const
13 := I_Var'Access;
14 Fact_Ptr : constant Integer_Access_Const
15 := Fact'Access;
16

17 procedure Show is
18 begin
19 Put_Line ("Dyn_Ptr: "
20 & Integer'Image (Dyn_Ptr.all));
21 Put_Line ("I_Var_Ptr: "
22 & Integer'Image (I_Var_Ptr.all));
23 Put_Line ("I_Var_C_Ptr: "

(continues on next page)

14.9. Aliasing 527

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
24 & Integer'Image
25 (I_Var_C_Ptr.all));
26 Put_Line ("Fact_Ptr: "
27 & Integer'Image (Fact_Ptr.all));
28 end Show;
29

30 end Integer_Access_Types;

Listing 80: show_access_modifiers.adb
1 with Integer_Access_Types;
2

3 procedure Show_Access_Modifiers is
4 begin
5 Integer_Access_Types.Show;
6 end Show_Access_Modifiers;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Show_
↪Access_Modifiers

MD5: c9036f060859207ea14354b26dc8b981

Runtime output

Dyn_Ptr: 30
I_Var_Ptr: 0
I_Var_C_Ptr: 0
Fact_Ptr: 42

In this example, Dyn_Ptr refers to a dynamically allocated object, I_Var_Ptr refers to the
I_Var variable, and Fact_Ptr refers to the Fact constant. We get access to the variable
and the constant objects by using the Access attribute.
Also, we declare I_Var_C_Ptr as an access-to-constant, but we get access to the I_Var
variable. This simply means the object I_Var_C_Ptr refers to is treated as a constant.
Therefore, we can write I_Var := 22;, but we cannot write I_Var_C_Ptr.all := 22;.

In the Ada Reference Manual
• 3.10.2 Operations of Access Types202

Non-aliased objects

As mentioned earlier, by default, declared objects — which are allocated on the stack —
aren't aliased. Therefore, we cannot get a reference to those objects. For example:

Listing 81: show_access_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Access_Error is
4 type Integer_Access is access all Integer;
5 I_Var : Integer;
6 A1 : Integer_Access;
7 begin

(continues on next page)
202 http://www.ada-auth.org/standards/22rm/html/RM-3-10-2.html

528 Chapter 14. Access Types

http://www.ada-auth.org/standards/22rm/html/RM-3-10-2.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 A1 := I_Var'Access;
9

10 A1.all := 22;
11 Put_Line ("A1: " & Integer'Image (A1.all));
12 end Show_Access_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Access_Non_
↪Aliased_Obj

MD5: 2a9904062eea96ae6dc209493d6f20d4

Build output

show_access_error.adb:8:10: error: prefix of "Access" attribute must be aliased
gprbuild: *** compilation phase failed

In this example, the compiler complains that we cannot get a reference to I_Var because
I_Var is not aliased.

Ragged arrays using aliased objects

We can use aliased objects to declare ragged arrays (page 519). For example, we can
rewrite a previous program using aliased constant objects:

Listing 82: data_processing.ads
1 package Data_Processing is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 private
7

8 type Integer_Array_Access is
9 access constant Integer_Array;
10

11 Tab_1 : aliased constant Integer_Array
12 := (1 => 15);
13 Tab_2 : aliased constant Integer_Array
14 := (12, 15, 20);
15 Tab_3 : aliased constant Integer_Array
16 := (12, 15, 20,
17 20, 25, 30);
18

19 Table : constant array (1 .. 3) of
20 Integer_Array_Access :=
21 (1 => Tab_1'Access,
22 2 => Tab_2'Access,
23 3 => Tab_3'Access);
24

25 end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Ragged_
↪Array_Aliased_Objs

MD5: 7e284560c447c02628e34bac982d4ad5

14.9. Aliasing 529

Advanced Journey With Ada: A Flight In Progress

Here, instead of allocating the constant arrays dynamically via new, we declare three aliased
arrays (Tab_1, Tab_2 and Tab_3) and get a reference to them in the declaration of Table.

Aliased access objects

It's interesting to mention that access objects can be aliased themselves. Consider this
example where we declare the Integer_Access_Access type to refer to an access object:

Listing 83: show_aliased_access_obj.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Aliased_Access_Obj is
4

5 type Integer_Access is
6 access all Integer;
7 type Integer_Access_Access is
8 access all Integer_Access;
9

10 I_Var : aliased Integer;
11 A : aliased Integer_Access;
12 B : Integer_Access_Access;
13 begin
14 A := I_Var'Access;
15 B := A'Access;
16

17 B.all.all := 22;
18 Put_Line ("A: " & Integer'Image (A.all));
19 Put_Line ("B: " & Integer'Image (B.all.all));
20 end Show_Aliased_Access_Obj;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliased_
↪Access

MD5: 77e9be5e29cfb99aef9409728202ba9d

Runtime output

A: 22
B: 22

After the assignments in this example, B refers to A, which in turn refers to I_Var. Note
that this code only compiles because we declare A as an aliased (access) object.

14.9.2 Aliased components

Components of an array or a record can be aliased. This allows us to get access to those
components:

Listing 84: show_aliased_components.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Aliased_Components is
4

5 type Integer_Access is access all Integer;
6

7 type Rec is record
(continues on next page)

530 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 I_Var_1 : Integer;
9 I_Var_2 : aliased Integer;
10 end record;
11

12 type Integer_Array is
13 array (Positive range <>) of aliased Integer;
14

15 R : Rec := (22, 24);
16 Arr : Integer_Array (1 .. 3) := (others => 42);
17 A : Integer_Access;
18 begin
19 -- A := R.I_Var_1'Access;
20 -- ^ ERROR: cannot access
21 -- non-aliased
22 -- component
23

24 A := R.I_Var_2'Access;
25 Put_Line ("A: " & Integer'Image (A.all));
26

27 A := Arr (2)'Access;
28 Put_Line ("A: " & Integer'Image (A.all));
29 end Show_Aliased_Components;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliased_
↪Components

MD5: 5dfaa248caf8e37a4a3a1e1a24973777

Runtime output

A: 24
A: 42

In this example, we get access to the I_Var_2 component of record R. (Note that trying to
access the I_Var_1 component would gives us a compilation error, as this component is
not aliased.) Similarly, we get access to the second component of array Arr.
Declaring components with the aliased keyword allows us to specify that those are ac-
cessible via other paths besides the component name. Therefore, the compiler won't store
them in registers. This can be essential when doing low-level programming — for example,
when accessing memory-mapped registers. In this case, we want to ensure that the com-
piler uses the memory address we're specifying (instead of assigning registers for those
components).

In the Ada Reference Manual
• 3.6 Array Types203

203 http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

14.9. Aliasing 531

http://www.ada-auth.org/standards/22rm/html/RM-3-6.html

Advanced Journey With Ada: A Flight In Progress

14.9.3 Aliased parameters

In addition to aliased objects and components, we can declare aliased parameters
(page 365), as we already discussed in an earlier chapter. As we mentioned there, aliased
parameters are always passed by reference, independently of the type we're using.
The parameter mode indicates which type we must use for the access type:

Parameter mode Type
aliased in Access-to-constant
aliased out Access-to-variable
aliased in out Access-to-variable

Using aliased parameters in a subprogram allows us to get access to those parameters in
the body of that subprogram. Let's see an example:

Listing 85: data_processing.ads
1 package Data_Processing is
2

3 procedure Proc (I : aliased in out Integer);
4

5 end Data_Processing;

Listing 86: data_processing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Data_Processing is
4

5 procedure Show (I : aliased Integer) is
6 -- ^ equivalent to
7 -- "aliased in Integer"
8

9 type Integer_Constant_Access is
10 access constant Integer;
11

12 A : constant Integer_Constant_Access
13 := I'Access;
14 begin
15 Put_Line ("Value : I "
16 & Integer'Image (A.all));
17 end Show;
18

19 procedure Set_One (I : aliased out Integer) is
20

21 type Integer_Access is access all Integer;
22

23 procedure Local_Set_One (A : Integer_Access)
24 is
25 begin
26 A.all := 1;
27 end Local_Set_One;
28

29 begin
30 Local_Set_One (I'Access);
31 end Set_One;
32

33 procedure Proc (I : aliased in out Integer) is
34

(continues on next page)

532 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
35 type Integer_Access is access all Integer;
36

37 procedure Add_One (A : Integer_Access) is
38 begin
39 A.all := A.all + 1;
40 end Add_One;
41

42 begin
43 Show (I);
44 Add_One (I'Access);
45 Show (I);
46 end Proc;
47

48 end Data_Processing;

Listing 87: show_aliased_param.adb
1 with Data_Processing; use Data_Processing;
2

3 procedure Show_Aliased_Param is
4 I : aliased Integer := 22;
5 begin
6 Proc (I);
7 end Show_Aliased_Param;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliased_
↪Rec_Component

MD5: 076238603036aa51cafcc013f38bc8f3

Runtime output

Value : I 22
Value : I 23

Here, Proc has an aliased in out parameter. In Proc's body, we declare the Inte-
ger_Access type as an access all type. We use the same approach in body of the
Set_One procedure, which has an aliased out parameter. Finally, the Show procedure
has an aliased in parameter. Therefore, we declare the Integer_Constant_Access as
an access constant type.
Note that parameter aliasing has an influence on how arguments are passed to a subpro-
gram when the parameter is of scalar type. When a scalar parameter is declared as aliased,
the corresponding argument is passed by reference. For example, if we had declared pro-
cedure Show (I : Integer), the argument for I would be passed by value. However,
since we're declaring it as aliased Integer, it is passed by reference.

In the Ada Reference Manual
• 6.1 Subprogram Declarations204

• 6.2 Formal Parameter Modes205

• 6.4.1 Parameter Associations206

204 http://www.ada-auth.org/standards/22rm/html/RM-6-1.html
205 http://www.ada-auth.org/standards/22rm/html/RM-6-2.html
206 http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html

14.9. Aliasing 533

http://www.ada-auth.org/standards/22rm/html/RM-6-1.html
http://www.ada-auth.org/standards/22rm/html/RM-6-2.html
http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html

Advanced Journey With Ada: A Flight In Progress

14.10 Accessibility Levels and Rules: An Introduction

This section provides an introduction to accessibility levels and accessibility rules. This
topic can be very complicated, and by no means do we intend to cover all the details here.
(In fact, discussing all the details about accessibility levels and rules could be a long chapter
on its own. If you're interested in them, please refer to the Ada Reference Manual.) In any
case, the goal of this section is to present the intention behind the accessibility rules and
build intuition on how to best use access types in your code.

In the Ada Reference Manual
• 3.10.2 Operations of Access Types207

14.10.1 Lifetime of objects

First, let's talk a bit about lifetime of objects208. We assume you understand the concept,
so this section is very short.
In very simple terms, the lifetime of an object indicates when an object still has relevant
information. For example, if a variable V gets out of scope, we say that its lifetime has
ended. From this moment on, V no longer exists.
For example:

Listing 88: show_lifetime.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Lifetime is
4 I_Var_1 : Integer := 22;
5 begin
6

7 Inner_Block : declare
8 I_Var_2 : Integer := 42;
9 begin
10 Put_Line ("I_Var_1: "
11 & Integer'Image (I_Var_1));
12 Put_Line ("I_Var_2: "
13 & Integer'Image (I_Var_2));
14

15 -- I_Var_2 will get out of scope
16 -- when the block finishes.
17 end Inner_Block;
18

19 -- I_Var_2 is now out of scope...
20

21 Put_Line ("I_Var_1: "
22 & Integer'Image (I_Var_1));
23 Put_Line ("I_Var_2: "
24 & Integer'Image (I_Var_2));
25 -- ^^^^^^^
26 -- ERROR: lifetime of I_Var_2 has ended!
27 end Show_Lifetime;

Code block metadata
207 http://www.ada-auth.org/standards/22rm/html/RM-3-10-2.html
208 https://en.wikipedia.org/wiki/Variable_(computer_science)#Scope_and_extent

534 Chapter 14. Access Types

http://www.ada-auth.org/standards/22rm/html/RM-3-10-2.html
https://en.wikipedia.org/wiki/Variable_(computer_science)#Scope_and_extent

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_
↪Levels_Rules_Introduction.Lifetime

MD5: ebe36f12c832ecfe71399b89801808d4

Build output

show_lifetime.adb:24:31: error: "I_Var_2" is undefined
gprbuild: *** compilation phase failed

In this example, we declare I_Var_1 in the Show_Lifetime procedure, and I_Var_2 in its
Inner_Block.
This example doesn't compile because we're trying to use I_Var_2 after its lifetime has
ended. However, if such a code could compile and run, the last call to Put_Line would
potentially display garbage to the user. (In fact, the actual behavior would be undefined.)

14.10.2 Accessibility Levels

In basic terms, accessibility levels are a mechanism to assess the lifetime of objects (as
we've just discussed). The starting point is the library level: this is the base level, and no
level can be deeper than that. We start "moving" to deeper levels when we use a library in
a subprogram or call other subprograms for example.
Suppose we have a procedure Proc that makes use of a package Pkg, and there's a block
in the Proc procedure:

package Pkg is

-- Library level

end Pkg;

with Pkg; use Pkg;

procedure Proc is

-- One level deeper than
-- library level

begin

declare
-- Two levels deeper than
-- library level

begin
null;

end;

end Proc;

For this code, we can say that:
• the specification of Pkg is at library level;
• the declarative part of Proc is one level deeper than the library level; and
• the block is two levels deeper than the library level.

(Note that this is still a very simplified overview of accessibility levels. Things start getting
more complicated when we use information from Pkg in Proc. Those details will become
more clear in the next sections.)

14.10. Accessibility Levels and Rules: An Introduction 535

Advanced Journey With Ada: A Flight In Progress

The levels themselves are not visible to the programmer. For example, there's no Ac-
cess_Level attribute that returns an integer value indicating the level. Also, you cannot
write a user message that displays the level at a certain point. In this sense, accessibility
levels are assessed relatively to each other: we can only say that a specific operation is at
the same or at a deeper level than another one.

14.10.3 Accessibility Rules

The accessibility rules determine whether a specific use of access types or objects is legal
(or not). Actually, accessibility rules exist to prevent dangling references (page 541), which
we discuss later. Also, they are based on the accessibility levels (page 535) we discussed
earlier.

Code example

As mentioned earlier, the accessibility level at a specific point isn't visible to the program-
mer. However, to illustrate which level we have at each point in the following code example,
we use a prefix (L0, L1, and L2) to indicate whether we're at the library level (L0) or at a
deeper level.
Let's now look at the complete code example:

Listing 89: library_level.ads
1 package Library_Level is
2

3 type L0_Integer_Access is
4 access all Integer;
5

6 L0_IA : L0_Integer_Access;
7

8 L0_Var : aliased Integer;
9

10 end Library_Level;

Listing 90: show_library_level.adb
1 with Library_Level; use Library_Level;
2

3 procedure Show_Library_Level is
4 type L1_Integer_Access is
5 access all Integer;
6

7 L0_IA_2 : L0_Integer_Access;
8 L1_IA : L1_Integer_Access;
9

10 L1_Var : aliased Integer;
11

12 procedure Test is
13 type L2_Integer_Access is
14 access all Integer;
15

16 L2_IA : L2_Integer_Access;
17

18 L2_Var : aliased Integer;
19 begin
20 L1_IA := L2_Var'Access;
21 -- ^^^^^^

(continues on next page)

536 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
22 -- ILLEGAL: L2 object to
23 -- L1 access object
24

25 L2_IA := L2_Var'Access;
26 -- ^^^^^^
27 -- LEGAL: L2 object to
28 -- L2 access object
29 end Test;
30

31 begin
32 L0_IA := new Integer'(22);
33 -- ^^^^^^^^^^^
34 -- LEGAL: L0 object to
35 -- L0 access object
36

37 L0_IA_2 := new Integer'(22);
38 -- ^^^^^^^^^^^
39 -- LEGAL: L0 object to
40 -- L0 access object
41

42 L0_IA := L1_Var'Access;
43 -- ^^^^^^
44 -- ILLEGAL: L1 object to
45 -- L0 access object
46

47 L0_IA_2 := L1_Var'Access;
48 -- ^^^^^^
49 -- ILLEGAL: L1 object to
50 -- L0 access object
51

52 L1_IA := L0_Var'Access;
53 -- ^^^^^^
54 -- LEGAL: L0 object to
55 -- L1 access object
56

57 L1_IA := L1_Var'Access;
58 -- ^^^^^^
59 -- LEGAL: L1 object to
60 -- L1 access object
61

62 L0_IA := L1_IA;
63 -- ^^^^^
64 -- ILLEGAL: type mismatch
65

66 L0_IA := L0_Integer_Access (L1_IA);
67 -- ^^^^^^^^^^^^^^^^^
68 -- ILLEGAL: cannot convert
69 -- L1 access object to
70 -- L0 access object
71

72 Test;
73 end Show_Library_Level;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_
↪Levels_Rules_Introduction.Accessibility_Library_Level

MD5: b3bed7eb2a8dfc78a2e7a7d2ce99f736

Build output

14.10. Accessibility Levels and Rules: An Introduction 537

Advanced Journey With Ada: A Flight In Progress

show_library_level.adb:20:16: error: non-local pointer cannot point to local object
show_library_level.adb:42:13: error: non-local pointer cannot point to local object
show_library_level.adb:47:15: error: non-local pointer cannot point to local object
show_library_level.adb:62:13: error: expected type "L0_Integer_Access" defined at␣

↪library_level.ads:3
show_library_level.adb:62:13: error: found type "L1_Integer_Access" defined at␣

↪line 4
show_library_level.adb:66:32: error: cannot convert local pointer to non-local␣

↪access type
gprbuild: *** compilation phase failed

In this example, we declare
• in the Library_Level package: the L0_Integer_Access type, the L0_IA access ob-
ject, and the L0_Var aliased variable;

• in the Show_Library_Level procedure: the L1_Integer_Access type, the L0_IA_2
and L1_IA access objects, and the L1_Var aliased variable;

• in the nested Test procedure: the L2_Integer_Access type, the L2_IA, and the
L2_Var aliased variable.

As mentioned earlier, the Ln prefix indicates the level of each type or object. Here, the n
value is zero at library level. We then increment the n value each time we refer to a deeper
level.
For instance:
• when we declare the L1_Integer_Access type in the Show_Library_Level procedure,
that declaration is one level deeper than the level of the Library_Level package —
so it has the L1 prefix.

• when we declare the L2_Integer_Access type in the Test procedure, that declaration
is one level deeper than the level of the Show_Library_Level procedure — so it has
the L2 prefix.

Types and Accessibility Levels

It's very important to highlight the fact that:
• types themselves also have an associated level, and
• objects have the same accessibility level as their types.

When we declare the L0_IA_2 object in the code example, its accessibility level is at library
level because its type (the L0_Integer_Access type) is at library level. Even though this
declaration is in the Show_Library_Level procedure — whose declarative part is one level
deeper than the library level —, the object itself has the same accessibility level as its type.
Now that we've discussed the accessibility levels of this code example, let's see how the
accessibility rules use those levels.

538 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Operations on Access Types

In very simple terms, the accessibility rules say that:
• operations on access types at the same accessibility level are legal;
• assigning or converting to a deeper level is legal;

Otherwise, operations targeting objects at a less-deep level are illegal.
For example, L0_IA := new Integer'(22) and L1_IA := L1_Var'Access are legal because
we're operating at the same accessibility level. Also, L1_IA := L0_Var'Access is legal
because L1_IA is at a deeper level than L0_Var'Access.
However, many operations in the code example are illegal. For instance, L0_IA :=
L1_Var'Access and L0_IA_2 := L1_Var'Access are illegal because the target objects
in the assignment are less deep.
Note that the L0_IA := L1_IA assignment is mainly illegal because the access types don't
match. (Of course, in addition to that, assigning L1_Var'Access to L0_IA is also illegal in
terms of accessibility rules.)

Conversion between Access Types

The same rules apply to the conversion between access types. In the code example, the
L0_Integer_Access (L1_IA) conversion is illegal because the resulting object is less deep.
That being said, conversions on the same level are fine:

Listing 91: show_same_level_conversion.adb
1 procedure Show_Same_Level_Conversion is
2 type L1_Integer_Access is
3 access all Integer;
4

5 type L1_B_Integer_Access is
6 access all Integer;
7

8 L1_IA : L1_Integer_Access;
9 L1_B_IA : L1_B_Integer_Access;
10

11 L1_Var : aliased Integer;
12 begin
13 L1_IA := L1_Var'Access;
14

15 L1_B_IA := L1_B_Integer_Access (L1_IA);
16 -- ^^^^^^^^^^^^^^^^^^^
17 -- LEGAL: conversion from
18 -- L1 access object to
19 -- L1 access object
20 end Show_Same_Level_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_
↪Levels_Rules_Introduction.Same_Level_Conversion

MD5: 7276a06e9f5b634d4f5a10a892071d87

Here, we're converting from the L1_Integer_Access type to the L1_B_Integer_Access,
which are both at the same level.

14.10. Accessibility Levels and Rules: An Introduction 539

Advanced Journey With Ada: A Flight In Progress

14.10.4 Accessibility rules on parameters

Note that the accessibility rules also apply to access values as subprogram parameters.
For example, compilation fails for this example:

Listing 92: names.ads
1 package Names is
2

3 type Name is access all String;
4

5 type Constant_Name is
6 access constant String;
7

8 procedure Show (N : Constant_Name);
9

10 end Names;

Listing 93: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 -- with Ada.Characters.Handling;
4 -- use Ada.Characters.Handling;
5

6 package body Names is
7

8 procedure Show (N : Constant_Name) is
9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15

16 end Names;

Listing 94: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 S : aliased String := "John";
5 begin
6 Show (S'Access);
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_
↪Levels_Rules_Introduction.Accessibility_Checks_Parameters

MD5: 6b8bf2799caa32f55d216ac0b58fcd39

Build output

show_names.adb:6:10: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

In this case, the S'Access cannot be used as the actual parameter for the N parameter of
the Show procedure because it's in a deeper level. If we allocate the string via new, however,
the code compiles as expected:

540 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 95: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 S : Name := new String'("John");
5 begin
6 Show (Constant_Name (S));
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_
↪Levels_Rules_Introduction.Accessibility_Checks_Parameters

MD5: 30237c83426db758804b802e1953d5d9

Runtime output

Name: John

This version of the code works because both object and access object have the same level.

14.10.5 Dangling References

An access value that points to a non-existent object is called a dangling reference. Later on,
we'll discuss how dangling references may occur using unchecked deallocation (page 549).
Dangling references are created when we have an access value pointing to an object whose
lifetime has ended, so it becomes a non-existent object. This could occur, for example,
when an access value still points to an object X that has gone out of scope.
As mentioned in the previous section, the accessibility rules of the Ada language ensure
that such situations never happen! In fact, whenever possible, the compiler applies those
rules to detect potential dangling references at compile time. When this detection isn't
possible at compile time, the compiler introduces an accessibility check (page 410). If this
check fails at runtime, it raises a Program_Error exception — thereby preventing that a
dangling reference gets used.
Let's see an example of how dangling references could occur:

Listing 96: show_dangling_reference.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Dangling_Reference is
4

5 type Integer_Access is
6 access all Integer;
7

8 I_Var_1 : aliased Integer := 22;
9

10 A1 : Integer_Access;
11 begin
12 A1 := I_Var_1'Access;
13 Put_Line ("A1.all: "
14 & Integer'Image (A1.all));
15

16 Put_Line ("Inner_Block will start now!");
17

18 Inner_Block : declare
(continues on next page)

14.10. Accessibility Levels and Rules: An Introduction 541

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
19 --
20 -- I_Var_2 only exists in Inner_Block
21 --
22 I_Var_2 : aliased Integer := 42;
23

24 --
25 -- A2 only exists in Inner_Block
26 --
27 A2 : Integer_Access;
28 begin
29 A2 := I_Var_1'Access;
30 Put_Line ("A2.all: "
31 & Integer'Image (A2.all));
32

33 A1 := I_Var_2'Access;
34 -- PROBLEM: A1 and Integer_Access type
35 -- have longer lifetime than
36 -- I_Var_2
37

38 Put_Line ("A1.all: "
39 & Integer'Image (A1.all));
40

41 A2 := I_Var_2'Access;
42 -- PROBLEM: A2 has the same lifetime as
43 -- I_Var_2, but Integer_Access
44 -- type has a longer lifetime.
45

46 Put_Line ("A2.all: "
47 & Integer'Image (A2.all));
48 end Inner_Block;
49

50 Put_Line ("Inner_Block has ended!");
51 Put_Line ("A1.all: "
52 & Integer'Image (A1.all));
53

54 end Show_Dangling_Reference;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_
↪Levels_Rules_Introduction.Dangling_Reference_Rules

MD5: 98e597f3f6a12075c474612bb42f4cb7

Build output

show_dangling_reference.adb:33:13: error: non-local pointer cannot point to local␣
↪object

show_dangling_reference.adb:41:13: error: non-local pointer cannot point to local␣
↪object

gprbuild: *** compilation phase failed

Here, we declare the access objects A1 and A2 of Integer_Access type, and the I_Var_1
and I_Var_2 objects. Moreover, A1 and I_Var_1 are declared in the scope of the
Show_Dangling_Reference procedure, while A2 and I_Var_2 are declared in the In-
ner_Block.
When we try to compile this code, we get two compilation errors due to violation of acces-
sibility rules. Let's now discuss these accessibility rules in terms of lifetime, and see which
problems they are preventing in each case.
1. In the A1 := I_Var_2'Access assignment, the main problem is that A1 has a longer
lifetime than I_Var_2. After the Inner_Block finishes — when I_Var_2 gets out of

542 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

scope and its lifetime has ended —, A1 would still be pointing to an object that does
not longer exist.

2. In the A2 := I_Var_2'Access assignment, however, both A2 and I_Var_2 have the
same lifetime. In that sense, the assignment may actually look pretty much OK.
• However, as mentioned in the previous section, Ada also cares about the lifetime
of access types. In fact, since the Integer_Access type is declared outside of the
Inner_Block, it has a longer lifetime than A2 and I_Var_2.

• To be more precise, the accessibility rules detect that A2 is an access object of a
type that has a longer lifetime than I_Var_2.

At first glance, this last accessibility rule may seem too strict, as both A2 and I_Var_2 have
the same lifetime — so nothing bad could occur when dereferencing A2. However, consider
the following change to the code:

A2 := I_Var_2'Access;

A1 := A2;
-- PROBLEM: A1 will still be referring
-- to I_Var_2 after the
-- Inner_Block, i.e. when the
-- lifetime of I_Var_2 has
-- ended!

Here, we're introducing the A1 := A2 assignment. The problem with this is that I_Var_2's
lifetime ends when the Inner_Block finishes, but A1 would continue to refer to an I_Var_2
object that doesn't exist anymore — thereby creating a dangling reference.
Even though we're actually not assigning A2 to A1 in the original code, we could have done
it. The accessibility rules ensure that such an error is never introduced into the program.

For further reading...
In the original code, we can consider the A2 := I_Var_2'Access assignment to be safe, as
we're not using the A1 := A2 assignment there. Since we're confident that no error could
ever occur in the Inner_Block due to the assignment to A2, we could replace it with A2 :=
I_Var_2'Unchecked_Access, so that the compiler accepts it. We discuss more about the
unchecked access attribute later in this chapter (page 544).
Alternatively, we could have solved the compilation issue that we see in the A2 :=
I_Var_2'Access assignment by declaring another access type locally in the Inner_Block:

Inner_Block : declare
type Integer_Local_Access is
access all Integer;

I_Var_2 : aliased Integer := 42;

A2 : Integer_Local_Access;
begin

A2 := I_Var_2'Access;
-- This assignment is fine because
-- the Integer_Local_Access type has
-- the same lifetime as I_Var_2.

end Inner_Block;

With this change, A2 becomes an access object of a type that has the same lifetime as
I_Var_2, so that the assignment doesn't violate the rules anymore.
(Note that in the Inner_Block, we could have simply named the local access type In-
teger_Access instead of Integer_Local_Access, thereby masking the Integer_Access

14.10. Accessibility Levels and Rules: An Introduction 543

Advanced Journey With Ada: A Flight In Progress

type of the outer block.)

We discuss the effects of dereferencing dangling references later in this chapter (page 551).

14.11 Unchecked Access

In this section, we discuss the Unchecked_Access attribute, which we can use to circumvent
accessibility issues for objects in specific cases. (Note that this attribute only exists for
objects, not for subprograms.)
We've seen previously (page 534) that the accessibility levels verify the lifetime of access
types. Let's see a simplified version of a code example from that section:

Listing 97: integers.ads
1 package Integers is
2

3 type Integer_Access is access all Integer;
4

5 end Integers;

Listing 98: show_access_issue.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Integers; use Integers;
4

5 procedure Show_Access_Issue is
6 I_Var : aliased Integer := 42;
7

8 A : Integer_Access;
9 begin
10 A := I_Var'Access;
11 -- PROBLEM: A has the same lifetime as I_Var,
12 -- but Integer_Access type has a
13 -- longer lifetime.
14

15 Put_Line ("A.all: " & Integer'Image (A.all));
16 end Show_Access_Issue;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Access.
↪Dangling_Reference_Rules

MD5: 646acabf3f388b52809349463d20d314

Build output

show_access_issue.adb:10:09: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

Here, the compiler complains about the A := I_Var'Access assignment because the In-
teger_Access type has a longer lifetime than A. However, we know that this assignment
to A — and further uses of A in the code — won't cause dangling references to be created.
Therefore, we can assume that assigning the access to I_Var to A is safe.
When we're sure that an access assignment cannot possibly generate dangling references,
we can the use Unchecked_Access attribute. For instance, we can use this attribute to

544 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

circumvent the compilation error in the previous code example, since we know that the
assignment is actually safe:

Listing 99: integers.ads
1 package Integers is
2

3 type Integer_Access is access all Integer;
4

5 end Integers;

Listing 100: show_access_issue.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Integers; use Integers;
4

5 procedure Show_Access_Issue is
6 I_Var : aliased Integer := 42;
7

8 A : Integer_Access;
9 begin
10 A := I_Var'Unchecked_Access;
11 -- OK: assignment is now accepted.
12

13 Put_Line ("A.all: " & Integer'Image (A.all));
14 end Show_Access_Issue;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Access.
↪Dangling_Reference_Rules

MD5: a71b9076d9e2983ffb9811183afdf6c1

Runtime output

A.all: 42

When we use the Unchecked_Access attribute, most rules still apply. The only difference
to the standard Access attribute is that unchecked access applies the rules as if the object
we're getting access to was being declared at library level. (For the code example we've
just seen, the check would be performed as if I_Var was declared in the Integers package
instead of being declared in the procedure.)
It is strongly recommended to avoid unchecked access in general. You should only use
it when you can safely assume that the access object will be discarded before the object
we had access to gets out of scope. Therefore, if this situation isn't clear enough, it's
best to avoid unchecked access. (Later in this chapter, we'll see some of the nasty issues
that arrive from creating dangling references.) Instead, you should work on improving the
software design of your application by considering alternatives such as using containers or
encapsulating access types in well-designed abstract data types.

In the Ada Reference Manual
• Unchecked Access Value Creation209

209 http://www.ada-auth.org/standards/22rm/html/RM-13-10.html

14.11. Unchecked Access 545

http://www.ada-auth.org/standards/22rm/html/RM-13-10.html

Advanced Journey With Ada: A Flight In Progress

14.12 Unchecked Deallocation

So far, we've seen multiple examples of using new to allocate objects. In this section, we
discuss how to manually deallocate objects.
Our starting point to manually deallocate an object is the generic Ada.
Unchecked_Deallocation procedure. We first instantiate this procedure for an access
type whose objects we want to be able to deallocate. For example, let's instantiate it for
the Integer_Access type:

Listing 101: integer_types.ads
1 with Ada.Unchecked_Deallocation;
2

3 package Integer_Types is
4

5 type Integer_Access is access Integer;
6

7 --
8 -- Instantiation of Ada.Unchecked_Deallocation
9 -- for the Integer_Access type:
10 --
11 procedure Free is
12 new Ada.Unchecked_Deallocation
13 (Object => Integer,
14 Name => Integer_Access);
15 end Integer_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_
↪Deallocation.Simple_Unchecked_Deallocation

MD5: 328b244cf406853e87494c381c9c4c9e

Here, we declare the Free procedure, which we can then use to deallocate objects that
were allocated for the Integer_Access type.
Ada.Unchecked_Deallocation is a generic procedure that we can instantiate for access
types. When declaring an instance of Ada.Unchecked_Deallocation, we have to specify
arguments for:
• the formal Object parameter, which indicates the type of actual objects that we want
to deallocate; and

• the formal Name parameter, which indicates the access type.
In a type declaration such as type Integer_Access is access Integer, Integer denotes
the Object, while Integer_Access denotes the Name.
Because each instance of Ada.Unchecked_Deallocation is bound to a specific access type,
we cannot use it for another access type, even if the type we use for the Object parameter
is the same:

Listing 102: integer_types.ads
1 with Ada.Unchecked_Deallocation;
2

3 package Integer_Types is
4

5 type Integer_Access is access Integer;
6

7 procedure Free is
(continues on next page)

546 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 new Ada.Unchecked_Deallocation
9 (Object => Integer,
10 Name => Integer_Access);
11

12 type Another_Integer_Access is access Integer;
13

14 procedure Free is
15 new Ada.Unchecked_Deallocation
16 (Object => Integer,
17 Name => Another_Integer_Access);
18 end Integer_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_
↪Deallocation.Simple_Unchecked_Deallocation

MD5: b9bc58ff60632287237e2e322fcbc63e

Here, we're declaring two Free procedures: one for the Integer_Access type, another for
the Another_Integer_Access. We cannot use the Free procedure for the Integer_Access
type when deallocating objects associated with the Another_Integer_Access type, even
though both types are declared as access Integer.
Note that we can use any name when instantiating the Ada.Unchecked_Deallocation pro-
cedure. However, naming it Free is very common.
Now, let's see a complete example that includes object allocation and deallocation:

Listing 103: integer_types.ads
1 with Ada.Unchecked_Deallocation;
2

3 package Integer_Types is
4

5 type Integer_Access is access Integer;
6

7 procedure Free is
8 new Ada.Unchecked_Deallocation
9 (Object => Integer,
10 Name => Integer_Access);
11

12 procedure Show_Is_Null (I : Integer_Access);
13

14 end Integer_Types;

Listing 104: integer_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Integer_Types is
4

5 procedure Show_Is_Null (I : Integer_Access) is
6 begin
7 if I = null then
8 Put_Line ("access value is null.");
9 else
10 Put_Line ("access value is NOT null.");
11 end if;
12 end Show_Is_Null;
13

14 end Integer_Types;

14.12. Unchecked Deallocation 547

Advanced Journey With Ada: A Flight In Progress

Listing 105: show_unchecked_deallocation.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Integer_Types; use Integer_Types;
3

4 procedure Show_Unchecked_Deallocation is
5

6 I : Integer_Access;
7

8 begin
9 Put ("We haven't called new yet... ");
10 Show_Is_Null (I);
11

12 Put ("Calling new... ");
13 I := new Integer;
14 Show_Is_Null (I);
15

16 Put ("Calling Free... ");
17 Free (I);
18 Show_Is_Null (I);
19 end Show_Unchecked_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_
↪Deallocation.Unchecked_Deallocation

MD5: a9f2df04e2fe0d5ee8c17249b4ae315a

Runtime output

We haven't called new yet... access value is null.
Calling new... access value is NOT null.
Calling Free... access value is null.

In the Show_Unchecked_Deallocation procedure, we first allocate an object for I and then
call Free (I) to deallocate it. Also, we call the Show_Is_Null procedure at three differ-
ent points: before any allocation takes place, after allocating an object for I, and after
deallocating that object.
When we deallocate an object via a call to Free, the corresponding access value — which
was previously pointing to an existing object — is set to null. Therefore, I = null after
the call to Free, which is exactly what we see when running this example code.
Note that it is OK to call Free multiple times for the same access object:

Listing 106: show_unchecked_deallocation.adb
1 with Integer_Types; use Integer_Types;
2

3 procedure Show_Unchecked_Deallocation is
4

5 I : Integer_Access;
6

7 begin
8 I := new Integer;
9

10 Free (I);
11 Free (I);
12 Free (I);
13 end Show_Unchecked_Deallocation;

Code block metadata

548 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_
↪Deallocation.Unchecked_Deallocation

MD5: ce7f4f912f12d723ca673ca36a478765

The multiple calls to Free for the same access object don't cause any issues. Because the
access value is null after the first call to Free (I), we're actually just passing null as an
argument in the second and third calls to Free. However, any attempt to deallocate an
access value of null is ignored in the Free procedure, so the second and third calls to Free
don't have any effect.

In the Ada Reference Manual
• 4.8 Allocators210

• 13.11.2 Unchecked Storage Deallocation211

14.12.1 Unchecked Deallocation and Dangling References

We've discussed dangling references (page 541) before. In this section, we discuss how
unchecked deallocation can create dangling references and the issues of having them in
an application.
Let's reuse the last example and introduce I_2, which will point to the same object as I:

Listing 107: show_unchecked_deallocation.adb
1 with Integer_Types; use Integer_Types;
2

3 procedure Show_Unchecked_Deallocation is
4

5 I, I_2 : Integer_Access;
6

7 begin
8 I := new Integer;
9

10 I_2 := I;
11

12 -- NOTE: I_2 points to the same
13 -- object as I.
14

15 --
16 -- Use I and I_2...
17 --
18 -- ... then deallocate memory...
19 --
20

21 Free (I);
22

23 -- NOTE: at this point, I_2 is a
24 -- dangling reference!
25

26 -- Further calls to Free (I)
27 -- are OK!
28

29 Free (I);
30 Free (I);

(continues on next page)
210 http://www.ada-auth.org/standards/22rm/html/RM-4-8.html
211 http://www.ada-auth.org/standards/22rm/html/RM-13-11-2.html

14.12. Unchecked Deallocation 549

http://www.ada-auth.org/standards/22rm/html/RM-4-8.html
http://www.ada-auth.org/standards/22rm/html/RM-13-11-2.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
31

32 -- A call to Free (I_2) is
33 -- NOT OK:
34

35 Free (I_2);
36 end Show_Unchecked_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_
↪Deallocation.Unchecked_Deallocation

MD5: ee5c20209a113a6c1bc7895b8ebdb174

Runtime output

free(): double free detected in tcache 2

raised PROGRAM_ERROR : unhandled signal

As we've seen before, we can have multiple calls to Free (I). However, the call to Free
(I_2) is bad because I_2 is not null. In fact, it is a dangling reference — i.e. I_2 points to
an object that doesn't exist anymore. Also, the first call to Free (I) will reclaim the storage
that was allocated for the object that I originally referred to. The call to Free (I_2) will
then try to reclaim the previously-reclaimed object, but it'll fail in an undefined manner.
Because of these potential errors, you should be very careful when using unchecked deal-
location: it is the programmer's responsibility to avoid creating dangling references!
For the example we've just seen, we could avoid creating a dangling reference by explicitly
assigning null to I_2 to indicate that it doesn't point to any specific object:

Listing 108: show_unchecked_deallocation.adb
1 with Integer_Types; use Integer_Types;
2

3 procedure Show_Unchecked_Deallocation is
4

5 I, I_2 : Integer_Access;
6

7 begin
8 I := new Integer;
9

10 I_2 := I;
11

12 -- NOTE: I_2 points to the same
13 -- object as I.
14

15 --
16 -- Use I and I_2...
17 --
18 -- ... then deallocate memory...
19 --
20

21 I_2 := null;
22

23 -- NOTE: now, I_2 doesn't point to
24 -- any object, so calling
25 -- Free (I_2) is OK.
26

27 Free (I);
28 Free (I_2);
29 end Show_Unchecked_Deallocation;

550 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_
↪Deallocation.Unchecked_Deallocation

MD5: 3381ba594cbbc0f1547e3f819bae0f97

Now, calling Free (I_2) doesn't cause any issues because it doesn't point to any object.
Note, however, that this code example is just meant to illustrate the issues of dangling
pointers and how we could circumvent them. We're not suggesting to use this approach
when designing an implementation. In fact, it's not practical for the programmer to make
every possible dangling reference become null if the calls to Free are strewn throughout
the code.
The suggested design is to not use Free in the client code, but instead hide its use within
bigger abstractions. In that way, all the occurrences of the calls to Free are in one package,
and the programmer of that package can then prevent dangling references. We'll discuss
these design strategies (page 558) later on.

14.12.2 Dereferencing dangling references

Of course, you shouldn't try to dereference a dangling reference because your program
becomes erroneous, as we discuss in this section. Let's see an example:

Listing 109: show_unchecked_deallocation.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Integer_Types; use Integer_Types;
3

4 procedure Show_Unchecked_Deallocation is
5

6 I_1, I_2 : Integer_Access;
7

8 begin
9 I_1 := new Integer'(42);
10 I_2 := I_1;
11

12 Put_Line ("I_1.all = "
13 & Integer'Image (I_1.all));
14 Put_Line ("I_2.all = "
15 & Integer'Image (I_2.all));
16

17 Put_Line ("Freeing I_1");
18 Free (I_1);
19

20 if I_1 /= null then
21 Put_Line ("I_1.all = "
22 & Integer'Image (I_1.all));
23 end if;
24

25 if I_2 /= null then
26 Put_Line ("I_2.all = "
27 & Integer'Image (I_2.all));
28 end if;
29 end Show_Unchecked_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_
↪Deallocation.Unchecked_Deallocation

MD5: 8536190aa5bbafa715ad8153aaeb4889

14.12. Unchecked Deallocation 551

Advanced Journey With Ada: A Flight In Progress

Runtime output

I_1.all = 42
I_2.all = 42
Freeing I_1
I_2.all = 7670

In this example, we allocate an object for I_1 and make I_2 point to the same object. Then,
we call Free (I), which has the following consequences:
• The call to Free (I_1) will try to reclaim the storage for the original object (I_1.all),
so it may be reused for other allocations.

• I_1 = null after the call to Free (I_1).
• I_2 becomes a dangling reference by the call to Free (I_1).

– In other words, I_2 is still non-null, and what it points to is now undefined.
In principle, we could check for null before trying to dereference the access value. (Re-
member that when deallocating an object via a call to Free, the corresponding access value
is set to null.) In fact, this strategy works fine for I_1, but it doesn't work for I_2 because
the access value is not null. As a consequence, the application tries to dereference I_2.
Dereferencing a dangling reference is erroneous: the behavior is undefined in this case.
For the example we've just seen,
• I_2.all might make the application crash;
• I_2.all might give us a different value than before;
• I_2.all might even give us the same value as before (42) if the original object is still
available.

Because the effect is unpredictable, it might be really difficult to debug the application and
identify the cause.
Having dangling pointers in an application should be avoided at all costs! Again, it is the
programmer's responsibility to be very careful when using unchecked deallocation: avoid
creating dangling references!

In the Ada Reference Manual
• 13.9.1 Data Validity212

• 13.11.2 Unchecked Storage Deallocation213

14.12.3 Restrictions for Ada.Unchecked_Deallocation

There are two unsurprising restrictions for Ada.Unchecked_Deallocation:
1. It cannot be instantiated for access-to-constant types; and
2. It cannot be used when the Storage_Size aspect of a type is zero (i.e. when its storage
pool is empty).

(Note that this last restriction also applies to the allocation via new.)
Let's see an example of these restrictions:
212 http://www.ada-auth.org/standards/22rm/html/RM-13-9-1.html
213 http://www.ada-auth.org/standards/22rm/html/RM-13-11-2.html

552 Chapter 14. Access Types

http://www.ada-auth.org/standards/22rm/html/RM-13-9-1.html
http://www.ada-auth.org/standards/22rm/html/RM-13-11-2.html

Advanced Journey With Ada: A Flight In Progress

Listing 110: show_unchecked_deallocation_errors.adb
1 with Ada.Unchecked_Deallocation;
2

3 procedure Show_Unchecked_Deallocation_Errors is
4

5 type Integer_Access_Zero is access Integer
6 with Storage_Size => 0;
7

8 procedure Free is
9 new Ada.Unchecked_Deallocation
10 (Object => Integer,
11 Name => Integer_Access_Zero);
12

13 type Constant_Integer_Access is
14 access constant Integer;
15

16 -- ERROR: Cannot use access-to-constant type
17 -- for Name
18 procedure Free is
19 new Ada.Unchecked_Deallocation
20 (Object => Integer,
21 Name => Constant_Integer_Access);
22

23 I : Integer_Access_Zero;
24

25 begin
26 -- ERROR: Cannot allocate objects from
27 -- empty storage pool
28 I := new Integer;
29

30 -- ERROR: Cannot deallocate objects from
31 -- empty storage pool
32 Free (I);
33 end Show_Unchecked_Deallocation_Errors;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_
↪Deallocation.Unchecked_Deallocation_Error

MD5: 5032d13b2eb6b7ca1979282ddd6df98a

Build output

show_unchecked_deallocation_errors.adb:21:19: error: actual type must be access-to-
↪variable type

show_unchecked_deallocation_errors.adb:21:19: error: instantiation abandoned
show_unchecked_deallocation_errors.adb:28:09: error: allocation from empty storage␣

↪pool
show_unchecked_deallocation_errors.adb:32:04: error: deallocation from empty␣

↪storage pool
gprbuild: *** compilation phase failed

Here, we see that trying to instantiate Ada.Unchecked_Deallocation for the Con-
stant_Integer_Access type is rejected by the compiler. Similarly, we cannot allocate or
deallocate an object for the Integer_Access_Zero type because its storage pool is empty.

14.12. Unchecked Deallocation 553

Advanced Journey With Ada: A Flight In Progress

14.13 Null & Not Null Access

Note: This section was originally written by Robert A. Duff and published as Gem #23:
Null Considered Harmful214 and Gem #24215.

Ada, like many languages, defines a special null value for access types. All values of an
access type designate some object of the designated type, except for null, which does
not designate any object. The null value can be used as a special flag. For example, a
singly-linked list can be null-terminated. A Lookup function can return null to mean "not
found", presuming the result is of an access type:

Listing 111: show_null_return.ads
1 package Show_Null_Return is
2

3 type Ref_Element is access all Element;
4

5 Not_Found : constant Ref_Element := null;
6

7 function Lookup (T : Table) return Ref_Element;
8 -- Returns Not_Found if not found.
9 end Show_Null_Return;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_
↪Access.Null_Return

MD5: 6c4eed750d42685198ec9495805e3e23

An alternative design for Lookup would be to raise an exception:

Listing 112: show_not_found_exception.ads
1 package Show_Not_Found_Exception is
2 Not_Found : exception;
3

4 function Lookup (T : Table) return Ref_Element;
5 -- Raises Not_Found if not found.
6 -- Never returns null.
7 end Show_Not_Found_Exception;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_
↪Access.Not_Found_Exception

MD5: 6ef47b32d4923838ffc28f43e5db323c

Neither design is better in all situations; it depends in part on whether we consider the "not
found" situation to be exceptional.
Clearly, the client calling Lookup needs to know whether it can return null, and if so, what
that means. In general, it's a good idea to document whether things can be null or not,
especially for formal parameters and function results. Prior to Ada 2005, we would do that
with comments. Since Ada 2005, we can use the not null syntax:
214 https://www.adacore.com/gems/ada-gem-23
215 https://www.adacore.com/gems/ada-gem-24

554 Chapter 14. Access Types

https://www.adacore.com/gems/ada-gem-23
https://www.adacore.com/gems/ada-gem-23
https://www.adacore.com/gems/ada-gem-24

Advanced Journey With Ada: A Flight In Progress

Listing 113: show_not_null_return.ads
1 package Show_Not_Null_Return is
2 type Ref_Element is access all Element;
3

4 Not_Found : constant Ref_Element := null;
5

6 function Lookup (T : Table)
7 return not null Ref_Element;
8 -- Possible since Ada 2005.
9 end Show_Not_Null_Return;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_
↪Access.Not_Null_Return

MD5: 4c0bb95da3b5a7c555a763c4951f7e21

This is a complete package for the code snippets above:

Listing 114: example.ads
1 package Example is
2

3 type Element is limited private;
4 type Ref_Element is access all Element;
5

6 type Table is limited private;
7

8 Not_Found : constant Ref_Element := null;
9 function Lookup (T : Table)
10 return Ref_Element;
11 -- Returns Not_Found if not found.
12

13 Not_Found_2 : exception;
14 function Lookup_2 (T : Table)
15 return not null Ref_Element;
16 -- Raises Not_Found_2 if not found.
17

18 procedure P (X : not null Ref_Element);
19

20 procedure Q (X : not null Ref_Element);
21

22 private
23 type Element is limited
24 record
25 Component : Integer;
26 end record;
27 type Table is limited null record;
28 end Example;

Listing 115: example.adb
1 package body Example is
2

3 An_Element : aliased Element;
4

5 function Lookup (T : Table)
6 return Ref_Element is
7 pragma Unreferenced (T);
8 begin

(continues on next page)

14.13. Null & Not Null Access 555

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 -- ...
10 return Not_Found;
11 end Lookup;
12

13 function Lookup_2 (T : Table)
14 return not null Ref_Element
15 is
16 begin
17 -- ...
18 raise Not_Found_2;
19

20 return An_Element'Access;
21 -- suppress error: 'missing "return"
22 -- statement in function body'
23 end Lookup_2;
24

25 procedure P (X : not null Ref_Element) is
26 begin
27 X.all.Component := X.all.Component + 1;
28 end P;
29

30 procedure Q (X : not null Ref_Element) is
31 begin
32 for I in 1 .. 1000 loop
33 P (X);
34 end loop;
35 end Q;
36

37 procedure R is
38 begin
39 Q (An_Element'Access);
40 end R;
41

42 pragma Unreferenced (R);
43

44 end Example;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_
↪Access.Complete_Null_Return

MD5: 01895c7d5f843fd215dcc21d807d4187

In general, it's better to use the language proper for documentation, when possible, rather
than comments, because compile-time and/or run-time checks can help ensure that the
"documentation" is actually true. With comments, there's a greater danger that the com-
ment will become false during maintenance, and false documentation is obviously a men-
ace.
In many, perhaps most cases, null is just a tripping hazard. It's a good idea to put in not
null when possible. In fact, a good argument can be made that not null should be the
default, with extra syntax required when null is wanted. This is the way Standard ML216
works, for example — you don't get any special null-like value unless you ask for it. Of
course, because Ada 2005 needs to be compatible with previous versions of the language,
not null cannot be the default for Ada.
One word of caution: access objects are default-initialized to null, so if you have a not
null object (or component) you had better initialize it explicitly, or you will get Con-
straint_Error. not null is more often useful on parameters and function results, for
this reason.
216 https://en.wikipedia.org/wiki/Standard_ML

556 Chapter 14. Access Types

https://en.wikipedia.org/wiki/Standard_ML

Advanced Journey With Ada: A Flight In Progress

Another advantage of not null over comments is for efficiency. Consider procedures P
and Q in this example:

Listing 116: example-processing.ads
1 package Example.Processing is
2

3 procedure P (X : not null Ref_Element);
4

5 procedure Q (X : not null Ref_Element);
6

7 end Example.Processing;

Listing 117: example-processing.adb
1 package body Example.Processing is
2

3 procedure P (X : not null Ref_Element) is
4 begin
5 X.all.Component := X.all.Component + 1;
6 end P;
7

8 procedure Q (X : not null Ref_Element) is
9 begin
10 for I in 1 .. 1000 loop
11 P (X);
12 end loop;
13 end Q;
14

15 end Example.Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_
↪Access.Complete_Null_Return

MD5: dc34b1a27737d57c041be6260dd577fd

Without not null, the generated code for P will do a check that X /= null, which may be
costly on some systems. P is called in a loop, so this check will likely occur many times.
With not null, the check is pushed to the call site. Pushing checks to the call site is usually
beneficial because
1. the check might be hoisted out of a loop by the optimizer, or
2. the checkmight be eliminated altogether, as in the example above, where the compiler
knows that An_Element'Access cannot be null.

This is analogous to the situation with other run-time checks, such as array bounds checks:

Listing 118: show_process_array.ads
1 package Show_Process_Array is
2

3 type My_Index is range 1 .. 10;
4 type My_Array is array (My_Index) of Integer;
5

6 procedure Process_Array
7 (X : in out My_Array;
8 Index : My_Index);
9

10 end Show_Process_Array;

14.13. Null & Not Null Access 557

Advanced Journey With Ada: A Flight In Progress

Listing 119: show_process_array.adb
1 package body Show_Process_Array is
2

3 procedure Process_Array
4 (X : in out My_Array;
5 Index : My_Index) is
6 begin
7 X (Index) := X (Index) + 1;
8 end Process_Array;
9

10 end Show_Process_Array;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_
↪Access.Process_Array

MD5: 32424432f5b2e3013292680f92a04320

If X (Index) occurs inside Process_Array, there is no need to check that Index is in range,
because the check is pushed to the caller.

14.14 Design strategies for access types

Previously, we learned about dangling references (page 541) and discussed the effects
of dereferencing them (page 551). Also, we've seen the relationship between unchecked
deallocation and dangling references (page 549). Ensuring that all calls to Free for a spe-
cific access type will never cause dangling references can become an arduous task — if not
impossible — if those calls are located in different parts of the source code.
Although we used access types directly in the main application in many of the previous
code examples from this chapter, this approach was in fact selected just for illustration
purposes — i.e. to make the code look simpler. In general, however, we should avoid this
approach. Instead, our recommendation is to encapsulate the access types in some form
of abstraction. In this section, we discuss design strategies for access types that take this
recommendation into account.

14.14.1 Abstract data type for access types

The simplest form of abstraction is of course an abstract data type. For example, we could
declare a limited private type, which allows us to hide the access type and to avoid copies of
references that could potentially become dangling references. (We discuss limited private
types later in another chapter (page 677).)
Let's see an example:

Listing 120: access_type_abstraction.ads
1 package Access_Type_Abstraction is
2

3 type Info is limited private;
4

5 function To_Info (S : String) return Info;
6

7 function To_String (Obj : Info)
8 return String;

(continues on next page)

558 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9

10 function Copy (Obj : Info) return Info;
11

12 procedure Copy (To : in out Info;
13 From : Info);
14

15 procedure Append (Obj : in out Info;
16 S : String);
17

18 procedure Reset (Obj : in out Info);
19

20 procedure Destroy (Obj : in out Info);
21

22 private
23

24 type Info is access String;
25

26 end Access_Type_Abstraction;

Listing 121: access_type_abstraction.adb
1 with Ada.Unchecked_Deallocation;
2

3 package body Access_Type_Abstraction is
4

5 function To_Info (S : String) return Info is
6 (new String'(S));
7

8 function To_String (Obj : Info)
9 return String is
10 (if Obj /= null then Obj.all else "");
11

12 function Copy (Obj : Info) return Info is
13 (To_Info (Obj.all));
14

15 procedure Copy (To : in out Info;
16 From : Info) is
17 begin
18 Destroy (To);
19 To := To_Info (From.all);
20 end Copy;
21

22 procedure Append (Obj : in out Info;
23 S : String) is
24 New_Info : constant Info :=
25 To_Info (To_String (Obj) & S);
26 begin
27 Destroy (Obj);
28 Obj := New_Info;
29 end Append;
30

31 procedure Reset (Obj : in out Info) is
32 begin
33 Destroy (Obj);
34 end Reset;
35

36 procedure Destroy (Obj : in out Info) is
37 procedure Free is
38 new Ada.Unchecked_Deallocation
39 (Object => String,
40 Name => Info);

(continues on next page)

14.14. Design strategies for access types 559

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
41 begin
42 Free (Obj);
43 end Destroy;
44

45 end Access_Type_Abstraction;

Listing 122: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_Type_Abstraction;
4 use Access_Type_Abstraction;
5

6 procedure Main is
7 Obj_1 : Info := To_Info ("hello");
8 Obj_2 : Info := Copy (Obj_1);
9 begin
10 Put_Line ("TO_INFO / COPY");
11 Put_Line ("Obj_1 : "
12 & To_String (Obj_1));
13 Put_Line ("Obj_2 : "
14 & To_String (Obj_2));
15 Put_Line ("----------");
16

17 Reset (Obj_1);
18 Append (Obj_2, " world");
19

20 Put_Line ("RESET / APPEND");
21 Put_Line ("Obj_1 : "
22 & To_String (Obj_1));
23 Put_Line ("Obj_2 : "
24 & To_String (Obj_2));
25 Put_Line ("----------");
26

27 Copy (From => Obj_2,
28 To => Obj_1);
29

30 Put_Line ("COPY");
31 Put_Line ("Obj_1 : "
32 & To_String (Obj_1));
33 Put_Line ("Obj_2 : "
34 & To_String (Obj_2));
35 Put_Line ("----------");
36

37 Destroy (Obj_1);
38 Destroy (Obj_2);
39

40 Put_Line ("DESTROY");
41 Put_Line ("Obj_1 : "
42 & To_String (Obj_1));
43 Put_Line ("Obj_2 : "
44 & To_String (Obj_2));
45 Put_Line ("----------");
46

47 Append (Obj_1, "hey");
48

49 Put_Line ("APPEND");
50 Put_Line ("Obj_1 : "
51 & To_String (Obj_1));
52 Put_Line ("----------");
53

(continues on next page)

560 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
54 Put_Line ("APPEND");
55 Append (Obj_1, " there");
56 Put_Line ("Obj_1 : "
57 & To_String (Obj_1));
58

59 Destroy (Obj_1);
60 Destroy (Obj_2);
61 end Main;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Design_Strategies.
↪Access_Type_Abstraction

MD5: d652d26314b616d3e1b955c0ce5bbbd7

Runtime output

TO_INFO / COPY
Obj_1 : hello
Obj_2 : hello

RESET / APPEND
Obj_1 :
Obj_2 : hello world

COPY
Obj_1 : hello world
Obj_2 : hello world

DESTROY
Obj_1 :
Obj_2 :

APPEND
Obj_1 : hey

APPEND
Obj_1 : hey there

In this example, we hide an access type in the Info type — a limited private type. We
allocate an object of this type in the To_Info function and deallocate it in the Destroy
procedure. Also, we make sure that the reference isn't copied in the Copy function — we
only copy the designated value in this function. This strategy eliminates the possibility of
dangling references, as each reference is encapsulated in an object of Info type.

14.14.2 Controlled type for access types

In the previous code example, the Destroy procedure had to be called to deallocate the
hidden access object. We could make sure that this deallocation happens automatically
by using a controlled (or limited controlled) type. (We discuss controlled types in another
chapter.)
Let's adapt the previous example and declare Info as a limited controlled type:

Listing 123: access_type_abstraction.ads
1 with Ada.Finalization;
2

3 package Access_Type_Abstraction is
(continues on next page)

14.14. Design strategies for access types 561

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4

5 type Info is limited private;
6

7 function To_Info (S : String) return Info;
8

9 function To_String (Obj : Info)
10 return String;
11

12 function Copy (Obj : Info) return Info;
13

14 procedure Copy (To : in out Info;
15 From : Info);
16

17 procedure Append (Obj : in out Info;
18 S : String);
19

20 procedure Reset (Obj : in out Info);
21

22 private
23

24 type String_Access is access String;
25

26 type Info is new
27 Ada.Finalization.Limited_Controlled with
28 record
29 Str_A : String_Access;
30 end record;
31

32 procedure Initialize (Obj : in out Info);
33 procedure Finalize (Obj : in out Info);
34

35 end Access_Type_Abstraction;

Listing 124: access_type_abstraction.adb
1 with Ada.Unchecked_Deallocation;
2

3 package body Access_Type_Abstraction is
4

5 --
6 -- STRING_ACCESS SUBPROGRAMS
7 --
8

9 function To_String_Access (S : String)
10 return String_Access
11 is
12 (new String'(S));
13

14 function To_String (S : String_Access)
15 return String is
16 (if S /= null then S.all else "");
17

18 procedure Free is
19 new Ada.Unchecked_Deallocation
20 (Object => String,
21 Name => String_Access);
22

23 --
24 -- PRIVATE SUBPROGRAMS
25 --
26

(continues on next page)

562 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
27 procedure Initialize (Obj : in out Info) is
28 begin
29 -- Put_Line ("Initializing Info");
30 Obj.Str_A := null;
31 -- ^^^^^^^^^^^^^
32 -- NOTE: This line has just been added to
33 -- illustrate the "automatic" call to
34 -- Initialize. Actually, this
35 -- assignment isn't needed, as
36 -- the Str_A component is
37 -- automatically initialized to null
38 -- upon object construction.
39 end Initialize;
40

41 procedure Finalize (Obj : in out Info) is
42 begin
43 -- Put_Line ("Finalizing Info");
44 Free (Obj.Str_A);
45 end Finalize;
46

47 --
48 -- PUBLIC SUBPROGRAMS
49 --
50

51 function To_Info (S : String) return Info is
52 (Ada.Finalization.Limited_Controlled
53 with Str_A => To_String_Access (S));
54

55 function To_String (Obj : Info)
56 return String is
57 (To_String (Obj.Str_A));
58

59 function Copy (Obj : Info) return Info is
60 (To_Info (To_String (Obj.Str_A)));
61

62 procedure Copy (To : in out Info;
63 From : Info) is
64 begin
65 Free (To.Str_A);
66 To.Str_A := To_String_Access
67 (To_String (From.Str_A));
68 end Copy;
69

70 procedure Append (Obj : in out Info;
71 S : String) is
72 New_Str_A : constant String_Access :=
73 To_String_Access
74 (To_String (Obj.Str_A) & S);
75 begin
76 Free (Obj.Str_A);
77 Obj.Str_A := New_Str_A;
78 end Append;
79

80 procedure Reset (Obj : in out Info) is
81 begin
82 Free (Obj.Str_A);
83 end Reset;
84

85 end Access_Type_Abstraction;

14.14. Design strategies for access types 563

Advanced Journey With Ada: A Flight In Progress

Listing 125: main.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_Type_Abstraction;
4 use Access_Type_Abstraction;
5

6 procedure Main is
7 Obj_1 : Info := To_Info ("hello");
8 Obj_2 : Info := Copy (Obj_1);
9 begin
10 --
11 -- TO_INFO / COPY
12 --
13 Put_Line ("TO_INFO / COPY");
14

15 Put_Line ("Obj_1 : "
16 & To_String (Obj_1));
17 Put_Line ("Obj_2 : "
18 & To_String (Obj_2));
19 Put_Line ("----------");
20

21 --
22 -- RESET: Obj_1
23 -- APPEND: Obj_2
24 --
25 Put_Line ("RESET / APPEND");
26

27 Reset (Obj_1);
28 Append (Obj_2, " world");
29

30 Put_Line ("Obj_1 : "
31 & To_String (Obj_1));
32 Put_Line ("Obj_2 : "
33 & To_String (Obj_2));
34 Put_Line ("----------");
35

36 --
37 -- COPY: Obj_2 => Obj_1
38 --
39 Put_Line ("COPY");
40

41 Copy (From => Obj_2,
42 To => Obj_1);
43

44 Put_Line ("Obj_1 : "
45 & To_String (Obj_1));
46 Put_Line ("Obj_2 : "
47 & To_String (Obj_2));
48 Put_Line ("----------");
49

50 --
51 -- RESET: Obj_1, Obj_2
52 --
53 Put_Line ("RESET");
54

55 Reset (Obj_1);
56 Reset (Obj_2);
57

58 Put_Line ("Obj_1 : "
59 & To_String (Obj_1));

(continues on next page)

564 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
60 Put_Line ("Obj_2 : "
61 & To_String (Obj_2));
62 Put_Line ("----------");
63

64 --
65 -- COPY: Obj_2 => Obj_1
66 --
67 Put_Line ("COPY");
68

69 Copy (From => Obj_2,
70 To => Obj_1);
71

72 Put_Line ("Obj_1 : "
73 & To_String (Obj_1));
74 Put_Line ("Obj_2 : "
75 & To_String (Obj_2));
76 Put_Line ("----------");
77

78 --
79 -- APPEND: Obj_1 with "hey"
80 --
81 Put_Line ("APPEND");
82

83 Append (Obj_1, "hey");
84

85 Put_Line ("Obj_1 : "
86 & To_String (Obj_1));
87 Put_Line ("----------");
88

89 --
90 -- APPEND: Obj_1 with "there"
91 --
92 Put_Line ("APPEND");
93

94 Append (Obj_1, " there");
95

96 Put_Line ("Obj_1 : "
97 & To_String (Obj_1));
98 end Main;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Design_Strategies.
↪Access_Type_Limited_Controlled_Abstraction

MD5: e98659ad1b87be56fb173fa407ab7e82

Runtime output

TO_INFO / COPY
Obj_1 : hello
Obj_2 : hello

RESET / APPEND
Obj_1 :
Obj_2 : hello world

COPY
Obj_1 : hello world
Obj_2 : hello world

RESET

(continues on next page)

14.14. Design strategies for access types 565

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
Obj_1 :
Obj_2 :

COPY
Obj_1 :
Obj_2 :

APPEND
Obj_1 : hey

APPEND
Obj_1 : hey there

Of course, because we're using the Limited_Controlled type from the Ada.
Finalization package, we had to adapt the prototype of the subprograms from the Ac-
cess_Type_Abstraction. In this version of the code, we only have the allocation taking
place in the To_Info procedure, but we don't have a Destroy procedure for deallocation:
this call was moved to the Finalize procedure.
Since objects of the Info type— such as Obj_1 in the Show_Access_Type_Abstraction pro-
cedure — are now controlled, the Finalize procedure is automatically called when they go
out of scope. In this procedure, which we override for the Info type, we perform the deal-
location of the internal access object Str_A. (You may uncomment the calls to Put_Line in
the body of the Initialize and Finalize subprograms to confirm that these subprograms
are called in the background.)

14.15 Access to subprograms

So far in this chapter, we focused mainly on access-to-objects. However, we can use access
types to subprograms. This is the topic of this section.

14.15.1 Static vs. dynamic calls

In a typical subprogram call, we indicate the subprogram we want to call statically. For
example, let's say we've implemented a procedure Proc that calls a procedure P:

Listing 126: p.ads
1 procedure P (I : in out Integer);

Listing 127: p.adb
1 procedure P (I : in out Integer) is
2 begin
3 null;
4 end P;

Listing 128: proc.adb
1 with P;
2

3 procedure Proc is
4 I : Integer := 0;
5 begin

(continues on next page)

566 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 P (I);
7 end Proc;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Subprogram_Call

MD5: 0e9547e53d0d02d39920f4d1d6787af6

The call to P is statically dispatched: every time Proc runs and calls P, that call is always to
the same procedure. In other words, we can determine at compilation time which procedure
is called.
In contrast, an access to a subprogram allows us to dynamically indicate which subprogram
we want to call. For example, if we change Proc in the code above to receive the access to
a subprogram P as a parameter, the actual procedure that would be called when running
Proc would be determined at run time, and it might be different for every call to Proc. In
this case, we wouldn't be able to determine at compilation time which procedure would be
called in every case. (In some cases, however, it could still be possible to determine which
procedure is called by analyzing the argument that is passed to Proc.)

14.15.2 Access to subprogram declaration

We declare an access to a subprogram as a type by writing access procedure or access
function and the corresponding prototype:

Listing 129: access_to_subprogram_types.ads
1 package Access_To_Subprogram_Types is
2

3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5

6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8

9 end Access_To_Subprogram_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 5f834c1b2044ba5ea7d4835c3ebdedb1

In the designated profile of the access type declarations, we list all the parameters that we
expect in the subprogram.
We can use those types to declare access to subprograms — as subprogram parameters,
for example:

Listing 130: access_to_subprogram_params.ads
1 with Access_To_Subprogram_Types;
2 use Access_To_Subprogram_Types;
3

4 package Access_To_Subprogram_Params is
5

6 procedure Proc (P : Access_To_Procedure);
(continues on next page)

14.15. Access to subprograms 567

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7

8 end Access_To_Subprogram_Params;

Listing 131: access_to_subprogram_params.adb
1 package body Access_To_Subprogram_Params is
2

3 procedure Proc (P : Access_To_Procedure) is
4 I : Integer := 0;
5 begin
6 P (I);
7 -- P.all (I);
8 end Proc;
9

10 end Access_To_Subprogram_Params;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 17c1a07f48d9fb0efef37aa4c5ec8a51

In the implementation of the Proc procedure of the code example, we call the P procedure
by simply passing I as a parameter. In this case, P is automatically dereferenced. We may,
however, explicitly dereference P by writing P.all (I).
Before we use this package, let's implement a simple procedure that we'll use later on:

Listing 132: add_ten.ads
1 procedure Add_Ten (I : in out Integer);

Listing 133: add_ten.adb
1 procedure Add_Ten (I : in out Integer) is
2 begin
3 I := I + 10;
4 end Add_Ten;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 8553ad7329bf1ed727147b47b7355a70

Now, we can get access to a subprogram by using the Access attribute and pass it as an
actual parameter:

Listing 134: show_access_to_subprograms.adb
1 with Access_To_Subprogram_Params;
2 use Access_To_Subprogram_Params;
3

4 with Add_Ten;
5

6 procedure Show_Access_To_Subprograms is
7 begin
8 Proc (Add_Ten'Access);
9 -- ^ Getting access to Add_Ten
10 -- procedure and passing it

(continues on next page)

568 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
11 -- to Proc
12 end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 599e9d1306da48e3c532692b34c02a1d

Here, we get access to the Add_Ten procedure and pass it to the Proc procedure.

In the Ada Reference Manual
• 3.10 Access Types217

14.15.3 Objects of access-to-subprogram type

In the previous example, the Proc procedure had a parameter of access-to-subprogram
type. In addition to parameters, we can of course declare objects of access-to-subprogram
types as well. For example, we can extend our previous test application and declare an
object P of access-to-subprogram type. Before we do so, however, let's implement another
small procedure that we'll use later on:

Listing 135: add_twenty.ads
1 procedure Add_Twenty (I : in out Integer);

Listing 136: add_twenty.adb
1 procedure Add_Twenty (I : in out Integer) is
2 begin
3 I := I + 20;
4 end Add_Twenty;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 697959b806f6f2bfba248ec15c47883b

In addition to Add_Ten, we've implemented the Add_Twenty procedure, which we use in our
extended test application:

Listing 137: show_access_to_subprograms.adb
1 with Access_To_Subprogram_Types;
2 use Access_To_Subprogram_Types;
3

4 with Access_To_Subprogram_Params;
5 use Access_To_Subprogram_Params;
6

7 with Add_Ten;
8 with Add_Twenty;
9

10 procedure Show_Access_To_Subprograms is
(continues on next page)

217 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

14.15. Access to subprograms 569

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
11 P : Access_To_Procedure;
12 Some_Int : Integer := 0;
13 begin
14 P := Add_Ten'Access;
15 -- ^ Getting access to Add_Ten
16 -- procedure and assigning it
17 -- to P
18

19 Proc (P);
20 -- ^ Passing access-to-subprogram as an
21 -- actual parameter
22

23 P (Some_Int);
24 -- ^ Using access-to-subprogram object in a
25 -- subprogram call
26

27 P := Add_Twenty'Access;
28 -- ^ Getting access to Add_Twenty
29 -- procedure and assigning it
30 -- to P
31

32 Proc (P);
33 P (Some_Int);
34 end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 7b4ea19187806e88ba65847876cafb4f

In the Show_Access_To_Subprograms procedure, we see the declaration of our access-to-
subprogram object P (of Access_To_Procedure type). We get access to the Add_Ten pro-
cedure and assign it to P, and we then do the same for the Add_Twenty procedure.
We can use an access-to-subprogram object either as the actual parameter of a subprogram
call, or in a subprogram call. In the code example, we're passing P as the actual parameter
of the Proc procedure in the Proc (P) calls. Also, we're calling the subprogram assigned
to (designated by the current value of) P in the P (Some_Int) calls.

14.15.4 Components of access-to-subprogram type

In addition to declaring subprogram parameters and objects of access-to-subprogram
types, we can declare components of these types. For example:

Listing 138: access_to_subprogram_types.ads
1 package Access_To_Subprogram_Types is
2

3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5

6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8

9 type Access_To_Procedure_Array is
10 array (Positive range <>) of
11 Access_To_Procedure;
12

(continues on next page)

570 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
13 type Access_To_Function_Array is
14 array (Positive range <>) of
15 Access_To_Function;
16

17 type Rec_Access_To_Procedure is record
18 AP : Access_To_Procedure;
19 end record;
20

21 type Rec_Access_To_Function is record
22 AF : Access_To_Function;
23 end record;
24

25 end Access_To_Subprogram_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 32203838b97af66ef6ca3f6b1ce646a5

Here, the access-to-procedure type Access_To_Procedure is used as a component of the
array type Access_To_Procedure_Array and the record type Rec_Access_To_Procedure.
Similarly, the access-to-function type Access_To_Function type is used as a component of
the array type Access_To_Function_Array and the record type Rec_Access_To_Function.
Let's see two test applications using these types. First, let's use the Ac-
cess_To_Procedure_Array array type in a test application:

Listing 139: show_access_to_subprograms.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_To_Subprogram_Types;
4 use Access_To_Subprogram_Types;
5

6 with Add_Ten;
7 with Add_Twenty;
8

9 procedure Show_Access_To_Subprograms is
10 PA : constant
11 Access_To_Procedure_Array (1 .. 2) :=
12 (Add_Ten'Access,
13 Add_Twenty'Access);
14

15 Some_Int : Integer := 0;
16 begin
17 Put_Line ("Some_Int: " & Some_Int'Image);
18

19 for I in PA'Range loop
20 PA (I) (Some_Int);
21 Put_Line ("Some_Int: " & Some_Int'Image);
22 end loop;
23 end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: f1d10056b4b3424bd30d954f34caa255

Runtime output

14.15. Access to subprograms 571

Advanced Journey With Ada: A Flight In Progress

Some_Int: 0
Some_Int: 10
Some_Int: 30

Here, we declare the PA array and use the access to the Add_Ten and Add_Twenty proce-
dures as its components. We can call any of these procedures by simply specifying the
index of the component, e.g. PA (2). Once we specify the procedure we want to use, we
simply pass the parameters, e.g.: PA (2) (Some_Int).
Now, let's use the Rec_Access_To_Procedure record type in a test application:

Listing 140: show_access_to_subprograms.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_To_Subprogram_Types;
4 use Access_To_Subprogram_Types;
5

6 with Add_Ten;
7 with Add_Twenty;
8

9 procedure Show_Access_To_Subprograms is
10 RA : Rec_Access_To_Procedure;
11 Some_Int : Integer := 0;
12 begin
13 Put_Line ("Some_Int: " & Some_Int'Image);
14

15 RA := (AP => Add_Ten'Access);
16 RA.AP (Some_Int);
17 Put_Line ("Some_Int: " & Some_Int'Image);
18

19 RA := (AP => Add_Twenty'Access);
20 RA.AP (Some_Int);
21 Put_Line ("Some_Int: " & Some_Int'Image);
22 end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 4b23b5f6a8c252a1a014a2b54fa32c1a

Runtime output

Some_Int: 0
Some_Int: 10
Some_Int: 30

Here, we declare two record aggregates where we specify the AP component, e.g.: (AP =>
Add_Ten'Access), which indicates the access-to-subprogram we want to use. We can call
the subprogram by simply accessing the AP component, i.e.: RA.AP.

572 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

14.15.5 Access-to-subprogram as discriminant types

As you might expect, we can use access-to-subprogram types when declaring discrimi-
nants. In fact, when we were talking about discriminants as access values (page 492)
earlier on, we used access-to-object types in our code examples, but we could have used
access-to-subprogram types as well. For example:

Listing 141: custom_processing.ads
1 package Custom_Processing is
2

3 -- Declaring an access type:
4 type Integer_Processing is
5 access procedure (I : in out Integer);
6

7 -- Declaring a discriminant with this
8 -- access type:
9 type Rec (IP : Integer_Processing) is
10 private;
11

12 procedure Init (R : in out Rec;
13 Value : Integer);
14

15 procedure Process (R : in out Rec);
16

17 procedure Show (R : Rec);
18

19 private
20

21 type Rec (IP : Integer_Processing) is
22 record
23 I : Integer := 0;
24 end record;
25

26 end Custom_Processing;

Listing 142: custom_processing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Custom_Processing is
4

5 procedure Init (R : in out Rec;
6 Value : Integer) is
7 begin
8 R.I := Value;
9 end Init;
10

11 procedure Process (R : in out Rec) is
12 begin
13 R.IP (R.I);
14 -- ^^^^^^
15 -- Calling procedure that we specified as
16 -- the record's discriminant
17 end Process;
18

19 procedure Show (R : Rec) is
20 begin
21 Put_Line ("R.I = "
22 & Integer'Image (R.I));
23 end Show;

(continues on next page)

14.15. Access to subprograms 573

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
24

25 end Custom_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 02fc0c51722c321c4ec6115de68d1c06

In this example, we declare the access-to-subprogram type Integer_Processing, which
we use as the IP discriminant of the Rec type. In the Process procedure, we call the IP
procedure that we specified as the record's discriminant (R.IP (R.I)).
Before we look at a test application for this package, let's implement another small proce-
dure:

Listing 143: mult_two.ads
1 procedure Mult_Two (I : in out Integer);

Listing 144: mult_two.adb
1 procedure Mult_Two (I : in out Integer) is
2 begin
3 I := I * 2;
4 end Mult_Two;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: cd43fa39dac9a1c9182f69d32eab1d26

Now, let's look at the test application:

Listing 145: show_access_to_subprogram_discriminants.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Custom_Processing; use Custom_Processing;
4

5 with Add_Ten;
6 with Mult_Two;
7

8 procedure Show_Access_To_Subprogram_Discriminants
9 is
10

11 R_Add_Ten : Rec (IP => Add_Ten'Access);
12 -- ^^^^^^^^^^^^^^^^^^^^
13 -- Using access-to-subprogram as a
14 -- discriminant
15

16 R_Mult_Two : Rec (IP => Mult_Two'Access);
17 -- ^^^^^^^^^^^^^^^^^^^^^
18 -- Using access-to-subprogram as a
19 -- discriminant
20

21 begin
22 Init (R_Add_Ten, 1);
23 Init (R_Mult_Two, 2);
24

(continues on next page)

574 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
25 Put_Line ("---- R_Add_Ten ----");
26 Show (R_Add_Ten);
27

28 Put_Line ("Calling Process procedure...");
29 Process (R_Add_Ten);
30 Show (R_Add_Ten);
31

32 Put_Line ("---- R_Mult_Two ----");
33 Show (R_Mult_Two);
34

35 Put_Line ("Calling Process procedure...");
36 Process (R_Mult_Two);
37 Show (R_Mult_Two);
38 end Show_Access_To_Subprogram_Discriminants;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 544c224f8bc8e6ba2db4914c2a3dcff4

Runtime output

---- R_Add_Ten ----
R.I = 1
Calling Process procedure...
R.I = 11
---- R_Mult_Two ----
R.I = 2
Calling Process procedure...
R.I = 4

In this procedure, we declare the R_Add_Ten and R_Mult_Two of Rec type and specify the
access to Add_Ten and Mult_Two, respectively, as the IP discriminant. The procedure we
specified here is then called inside a call to the Process procedure.

14.15.6 Access-to-subprograms as formal parameters

We can use access-to-subprograms types when declaring formal parameters. For example,
let's revisit the Custom_Processing package from the previous section and convert it into
a generic package.

Listing 146: gen_custom_processing.ads
1 generic
2 type T is private;
3

4 --
5 -- Declaring formal access-to-subprogram
6 -- type:
7 --
8 type T_Processing is
9 access procedure (Element : in out T);
10

11 --
12 -- Declaring formal access-to-subprogram
13 -- parameter:
14 --
15 Proc : T_Processing;

(continues on next page)

14.15. Access to subprograms 575

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
16

17 with function Image_T (Element : T)
18 return String;
19 package Gen_Custom_Processing is
20

21 type Rec is private;
22

23 procedure Init (R : in out Rec;
24 Value : T);
25

26 procedure Process (R : in out Rec);
27

28 procedure Show (R : Rec);
29

30 private
31

32 type Rec is record
33 Comp : T;
34 end record;
35

36 end Gen_Custom_Processing;

Listing 147: gen_custom_processing.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Gen_Custom_Processing is
4

5 procedure Init (R : in out Rec;
6 Value : T) is
7 begin
8 R.Comp := Value;
9 end Init;
10

11 procedure Process (R : in out Rec) is
12 begin
13 Proc (R.Comp);
14 end Process;
15

16 procedure Show (R : Rec) is
17 begin
18 Put_Line ("R.Comp = "
19 & Image_T (R.Comp));
20 end Show;
21

22 end Gen_Custom_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 6f06e066bafa5f02abb3ee1b33ea0831

In this version of the procedure, instead of declaring Proc as a discriminant of the Rec
record, we're declaring it as a formal parameter of the Gen_Custom_Processing package.
Also, we're declaring an access-to-subprogram type (T_Processing) as a formal parameter.
(Note that, in contrast to these two parameters that we've just mentioned, Image_T is not
a formal access-to-subprogram parameter: it's actually just a formal subprogram.)
We then instantiate the Gen_Custom_Processing package in our test application:

576 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 148: show_access_to_subprogram_as_formal_parameter.adb
1 with Gen_Custom_Processing;
2

3 with Add_Ten;
4

5 with Ada.Text_IO; use Ada.Text_IO;
6

7 procedure
8 Show_Access_To_Subprogram_As_Formal_Parameter
9 is
10 type Integer_Processing is
11 access procedure (I : in out Integer);
12

13 package Custom_Processing is new
14 Gen_Custom_Processing
15 (T => Integer,
16 T_Processing => Integer_Processing,
17 -- ^^^^^^^^^^^^^^^^^^
18 -- access-to-subprogram type
19 Proc => Add_Ten'Access,
20 -- ^^^^^^^^^^^^^^^^^^
21 -- access-to-subprogram
22 Image_T => Integer'Image);
23 use Custom_Processing;
24

25 R_Add_Ten : Rec;
26

27 begin
28 Init (R_Add_Ten, 1);
29

30 Put_Line ("---- R_Add_Ten ----");
31 Show (R_Add_Ten);
32

33 Put_Line ("Calling Process procedure...");
34 Process (R_Add_Ten);
35 Show (R_Add_Ten);
36 end Show_Access_To_Subprogram_As_Formal_Parameter;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_To_Subprogram_Types

MD5: 6ae27ebd59e5307551e9a38f3b94c70c

Runtime output

---- R_Add_Ten ----
R.Comp = 1
Calling Process procedure...
R.Comp = 11

Here, we instantiate the Gen_Custom_Processing package as Custom_Processing and
specify the access-to-subprogram type and the access-to-subprogram.

14.15. Access to subprograms 577

Advanced Journey With Ada: A Flight In Progress

14.15.7 Selecting subprograms

A practical application of access to subprograms is that it enables us to dynamically select
a subprogram and pass it to another subprogram, where it can then be called.
For example, we may have a Process procedure that receives a logging procedure as a
parameter (Log_Proc). Also, this parameter may be null by default — so that no procedure
is called if the parameter isn't specified:

Listing 149: data_processing.ads
1 package Data_Processing is
2

3 type Data_Container is
4 array (Positive range <>) of Float;
5

6 type Log_Procedure is
7 access procedure (D : Data_Container);
8

9 procedure Process
10 (D : in out Data_Container;
11 Log_Proc : Log_Procedure := null);
12

13 end Data_Processing;

Listing 150: data_processing.adb
1 package body Data_Processing is
2

3 procedure Process
4 (D : in out Data_Container;
5 Log_Proc : Log_Procedure := null) is
6 begin
7 -- missing processing part...
8

9 if Log_Proc /= null then
10 Log_Proc (D);
11 end if;
12 end Process;
13

14 end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Log_Procedure

MD5: 59399e0809deb476f608faab7e4398bd

In the implementation of Process, we check whether Log_Proc is null or not. (If it's not
null, we call the procedure. Otherwise, we just skip the call.)
Now, let's implement two logging procedures that match the expected form of the
Log_Procedure type:

Listing 151: log_element_per_line.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Data_Processing; use Data_Processing;
3

4 procedure Log_Element_Per_Line
5 (D : Data_Container) is
6 begin

(continues on next page)

578 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 Put_Line ("Elements: ");
8 for V of D loop
9 Put_Line (V'Image);
10 end loop;
11 Put_Line ("------");
12 end Log_Element_Per_Line;

Listing 152: log_csv.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Data_Processing; use Data_Processing;
3

4 procedure Log_Csv (D : Data_Container) is
5 begin
6 for I in D'First .. D'Last - 1 loop
7 Put (D (I)'Image & ", ");
8 end loop;
9 Put (D (D'Last)'Image);
10 New_Line;
11 end Log_Csv;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Log_Procedure

MD5: 468789f7331ffcd16f754f7116b076d7

Finally, we implement a test application that selects each of the logging procedures that
we've just implemented:

Listing 153: show_access_to_subprograms.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Data_Processing; use Data_Processing;
3

4 with Log_Element_Per_Line;
5 with Log_Csv;
6

7 procedure Show_Access_To_Subprograms is
8 D : Data_Container (1 .. 5) := (others => 1.0);
9 begin
10 Put_Line ("==== Log_Element_Per_Line ====");
11 Process (D, Log_Element_Per_Line'Access);
12

13 Put_Line ("==== Log_Csv ====");
14 Process (D, Log_Csv'Access);
15

16 Put_Line ("==== None ====");
17 Process (D);
18 end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Log_Procedure

MD5: 134aa682cea1999efa0ea97052f315c8

Runtime output

==== Log_Element_Per_Line ====
Elements:

(continues on next page)

14.15. Access to subprograms 579

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00

==== Log_Csv ====
1.00000E+00, 1.00000E+00, 1.00000E+00, 1.00000E+00, 1.00000E+00
==== None ====

Here, we use the Access attribute to get access to the Log_Element_Per_Line and Log_Csv
procedures. Also, in the third call, we don't pass any access as an argument, which is then
null by default.

14.15.8 Null exclusion

We can use null exclusion when declaring an access to subprograms. By doing so, we
ensure that a subprogram must be specified — either as a parameter or when initializing
an access object. Otherwise, an exception is raised. Let's adapt the previous example and
introduce the Init_Function type:

Listing 154: data_processing.ads
1 package Data_Processing is
2

3 type Data_Container is
4 array (Positive range <>) of Float;
5

6 type Init_Function is
7 not null access function return Float;
8

9 procedure Process
10 (D : in out Data_Container;
11 Init_Func : Init_Function);
12

13 end Data_Processing;

Listing 155: data_processing.adb
1 package body Data_Processing is
2

3 procedure Process
4 (D : in out Data_Container;
5 Init_Func : Init_Function) is
6 begin
7 for I in D'Range loop
8 D (I) := Init_Func.all;
9 end loop;
10 end Process;
11

12 end Data_Processing;

In this case, we specify that Init_Function is not null access because we want to always
be able to call this function in the Process procedure (i.e. without raising an exception).
When an access to a subprogram doesn't have parameters — which is the case for the
subprograms of Init_Function type — we need to explicitly dereference it by writing .
all. (In this case, .all isn't optional.) Therefore, we have to write Init_Func.all in the
implementation of the Process procedure of the code example.

580 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Now, let's declare two simple functions — Init_Zero and Init_One — that return 0.0 and
1.0, respectively:

Listing 156: init_zero.ads
1 function Init_Zero return Float;

Listing 157: init_one.ads
1 function Init_One return Float;

Listing 158: init_zero.adb
1 function Init_Zero return Float is
2 begin
3 return 0.0;
4 end Init_Zero;

Listing 159: init_one.adb
1 function Init_One return Float is
2 begin
3 return 1.0;
4 end Init_One;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_Init_Function

MD5: 444110d50ddb430fd5be31cf1b417fc8

Finally, let's see a test application where we select each of the init functions we've just
implemented:

Listing 160: log_element_per_line.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Data_Processing; use Data_Processing;
3

4 procedure Log_Element_Per_Line
5 (D : Data_Container) is
6 begin
7 Put_Line ("Elements: ");
8 for V of D loop
9 Put_Line (V'Image);
10 end loop;
11 Put_Line ("------");
12 end Log_Element_Per_Line;

Listing 161: show_access_to_subprograms.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Data_Processing; use Data_Processing;
3

4 with Init_Zero;
5 with Init_One;
6

7 with Log_Element_Per_Line;
8

9 procedure Show_Access_To_Subprograms is
10 D : Data_Container (1 .. 5) := (others => 1.0);

(continues on next page)

14.15. Access to subprograms 581

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
11 begin
12 Put_Line ("==== Init_Zero ====");
13 Process (D, Init_Zero'Access);
14 Log_Element_Per_Line (D);
15

16 Put_Line ("==== Init_One ====");
17 Process (D, Init_One'Access);
18 Log_Element_Per_Line (D);
19

20 -- Put_Line ("==== None ====");
21 -- Process (D, null);
22 -- Log_Element_Per_Line (D);
23 end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Access_Init_Function

MD5: ae0e3fd58e9bb83061248967c709190a

Runtime output

==== Init_Zero ====
Elements:
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

==== Init_One ====
Elements:
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00

Here, we use the Access attribute to get access to the Init_Zero and Init_One functions.
Also, if we uncomment the call to Processwith null as an argument for the init function, we
see that the Constraint_Error exception is raised at run time — as the argument cannot
be null due to the null exclusion.

For further reading...

Note: This example was originally written by Robert A. Duff and was part of the Gem
#24218.

Here's another example, first with null:

Listing 162: show_null_procedure.ads
1 package Show_Null_Procedure is
2 type Element is limited null record;
3 -- Not implemented yet
4

(continues on next page)
218 https://www.adacore.com/gems/ada-gem-24

582 Chapter 14. Access Types

https://www.adacore.com/gems/ada-gem-24
https://www.adacore.com/gems/ada-gem-24

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 type Ref_Element is access all Element;
6

7 type Table is limited null record;
8 -- Not implemented yet
9

10 type Iterate_Action is
11 access procedure
12 (X : not null Ref_Element);
13

14 procedure Iterate
15 (T : Table;
16 Action : Iterate_Action := null);
17 -- If Action is null, do nothing.
18

19 end Show_Null_Procedure;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Null_Procedure

MD5: ac21dd76ed9fb7f26839c24210cf4425

and without null:

Listing 163: show_null_procedure.ads
1 package Show_Null_Procedure is
2 type Element is limited null record;
3 -- Not implemented yet
4

5 type Ref_Element is access all Element;
6

7 type Table is limited null record;
8 -- Not implemented yet
9

10 procedure Do_Nothing
11 (X : not null Ref_Element) is null;
12

13 type Iterate_Action is
14 access procedure
15 (X : not null Ref_Element);
16

17 procedure Iterate
18 (T : Table;
19 Action : not null Iterate_Action
20 := Do_Nothing'Access);
21

22 end Show_Null_Procedure;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Null_Procedure

MD5: 7341d8f23cd4efe45698481be452a9e8

The style of the second Iterate is clearly better because it makes use of the syntax to indi-
cate that a procedure is expected. This is a complete package that includes both versions
of the Iterate procedure:

14.15. Access to subprograms 583

Advanced Journey With Ada: A Flight In Progress

Listing 164: example.ads
1 package Example is
2

3 type Element is limited private;
4 type Ref_Element is access all Element;
5

6 type Table is limited private;
7

8 type Iterate_Action is
9 access procedure
10 (X : not null Ref_Element);
11

12 procedure Iterate
13 (T : Table;
14 Action : Iterate_Action := null);
15 -- If Action is null, do nothing.
16

17 procedure Do_Nothing
18 (X : not null Ref_Element) is null;
19 procedure Iterate_2
20 (T : Table;
21 Action : not null Iterate_Action
22 := Do_Nothing'Access);
23

24 private
25 type Element is limited
26 record
27 Component : Integer;
28 end record;
29 type Table is limited null record;
30 end Example;

Listing 165: example.adb
1 package body Example is
2

3 An_Element : aliased Element;
4

5 procedure Iterate
6 (T : Table;
7 Action : Iterate_Action := null)
8 is
9 begin
10 if Action /= null then
11 Action (An_Element'Access);
12 -- In a real program, this would do
13 -- something more sensible.
14 end if;
15 end Iterate;
16

17 procedure Iterate_2
18 (T : Table;
19 Action : not null Iterate_Action
20 := Do_Nothing'Access)
21 is
22 begin
23 Action (An_Element'Access);
24 -- In a real program, this would do
25 -- something more sensible.
26 end Iterate_2;

(continues on next page)

584 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
27

28 end Example;

Listing 166: show_example.adb
1 with Example; use Example;
2

3 procedure Show_Example is
4 T : Table;
5 begin
6 Iterate_2 (T);
7 end Show_Example;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Complete_Not_Null_Procedure

MD5: ab0a41e0d39a8a16b0b69f8c6b2a43fd

Writing not null Iterate_Action might look a bit more complicated, but it's worthwhile,
and anyway, asmentioned earlier, the compatibility requirement requires that the not null
be explicit, rather than the other way around.

14.15.9 Access to protected subprograms

Up to this point, we've discussed access to normal Ada subprograms. In some situations,
however, we might want to have access to protected subprograms. To do this, we can
simply declare a type using access protected:

Listing 167: simple_protected_access.ads
1 package Simple_Protected_Access is
2

3 type Access_Proc is
4 access protected procedure;
5

6 protected Obj is
7

8 procedure Do_Something;
9

10 end Obj;
11

12 Acc : Access_Proc := Obj.Do_Something'Access;
13

14 end Simple_Protected_Access;

Listing 168: simple_protected_access.adb
1 package body Simple_Protected_Access is
2

3 protected body Obj is
4

5 procedure Do_Something is
6 begin
7 -- Not doing anything
8 -- for the moment...
9 null;

(continues on next page)

14.15. Access to subprograms 585

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10 end Do_Something;
11

12 end Obj;
13

14 end Simple_Protected_Access;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Simple_Protected_Access

MD5: d82f7c90355e9810bd1e35f65e278626

Here, we declare the Access_Proc type as an access type to protected procedures. Then,
we declare the variable Acc and assign to it the access to the Do_Something procedure (of
the protected object Obj).
Now, let's discuss a more useful example: a simple system that allows us to register pro-
tected procedures and execute them. This is implemented in Work_Registry package:

Listing 169: work_registry.ads
1 package Work_Registry is
2

3 type Work_Id is tagged limited private;
4

5 type Work_Handler is
6 access protected procedure (T : Work_Id);
7

8 subtype Valid_Work_Handler is
9 not null Work_Handler;
10

11 type Work_Handlers is
12 array (Positive range <>) of Work_Handler;
13

14 protected type Work_Handler_Registry
15 (Last : Positive)
16 is
17

18 procedure Register (T : Valid_Work_Handler);
19

20 procedure Reset;
21

22 procedure Process_All;
23

24 private
25

26 D : Work_Handlers (1 .. Last);
27 Curr : Natural := 0;
28

29 end Work_Handler_Registry;
30

31 private
32

33 type Work_Id is tagged limited null record;
34

35 end Work_Registry;

Listing 170: work_registry.adb
1 package body Work_Registry is
2

(continues on next page)

586 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 protected body Work_Handler_Registry is
4

5 procedure Register (T : Valid_Work_Handler)
6 is
7 begin
8 if Curr < Last then
9 Curr := Curr + 1;
10 D (Curr) := T;
11 end if;
12 end Register;
13

14 procedure Reset is
15 begin
16 Curr := 0;
17 end Reset;
18

19 procedure Process_All is
20 Dummy_ID : Work_Id;
21 begin
22 for I in D'First .. Curr loop
23 D (I).all (Dummy_ID);
24 end loop;
25 end Process_All;
26

27 end Work_Handler_Registry;
28

29 end Work_Registry;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Protected_Access_Init_Function

MD5: 5dfa8ab098900ab4f6b7575e1cde5e53

Here, we declare the protected Work_Handler_Registry type with the following subpro-
grams:
• Register, which we can use to register a protected procedure;
• Reset, which we can use to reset the system; and
• Process_All, which we can use to call all procedures that were registered in the sys-
tem.

Work_Handler is our access to protected subprogram type. Also, we declare the
Valid_Work_Handler subtype, which excludes null. By doing so, we can ensure
that only valid procedures are passed to the Register procedure. In the protected
Work_Handler_Registry type, we store the procedures in an array (of Work_Handlers
type).

Important
Note that, in the type declaration Work_Handler, we say that the protected procedure must
have a parameter of Work_Id type. In this example, this parameter is just used to bind the
procedure to the Work_Handler_Registry type. The Work_Id type itself is actually declared
as a null record (in the private part of the package), and it isn't really useful on its own.
If we had declared type Work_Handler is access protected procedure; instead, we
would be able to register any protected procedure into the system, even the ones that might
not be suitable for the system. By using a parameter of Work_Id type, however, we make
use of strong typing to ensure that only procedures that were designed for the system can

14.15. Access to subprograms 587

Advanced Journey With Ada: A Flight In Progress

be registered.

In the next part of the code, we declare the Integer_Storage type, which is a simple
protected type that we use to store an integer value:

Listing 171: integer_storage_system.ads
1 with Work_Registry;
2

3 package Integer_Storage_System is
4

5 protected type Integer_Storage is
6

7 procedure Set (V : Integer);
8

9 procedure Show (T : Work_Registry.Work_Id);
10

11 private
12

13 I : Integer := 0;
14

15 end Integer_Storage;
16

17 type Integer_Storage_Access is
18 access Integer_Storage;
19

20 type Integer_Storage_Array is
21 array (Positive range <>) of
22 Integer_Storage_Access;
23

24 end Integer_Storage_System;

Listing 172: integer_storage_system.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Integer_Storage_System is
4

5 protected body Integer_Storage is
6

7 procedure Set (V : Integer) is
8 begin
9 I := V;
10 end Set;
11

12 procedure Show (T : Work_Registry.Work_Id)
13 is
14 pragma Unreferenced (T);
15 begin
16 Put_Line ("Value: " & Integer'Image (I));
17 end Show;
18

19 end Integer_Storage;
20

21 end Integer_Storage_System;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Protected_Access_Init_Function

MD5: a388d792bc85709785d324c914d9d236

588 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

For the Integer_Storage type, we declare two procedures:
• Set, which we use to assign a value to the (protected) integer value; and
• Show, which we use to show the integer value that is stored in the protected object.

The Show procedure has a parameter of Work_Id type, which indicates that this procedure
was designed to be registered in the system of Work_Handler_Registry type.
Finally, we have a test application in which we declare a registry (WHR) and an array of
"protected integer objects" (Int_Stor):

Listing 173: show_access_to_protected_subprograms.adb
1 with Work_Registry;
2 use Work_Registry;
3

4 with Integer_Storage_System;
5 use Integer_Storage_System;
6

7 procedure Show_Access_To_Protected_Subprograms is
8

9 WHR : Work_Handler_Registry (5);
10 Int_Stor : Integer_Storage_Array (1 .. 3);
11

12 begin
13 -- Allocate and initialize integer storage
14 --
15 -- (For the initialization, we're just
16 -- assigning the index here, but we could
17 -- really have used any integer value.)
18

19 for I in Int_Stor'Range loop
20 Int_Stor (I) := new Integer_Storage;
21 Int_Stor (I).Set (I);
22 end loop;
23

24 -- Register handlers
25

26 for I in Int_Stor'Range loop
27 WHR.Register (Int_Stor (I).all.Show'Access);
28 end loop;
29

30 -- Now, use Process_All to call the handlers
31 -- (in this case, the Show procedure for
32 -- each protected object from Int_Stor).
33

34 WHR.Process_All;
35

36 end Show_Access_To_Protected_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Protected_Access_Init_Function

MD5: 44c24ef07333e1d31844cc2ea6d91ab6

Runtime output

Value: 1
Value: 2
Value: 3

The work handler registry (WHR) has a maximum capacity of five procedures, whereas the

14.15. Access to subprograms 589

Advanced Journey With Ada: A Flight In Progress

Int_Stor array has a capacity of three elements. By calling WHR.Register and passing
Int_Stor (I).all.Show'Access, we register the Show procedure of each protected object
from Int_Stor.

Important
Note that the components of the Int_Stor array are of Integer_Storage_Access type,
which is declared as an access to Integer_Storage objects. Therefore, we have to derefer-
ence the object (by writing Int_Stor (I).all) before getting access to the Show procedure
(by writing .Show'Access).
We have to use an access type here because we cannot pass the access (to the Show
procedure) of a local object in the call to the Register procedure. Therefore, the protected
objects (of Integer_Storage type) cannot be local.
This issue becomes evident if we replace the declaration of Int_Stor with a local array
(and then adapt the remaining code). If we do this, we get a compilation error in the call to
Register:

Listing 174: show_access_to_protected_subprograms.adb
1 with Work_Registry;
2 use Work_Registry;
3

4 with Integer_Storage_System;
5 use Integer_Storage_System;
6

7 procedure Show_Access_To_Protected_Subprograms
8 is
9 WHR : Work_Handler_Registry (5);
10

11 Int_Stor : array (1 .. 3) of Integer_Storage;
12

13 begin
14 -- Allocate and initialize integer storage
15 --
16 -- (For the initialization, we're just
17 -- assigning the index here, but we could
18 -- really have used any integer value.)
19

20 for I in Int_Stor'Range loop
21 -- Int_Stor (I) := new Integer_Storage;
22 Int_Stor (I).Set (I);
23 end loop;
24

25 -- Register handlers
26

27 for I in Int_Stor'Range loop
28 WHR.Register (Int_Stor (I).Show'Access);
29 -- ^ ERROR!
30 end loop;
31

32 -- Now, call the handlers
33 -- (i.e. the Show procedure of each
34 -- protected object).
35

36 WHR.Process_All;
37

38 end Show_Access_To_Protected_Subprograms;

Code block metadata

590 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_
↪Subprograms.Protected_Access_Init_Function

MD5: 359241c84cd30313fe2d7701b55f303e

Build output

show_access_to_protected_subprograms.adb:28:21: error: non-local pointer cannot␣
↪point to local object

gprbuild: *** compilation phase failed

As we've just discussed, this error is due to the fact that Int_Stor is now a "local" protected
object, and the accessibility rules don't allow mixing it with non-local accesses in order to
prevent the possibility of dangling references.

When we call WHR.Process_All, the registry system calls each procedure that has been
registered with the system. When looking at the values displayed by the test application,
we may notice that each call to Show is referring to a different protected object. In fact,
even though we're passing just the access to a protected procedure in the call to Register,
that access is also associated to a specific protected object. (This is different from access
to non-protected subprograms we've discussed previously: in that case, there's no object
associated.) If we replace the argument to Register by Int_Stor (2).all.Show'Access,
for example, the three Show procedures registered in the system will now refer to the same
protected object (stored at Int_Stor (2)).
Also, even though we have registered the same procedure (Show) of the same type
(Integer_Storage) in all calls to Register, we could have used a different protected pro-
cedure — and of a different protected type. As an exercise, we could, for example, create a
new type called Float_Storage (based on the code that we used for the Integer_Storage
type) and register some objects of Float_Storage type into the system (with a couple of
additional calls to Register). If we then call WHR.Process_All, we'd see that the system is
able to cope with objects of both Integer_Storage and Float_Storage types. In fact, the
system implemented with the Work_Handler_Registry can be seen as "type agnostic," as
it doesn't care about which type the protected objects have — as long as the subprograms
we want to register are conformant to the Valid_Work_Handler type.

14.16 Accessibility Rules and Access-To-Subprograms

In general, the accessibility rules that we discussed previously for access-to-objects
(page 534) also apply to access-to-subprograms. In this section, we discuss minor dif-
ferences when applying those rules to access-to-subprograms.
In our discussion about accessibility rules, we've looked into accessibility levels (page 535)
and the accessibility rules (page 536) that are based on those levels. The same accessi-
bility rules apply to access-to-subprograms. As we said previously (page 539), operations
targeting objects at a less-deep level are illegal, as it's the case for subprograms as well:

Listing 175: access_to_subprogram_types.ads
1 package Access_To_Subprogram_Types is
2

3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5

6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8

9 end Access_To_Subprogram_Types;

14.16. Accessibility Rules and Access-To-Subprograms 591

Advanced Journey With Ada: A Flight In Progress

Listing 176: show_access_to_subprogram_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_To_Subprogram_Types;
4 use Access_To_Subprogram_Types;
5

6 procedure Show_Access_To_Subprogram_Error is
7 Func : Access_To_Function;
8

9 Value : Integer := 0;
10 begin
11 declare
12 function Add_One (I : Integer)
13 return Integer is
14 (I + 1);
15 begin
16 Func := Add_One'Access;
17 -- This assignment is illegal because the
18 -- Access_To_Function type is less deep
19 -- than Add_One.
20 end;
21

22 Put_Line ("Value: " & Value'Image);
23 Value := Func (Value);
24 Put_Line ("Value: " & Value'Image);
25 end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_
↪Access_To_Subprograms.Access_To_Subprogram_Accessibility_Error_Less_Deep

MD5: 2a068732606a1fee156e82515febe9c4

Build output

show_access_to_subprogram_error.adb:16:15: error: subprogram must not be deeper␣
↪than access type

gprbuild: *** compilation phase failed

Obviously, we can correct this error by putting the Add_One function at the same level as
the Access_To_Function type, i.e. at library level:

Listing 177: access_to_subprogram_types.ads
1 package Access_To_Subprogram_Types is
2

3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5

6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8

9 end Access_To_Subprogram_Types;

Listing 178: add_one.ads
1 function Add_One (I : Integer) return Integer;

592 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 179: add_one.adb
1 function Add_One (I : Integer) return Integer is
2 begin
3 return I + 1;
4 end Add_One;

Listing 180: show_access_to_subprogram_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_To_Subprogram_Types;
4 use Access_To_Subprogram_Types;
5

6 with Add_One;
7

8 procedure Show_Access_To_Subprogram_Error is
9 Func : Access_To_Function;
10

11 Value : Integer := 0;
12 begin
13 Func := Add_One'Access;
14

15 Put_Line ("Value: " & Value'Image);
16 Value := Func (Value);
17 Put_Line ("Value: " & Value'Image);
18 end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_
↪Access_To_Subprograms.Access_To_Subprogram_Accessibility_Error_Less_Deep_Fix

MD5: 7f7488c541fb457ced653a2e6cc2fad1

Runtime output

Value: 0
Value: 1

As a recommendation, resolving accessibility issues in the case of access-to-subprograms
is best done by refactoring the subprograms of your source code — for example, moving
subprograms to a different level.

14.16.1 Unchecked Access

Previously, we discussed about the Unchecked_Access attribute (page 544), which we can
use to circumvent accessibility issues in specific cases for access-to-objects. We also said
in that section that this attribute only exists for objects, not for subprograms. We can use
the previous example to illustrate this limitation:

Listing 181: access_to_subprogram_types.ads
1 package Access_To_Subprogram_Types is
2

3 type Access_To_Procedure is
4 access procedure (I : in out Integer);
5

6 type Access_To_Function is
7 access function (I : Integer) return Integer;

(continues on next page)

14.16. Accessibility Rules and Access-To-Subprograms 593

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8

9 end Access_To_Subprogram_Types;

Listing 182: show_access_to_subprogram_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_To_Subprogram_Types;
4 use Access_To_Subprogram_Types;
5

6 procedure Show_Access_To_Subprogram_Error is
7 Func : Access_To_Function;
8

9 function Add_One (I : Integer)
10 return Integer is
11 (I + 1);
12

13 Value : Integer := 0;
14 begin
15 Func := Add_One'Access;
16

17 Put_Line ("Value: " & Value'Image);
18 Value := Func (Value);
19 Put_Line ("Value: " & Value'Image);
20 end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_
↪Access_To_Subprograms.Access_To_Subprogram_Accessibility_Error_Same_Lifetime

MD5: c1ee1946f0c979eb30fbf2c72c426f50

Build output

show_access_to_subprogram_error.adb:15:12: error: subprogram must not be deeper␣
↪than access type

gprbuild: *** compilation phase failed

Whenwe analyze the Show_Access_To_Subprogram_Error procedure, we see that the Func
object and the Add_One function have the same lifetime. Therefore, in this very specific
case, we could safely assign Add_One'Access to Func and call Func for Value. Due to the
accessibility rules, however, this assignment is illegal. (Obviously, the accessibility issue
here is that the Access_To_Function type has a potentially longer lifetime.)
In the case of access-to-objects, we could use Unchecked_Access to enforce assignments
that we consider safe after careful analysis. However, because this attribute isn't available
for access-to-subprograms, the best solution is to move the subprogram to a level that
allows the assignment to be legal, as we said before.

In the GNAT toolchain
GNAT offers an equivalent for Unchecked_Access that can be used for subprograms: the
Unrestricted_Access attribute. Note, however, that this attribute is not portable.

Listing 183: access_to_subprogram_types.ads
1 package Access_To_Subprogram_Types is
2

3 type Access_To_Procedure is
4 access procedure (I : in out Integer);

(continues on next page)

594 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5

6 type Access_To_Function is
7 access function (I : Integer) return Integer;
8

9 end Access_To_Subprogram_Types;

Listing 184: show_access_to_subprogram_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_To_Subprogram_Types;
4 use Access_To_Subprogram_Types;
5

6 procedure Show_Access_To_Subprogram_Error is
7 Func : Access_To_Function;
8

9 function Add_One (I : Integer)
10 return Integer is
11 (I + 1);
12

13 Value : Integer := 0;
14 begin
15 Func := Add_One'Unrestricted_Access;
16 -- ^^^^^^^^^^^^^^^^^^^
17 -- Allowing access to local function
18

19 Put_Line ("Value: " & Value'Image);
20 Value := Func (Value);
21 Put_Line ("Value: " & Value'Image);
22 end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_
↪Access_To_Subprograms.Unrestricted_Access

MD5: 90e2c57c01463cbe6efee6e093d01e5b

Runtime output

Value: 0
Value: 1

As we can see, the Unrestricted_Access attribute can be safely used in this specific case
to circumvent the accessibility rule limitation.

14.17 Access and Address

As we know, an access type is not a pointer, and it doesn't just indicate an address in
memory. In fact, to represent an address in Ada, we use the Address type (page 131).
Also, as we discussed earlier, we can use operators such as <, >, + and - for addresses. In
contrast to that, those operators aren't available for access types — except, of course, for
= and /=.
In certain situations, however, we might need to convert between access types and ad-
dresses. In this section, we discuss how to do so.

In the Ada Reference Manual

14.17. Access and Address 595

Advanced Journey With Ada: A Flight In Progress

• 13.3 Operational and Representation Attributes219

• 13.7 The Package System220

14.17.1 Address and access conversion

The generic System.Address_To_Access_Conversions package allows us to convert be-
tween access types and addresses. This might be useful for specific low-level operations.
Let's see an example:

Listing 185: show_address_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with System.Address_To_Access_Conversions;
4 with System.Address_Image;
5

6 procedure Show_Address_Conversion is
7

8 package Integer_AAC is
9 new System.Address_To_Access_Conversions
10 (Object => Integer);
11 use Integer_AAC;
12

13 subtype Integer_Access is
14 Integer_AAC.Object_Pointer;
15 -- This is similar to:
16 --
17 -- type Integer_Access is access all Integer;
18

19 I : aliased Integer := 5;
20 AI : Integer_Access := I'Access;
21 begin
22 Put_Line ("I'Address : "
23 & System.Address_Image (I'Address));
24

25 Put_Line ("AI.all'Address : "
26 & System.Address_Image
27 (AI.all'Address));
28

29 Put_Line ("To_Address (AI) : "
30 & System.Address_Image
31 (To_Address (AI)));
32 end Show_Address_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Address.
↪Address_Conversion

MD5: 717532026247044a667b60f6c1e1c7da

Runtime output

I'Address : 00007FFC6DB64054
AI.all'Address : 00007FFC6DB64054
To_Address (AI) : 00007FFC6DB64054

219 http://www.ada-auth.org/standards/22rm/html/RM-13-3.html
220 http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

596 Chapter 14. Access Types

http://www.ada-auth.org/standards/22rm/html/RM-13-3.html
http://www.ada-auth.org/standards/22rm/html/RM-13-7.html

Advanced Journey With Ada: A Flight In Progress

In this example, we instantiate the generic System.Address_To_Access_Conversions
package using Integer as our target object type. This new package (Integer_AAC) has an
Object_Pointer type, which is equivalent to a declaration such as type Integer_Access
is access all Integer. (In this example, we declare Integer_Access as a subtype of
Integer_AAC.Object_Pointer to illustrate that.)
The Integer_AAC package also includes the To_Address function, which converts an access
object to an address. If the actual parameter is not null, To_Address returns the same
information as if we were using the Address attribute for the designated object. In other
words, To_Address (AI) = AI.all'Address when AI /= null.
If the access value is null, To_Address returns Null_Address, while .all'Address makes
the access check (page 402) fail because we have to dereference the access object (via
.all) before retrieving its address (via the Address attribute).
In addition to the To_Address function, the To_Pointer function is available to convert
from an address to an object of access type. For example:

Listing 186: show_address_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System; use System;
3

4 with System.Address_To_Access_Conversions;
5 with System.Address_Image;
6

7 procedure Show_Address_Conversion is
8

9 package Integer_AAC is
10 new System.Address_To_Access_Conversions
11 (Object => Integer);
12 use Integer_AAC;
13

14 subtype Integer_Access is
15 Integer_AAC.Object_Pointer;
16

17 I : aliased Integer := 5;
18 AI_1, AI_2 : Integer_Access;
19 A : Address;
20 begin
21 AI_1 := I'Access;
22 A := To_Address (AI_1);
23 AI_2 := To_Pointer (A);
24

25 Put_Line ("AI_1.all'Address : "
26 & System.Address_Image
27 (AI_1.all'Address));
28 Put_Line ("AI_2.all'Address : "
29 & System.Address_Image
30 (AI_2.all'Address));
31

32 if AI_1 = AI_2 then
33 Put_Line ("AI_1 = AI_2");
34 else
35 Put_Line ("AI_1 /= AI_2");
36 end if;
37 end Show_Address_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Address.
↪Address_Conversion

MD5: 5c6fc19ca1aa227feba97ea610dd9218

14.17. Access and Address 597

Advanced Journey With Ada: A Flight In Progress

Runtime output

AI_1.all'Address : 00007FFF064581CC
AI_2.all'Address : 00007FFF064581CC
AI_1 = AI_2

Here, we convert the A address back to an access value by calling To_Pointer (A). (When
running this object, we see that AI_1 and AI_2 have the same access value.)

Conversion of unbounded designated types

Note that the conversions might not work in all cases. For instance, when the
designated type — indicated by the formal Object parameter of the generic Ad-
dress_To_Access_Conversions package — is unbounded, the result of a call to
To_Pointer may not have bounds.
Let's adapt the previous code example and replace the Integer type by the (unbounded)
String type:

Listing 187: show_address_conversion.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System; use System;
3

4 with System.Address_To_Access_Conversions;
5 with System.Address_Image;
6

7 procedure Show_Address_Conversion is
8

9 package String_AAC is
10 new System.Address_To_Access_Conversions
11 (Object => String);
12 use String_AAC;
13

14 subtype Integer_Access is
15 String_AAC.Object_Pointer;
16

17 S : aliased String := "Hello";
18 AI_1, AI_2 : Integer_Access;
19 A : Address;
20 begin
21 AI_1 := S'Access;
22 A := To_Address (AI_1);
23

24 AI_2 := To_Pointer (A);
25 -- ^^^^^^^^^^^^^^
26 -- WARNING: Result might not have bounds
27

28 Put_Line ("AI_1.all'Address : "
29 & System.Address_Image
30 (AI_1.all'Address));
31 Put_Line ("AI_2.all'Address : "
32 & System.Address_Image
33 (AI_2.all'Address));
34

35 if AI_1 = AI_2 then
36 Put_Line ("AI_1 = AI_2");
37 else
38 Put_Line ("AI_1 /= AI_2");
39 end if;
40

(continues on next page)

598 Chapter 14. Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
41 Put_Line ("AI_1: " & AI_1.all);
42 Put_Line ("AI_2: " & AI_2.all);
43 -- ^^^^^^^^^^
44 -- WARNING: As AI_2 might not have bounds
45 -- due to the call to To_Pointer
46 -- the behavior of this call to
47 -- the "&" operator is
48 -- unpredictable.
49 end Show_Address_Conversion;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Address.
↪Address_Conversion

MD5: b1adcaa1f2cb4dfbd157aebf7893bd72

Build output

show_address_conversion.adb:9:04: warning: in instantiation at s-atacco.ads:43␣
↪[enabled by default]

show_address_conversion.adb:9:04: warning: Object is unconstrained array type␣
↪[enabled by default]

show_address_conversion.adb:9:04: warning: To_Pointer results may not have bounds␣
↪[enabled by default]

Runtime output

AI_1.all'Address : 00007FFE7BECD388
AI_2.all'Address : 00007FFE7BECD388
AI_1 = AI_2
AI_1: Hello
AI_2: Hello

In this case, the call to To_Pointer (A) might not have bounds, so any operation on AI_2
might lead to unpredictable results.

In the Ada Reference Manual
• 13.7.2 The Package System.Address_To_Access_Conversions221

221 http://www.ada-auth.org/standards/22rm/html/RM-13-7-2.html

14.17. Access and Address 599

http://www.ada-auth.org/standards/22rm/html/RM-13-7-2.html

Advanced Journey With Ada: A Flight In Progress

600 Chapter 14. Access Types

CHAPTER

FIFTEEN

ANONYMOUS ACCESS TYPES

15.1 Named and Anonymous Access Types

The previous chapter dealt with access type declarations such as this one:

type Integer_Access is access all Integer;

procedure Add_One (A : Integer_Access);

In addition to named access type declarations such as the one in this example, Ada also
supports anonymous access types, which, as the name implies, don't have an actual type
declaration.
To declare an access object of anonymous type, we just specify the subtype of the object
or subprogram we want to have access to. For example:

procedure Add_One (A : access Integer);

When we compare this example with the previous one, we see that the declaration A :
Integer_Access becomes A : access Integer. Here, access Integer is the anonymous
access type declaration, and A is an access object of this anonymous type.
To bemore precise, A : access Integer is an access parameter (page 625) and it's specify-
ing an anonymous access-to-object type (page 605). Another flavor of anonymous access
types are anonymous access-to-subprograms (page 648). We discuss all these topics in
more details later.
Let's see a complete example:

Listing 1: show_anonymous_access_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Anonymous_Access_Types is
4 I_Var : aliased Integer;
5

6 A : access Integer;
7 -- ^ Anonymous access type
8 begin
9 A := I_Var'Access;
10 -- ^ Assignment to object of
11 -- anonymous access type.
12

13 A.all := 22;
14

15 Put_Line ("A.all: " & Integer'Image (A.all));
16 end Show_Anonymous_Access_Types;

Code block metadata

601

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Types.Simple_Anonymous_Access_Types

MD5: f0c92c76d970089c1d503c599d6869dd

Runtime output

A.all: 22

Here, A is an access object whose value is initialized with the access to I_Var. Because the
declaration of A includes the declaration of an anonymous access type, we don't declare
an extra Integer_Access type, as we did in previous code examples.

In the Ada Reference Manual
• 3.10 Access Types222

15.1.1 Relation to named types

Anonymous access types were not part of the first version of the Ada standard, which only
had support for named access types. They were introduced later to cover some use-cases
that were difficult — or even impossible — with access types.
In this sense, anonymous access types aren't just access types without names. Certain
accessibility rules for anonymous access types are a bit less strict. In those cases, it might
be interesting to consider using them instead of named access types.
In general, however, we should only use anonymous access types in those specific cases
where using named access types becomes too cumbersome. As a general recommenda-
tion, we should give preference to named access types whenever possible. (Anonymous
access-to-object types have drawbacks that we discuss later (page 608).)

15.1.2 Benefits of anonymous access types

One of the main benefits of anonymous access types is their flexibility: since there isn't
an explicit access type declaration associated with them, we only have to worry about the
subtype S we intend to access.
Also, as long as the subtype S in a declaration access S is always the same, no conversion
is needed between two access objects of that anonymous type, and the S'Access attribute
always works.
Let's see an example:

Listing 2: show.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show (Name : String;
4 V : access Integer) is
5 begin
6 Put_Line (Name & ".all: "
7 & Integer'Image (V.all));
8 end Show;

222 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

602 Chapter 15. Anonymous Access Types

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

Listing 3: show_anonymous_access_types.adb
1 with Show;
2

3 procedure Show_Anonymous_Access_Types is
4 I_Var : aliased Integer;
5 A : access Integer;
6 B : access Integer;
7 begin
8 A := I_Var'Access;
9 B := A;
10

11 A.all := 22;
12

13 Show ("A", A);
14 Show ("B", B);
15 end Show_Anonymous_Access_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Types.Anonymous_Access_Object_Assignment

MD5: 2822ca0bd6ac251dccc1ced60747fbe1

Runtime output

A.all: 22
B.all: 22

In this example, we have two access objects A and B. Since they're objects of anonymous
access types that refer to the same subtype Integer, we can assign A to B without a type
conversion, and pass those access objects as an argument to the Show procedure.
(Note that the use of an access parameter in the Show procedure is for demonstration pur-
pose only: a simply Integer as the type of this input parameter would have been more than
sufficient to implement the procedure. Actually, in this case, avoiding the access parameter
would be the recommended approach in terms of clean Ada software design.)
In contrast, if we had used named type declarations, the code would be more complicated
and more limited:

Listing 4: aux.ads
1 package Aux is
2

3 type Integer_Access is access all Integer;
4

5 procedure Show (Name : String;
6 V : Integer_Access);
7

8 end Aux;

Listing 5: aux.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Aux is
4

5 procedure Show (Name : String;
6 V : Integer_Access) is
7 begin

(continues on next page)

15.1. Named and Anonymous Access Types 603

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
8 Put_Line (Name & ".all: "
9 & Integer'Image (V.all));
10 end Show;
11

12 end Aux;

Listing 6: show_anonymous_access_types.adb
1 with Aux; use Aux;
2

3 procedure Show_Anonymous_Access_Types is
4 -- I_Var : aliased Integer;
5

6 A : Integer_Access;
7 B : Integer_Access;
8 begin
9 -- A := I_Var'Access;
10 -- ^ ERROR: non-local pointer cannot
11 -- point to local object.
12

13 A := new Integer;
14 B := A;
15

16 A.all := 22;
17

18 Show ("A", A);
19 Show ("B", B);
20 end Show_Anonymous_Access_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Types.Anonymous_Access_Object_Assignment

MD5: 681c2cf7f5e8d520490cc5594484ce69

Runtime output

A.all: 22
B.all: 22

Here, apart from the access type declaration (Integer_Access), we had to make two adap-
tations to convert the previous code example:
1. We had tomove the Show procedure to a package (which we simply called Aux) because
of the access type declaration.

2. Also, we had to allocate an object for A instead of retrieving the access attribute of
I_Var because we cannot use a pointer to a local object in the assignment to a non-
local pointer, as indicate in the comments.

This restriction regarding non-local pointer assignments is an example of the stricter ac-
cessibility rules that apply to named access types. As mentioned earlier, the S'Access
attribute always works when we use anonymous access types — this is not always the case
for named access types.

Important
As mentioned earlier, if we want to use two access objects in an operation, the
rule says that the subtype S of the anonymous type used in their corresponding
declaration must match. In the following example, we can see how this rule
works:

604 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 7: show_anonymous_access_subtype_error.adb
1 procedure Show_Anonymous_Access_Subtype_Error is
2 subtype Integer_1_10 is Integer range 1 .. 10;
3

4 I_Var : aliased Integer;
5 A : access Integer := I_Var'Access;
6 B : access Integer_1_10;
7 begin
8 A := I_Var'Access;
9

10 B := A;
11 -- ^ ERROR: subtype doesn't match!
12

13 B := I_Var'Access;
14 -- ^ ERROR: subtype doesn't match!
15 end Show_Anonymous_Access_Subtype_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Anonymous_Access_Types.Anonymous_Access_Subtype_Error

MD5: cecfe703ea8b42bad61c45f33cbcb67b

Build output

show_anonymous_access_subtype_error.adb:10:09: error: target designated␣
↪subtype not compatible with type "Standard.Integer"

show_anonymous_access_subtype_error.adb:13:09: error: object subtype must␣
↪statically match designated subtype

gprbuild: *** compilation phase failed

Even though Integer_1_10 is a subtype of Integer, we cannot assign A to B because
the subtype that their access type declarations refer to — Integer and Integer_1_10,
respectively — doesn't match. The same issue occurs when retrieving the access attribute
of I_Var in the assignment to B.

The later sections on anonymous access-to-object type (page 605) and anonymous access-
to-subprograms (page 648) cover more specific details on anonymous access types.

15.2 Anonymous Access-To-Object Types

In the previous chapter (page 481), we introduced named access-to-object types and used
those types throughout the chapter. Also, in the previous section (page 601), we've seen
some simple examples of anonymous access-to-object types:

procedure Add_One (A : access Integer);
-- ^ Anonymous access type

A : access Integer;
-- ^ Anonymous access type

In addition to parameters and objects, we can use anonymous access types in discriminants,
components of array and record types, renamings and function return types. (We discuss
anonymous access discriminants (page 615) and anonymous access parameters (page 625)
later on.) Let's see a code example that includes all these cases:

15.2. Anonymous Access-To-Object Types 605

Advanced Journey With Ada: A Flight In Progress

Listing 8: all_anonymous_access_to_object_types.ads
1 package All_Anonymous_Access_To_Object_Types is
2

3 procedure Add_One (A : access Integer) is null;
4 -- ^ Anonymous access type
5

6 AI : access Integer;
7 -- ^ Anonymous access type
8

9 type Rec (AI : access Integer) is private;
10 -- ^ Anonymous access type
11

12 type Access_Array is
13 array (Positive range <>) of
14 access Integer;
15 -- ^ Anonymous access type
16

17 Arr : array (1 .. 5) of access Integer;
18 -- ^ Anonymous access type
19

20 AI_Renaming : access Integer renames AI;
21 -- ^ Anonymous access type
22

23 function Init_Access_Integer
24 return access Integer is (null);
25 -- ^ Anonymous access type
26

27 private
28

29 type Rec (AI : access Integer) is record
30 -- ^ Anonymous access type
31 Internal_AI : access Integer;
32 -- ^ Anonymous access type
33

34 end record;
35

36 end All_Anonymous_Access_To_Object_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Object_Types.All_Anonymous_Access_To_Object_Types

MD5: 6533b22a4e4526702320cb327bf6f69a

In this example, we see multiple examples of anonymous access-to-object types:
• as the A parameter of the Add_One procedure;
• in the declaration of the AI access object;
• as the AI discriminant of the Rec type;
• as the component type of the Access_Array type;
• as the component type of the Arr array;
• in the AI_Renaming renaming;
• as the return type of the Init_Access_Integer;
• as the Internal_AI of component of the Rec type.

In the Ada Reference Manual

606 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

• 3.10 Access Types223

15.2.1 Not Null Anonymous Access-To-Object Types

As expected, null is a valid value for an anonymous access type. However, we can forbid
null as a valid value by using not null in the anonymous access type declaration. For
example:

Listing 9: all_anonymous_access_to_object_types.ads
1 package All_Anonymous_Access_To_Object_Types is
2

3 procedure Add_One (A : not null access Integer)
4 is null;
5 -- ^ Anonymous access type
6

7 I : aliased Integer;
8

9 AI : not null access Integer := I'Access;
10 -- ^ Anonymous access type
11 -- ^^^^^^^^
12 -- Initialization required!
13

14 type Rec (AI : not null access Integer) is
15 private;
16 -- ^ Anonymous access type
17

18 type Access_Array is
19 array (Positive range <>) of
20 not null access Integer;
21 -- ^ Anonymous access type
22

23 Arr : array (1 .. 5) of
24 not null access Integer :=
25 -- ^ Anonymous access type
26 (others => I'Access);
27 -- ^^^^^^^^^^^^^^^^^^
28 -- Initialization required!
29

30 AI_Renaming : not null access Integer
31 renames AI;
32 -- ^ Anonymous access type
33

34 function Init_Access_Integer
35 return not null access Integer is (I'Access);
36 -- ^ Anonymous access type
37 -- ^^^^^^^^
38 -- Initialization required!
39

40 private
41

42 type Rec (AI : not null access Integer) is
43 record
44 -- ^ Anonymous access type
45 Internal_AI : not null access Integer;
46 -- ^ Anonymous access type
47

48 end record;
(continues on next page)

223 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

15.2. Anonymous Access-To-Object Types 607

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
49

50 end All_Anonymous_Access_To_Object_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Object_Types.All_Not_Null_Anonymous_Access_To_Object_Types

MD5: 027430aa9d5e19979206110f5e260d13

As you might have noticed, we took the previous code example and used not null for
each usage instance of the anonymous access type. In this sense, this version of the code
example is very similar to the previous one. Note, however, that we now have to explicitly
initialize some elements to avoid the Constraint_Error exception being raised at runtime.
This is the case for example for the AI access object:

AI : not null access Integer := I'Access;

If we hadn't initialized AI explicitly with I'Access, it would have been set to null, which
would fail the not null constraint of the anonymous access type. Similarly, we also have
to initialize the Arr array and return a valid access object for the Init_Access_Integer
function.

15.2.2 Drawbacks of Anonymous Access-To-Object Types

Anonymous access-to-object types have important drawbacks. For example, some features
that are available for named access types aren't available for the anonymous access types.
Also, most of the drawbacks are related to how anonymous access-to-object types can
potentially make the allocation and deallocation quite complicated or even error-prone.
For starters, some pool-related features aren't available for anonymous access-to-object
types. For example, we cannot specify which pool is going to be used in the allocation of
an anonymous access-to-object. In fact, the memory pool selection is compiler-dependent,
so we cannot rely on an object being allocated from a specific pool when using new with an
anonymous access-to-object type. (In contrast, as we know, each named access type has
an associated pool, so objects allocated via new will be allocated from that pool.) Also, we
cannot identify which pool was selected for the allocation of a specific object, so we don't
have any information to use for the deallocation of that object.
Because the pool selection is hidden from us, this makes the memory deallocation more
complicated. For example, we cannot instantiate the Ada.Unchecked_Deallocation pro-
cedure for anonymous access types. Also, some of the methods we could use to circumvent
this limitation are error-prone, as we discuss in this section.
Also, storage-related features aren't available: specifying the storage size — especially,
specifying that the access type has a storage size of zero — isn't possible.

Missing features

Let's see a code example that shows some of the features that aren't available for anony-
mous access-to-object types:

Listing 10: missing_features.ads
1 with Ada.Unchecked_Deallocation;
2

3 package Missing_Features is
4

(continues on next page)

608 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5 -- We cannot specify which pool will be used
6 -- in the anonymous access-to-object
7 -- allocation; the pool is selected by the
8 -- compiler:
9 IA : access Integer := new Integer;
10

11 --
12 -- All the features below aren't available
13 -- for an anonymous access-to-object:
14 --
15

16 -- Having a specific storage pool associated
17 -- with the access type:
18 type String_Access is
19 access String;
20 -- Automatically creates
21 -- String_Access'Storage_Pool
22

23 type Integer_Access is
24 access Integer
25 with Storage_Pool =>
26 String_Access'Storage_Pool;
27 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
28 -- Using the pool from another
29 -- access type.
30

31 -- Specifying a deallocation function for the
32 -- access type:
33 procedure Free is
34 new Ada.Unchecked_Deallocation
35 (Object => Integer,
36 Name => Integer_Access);
37

38 -- Specifying a limited storage size for
39 -- the access type:
40 type Integer_Access_Store_128 is
41 access Integer
42 with Storage_Size => 128;
43

44 -- Limiting the storage size for the
45 -- access type to zero:
46 type Integer_Access_Store_0 is
47 access Integer
48 with Storage_Size => 0;
49

50 end Missing_Features;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Object_Types.Missing_Anonymous_Access_To_Object_Features

MD5: 87a5c1413a720da84fab414cf63236ec

In the Missing_Features package, we see some of the features that we cannot use for
the anonymous access Integer type, but that are available for equivalent named access
types:
• There's no specific memory pool associated with the access object IA. In contrast,
named types — such as String_Access and Integer_Access — have an associated
pool, and we can use the Storage_Pool aspect and the Storage_Pool attribute to
customize them.

15.2. Anonymous Access-To-Object Types 609

Advanced Journey With Ada: A Flight In Progress

• We cannot instantiate the Ada.Unchecked_Deallocation procedure for the access
Integer type. However, we can instantiate it for named access types such as the
Integer_Access type.

• We cannot use the Storage_Size attribute for the access Integer type, but we're
allowed to use it with named access types, which we do in the declaration of the
Integer_Access_Store_128 and Integer_Access_Store_0 types.

Dangerous memory deallocation

We might think that we could make up for the absence of the Ada.
Unchecked_Deallocation procedure for anonymous access-to-object types by converting
those access objects (of anonymous access types) to a named type that has the same
designated subtype. For example, if we have an access object IA of an anonymous access
Integer type, we can convert it to the named Integer_Access type, provided this named
access type is compatible with the anonymous access type, e.g.:

type Integer_Access is access all Integer

Let's see a complete code example:

Listing 11: show_dangerous_deallocation.adb
1 with Ada.Unchecked_Deallocation;
2

3 procedure Show_Dangerous_Deallocation is
4 type Integer_Access is
5 access all Integer;
6

7 procedure Free is
8 new Ada.Unchecked_Deallocation
9 (Object => Integer,
10 Name => Integer_Access);
11

12 IA : access Integer;
13 begin
14 IA := new Integer;
15 IA.all := 30;
16

17 -- Potentially erroneous deallocation via type
18 -- conversion:
19 Free (Integer_Access (IA));
20

21 end Show_Dangerous_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Object_Types.Deallocation_Anonymous_Access_To_Object_Erronoeus

MD5: 91e024a4338e2e4f8d5b308d95499c1c

This example declares the IA access object of the anonymous access Integer type. After
allocating an object for IA via new, we try to deallocate it by first converting it to the Inte-
ger_Access type, so that we can call the Free procedure to actually deallocate the object.
Although this code compiles, it'll only work if both access Integer and Integer_Access
types are using the same memory pool. Since we cannot really determine this, the re-
sult is potentially erroneous: it'll work if the compiler selected the same pool, but it'll fail
otherwise.

Important

610 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Because allocating memory for anonymous access types is potentially dangerous, we can
use the No_Anonymous_Allocators restriction — which is available since Ada 2012 — to
prevent this kind of memory allocation being used in the code. For example:

Listing 12: show_dangerous_allocation.adb
1 pragma Restrictions (No_Anonymous_Allocators);
2

3 procedure Show_Dangerous_Allocation is
4 IA : access Integer;
5 begin
6 IA := new Integer;
7 IA.all := 30;
8 end Show_Dangerous_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Object_Types.No_Anonymous_Allocators

MD5: 0976821ce632f9635e33fd4f79c81ecd

Build output

show_dangerous_allocation.adb:6:10: error: violation of restriction "No_Anonymous_
↪Allocators" at line 1

gprbuild: *** compilation phase failed

Possible solution using named access types

A better solution to avoid issues when allocating and deallocating memory for anonymous
access-to-object types is to allocate the object using a known pool. As mentioned before,
the memory pool associated with a named access type is well-defined, so we can use this
kind of types formemory allocation. In fact, we can use a namedmemory type to allocate an
object via new, and then associate this allocated object with the access object of anonymous
access type.
Let's see a code example:

Listing 13: show_successful_deallocation.adb
1 with Ada.Unchecked_Deallocation;
2

3 procedure Show_Successful_Deallocation is
4

5 type Integer_Access is
6 access Integer;
7

8 procedure Free is
9 new Ada.Unchecked_Deallocation
10 (Object => Integer,
11 Name => Integer_Access);
12

13 IA : access Integer;
14 Typed_IA : Integer_Access;
15

16 begin
17 Typed_IA := new Integer;
18 IA := Typed_IA;
19 IA.all := 30;

(continues on next page)

15.2. Anonymous Access-To-Object Types 611

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
20

21 -- Deallocation of the access object that has
22 -- an associated type:
23 Free (Typed_IA);
24

25 end Show_Successful_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Object_Types.Deallocation_Anonymous_Access_To_Object_1

MD5: eff8b54adfcc8cce10920dc3620ff1b9

In this example, all operations related to memory allocation are exclusively making use of
the Integer_Access type, which is a named access type. In fact, new Integer allocates
the object from the pool associated with the Integer_Access type, and the call to Free
deallocates this object back into that pool. Therefore, associating this object with the IA
access object — in the IA := Typed_IA assignment — doesn't creates problems afterwards
in the object's deallocation. (When calling Free, we only refer to the object of named access
type, so the object is deallocated from a known pool.)
Of course, a potential issue here is that IA becomes a dangling reference (page 541) after
the call to Free. Therefore, we can improve this solution by completely hiding the memory
allocation and deallocation for the anonymous access types in subprograms — e.g. as part
of a package. By doing so, we don't expose the named access type, thereby reducing the
possibility of dangling references.
In fact, we can generalize this approach with the following (generic) package:

Listing 14: hidden_anonymous_allocation.ads
1 generic
2 type T is private;
3 package Hidden_Anonymous_Allocation is
4

5 function New_T
6 return not null access T;
7

8 procedure Free (Obj : access T);
9

10 end Hidden_Anonymous_Allocation;

Listing 15: hidden_anonymous_allocation.adb
1 with Ada.Unchecked_Deallocation;
2

3 package body Hidden_Anonymous_Allocation is
4

5 type T_Access is access all T;
6

7 procedure T_Access_Free is
8 new Ada.Unchecked_Deallocation
9 (Object => T,
10 Name => T_Access);
11

12 function New_T
13 return not null access T is
14 begin
15 return T_Access'(new T);
16 -- Using allocation of the T_Access type:

(continues on next page)

612 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
17 -- object is allocated from T_Access's pool
18 end New_T;
19

20 procedure Free (Obj : access T) is
21 Tmp : T_Access := T_Access (Obj);
22 begin
23 T_Access_Free (Tmp);
24 -- Using deallocation procedure of the
25 -- T_Access type
26 end Free;
27

28 end Hidden_Anonymous_Allocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Object_Types.Hidden_Alloc_Dealloc_Anonymous_Access_To_Object

MD5: bd3831829f34f06a1d3c25a975c850a3

In the generic Hidden_Anonymous_Allocation package, New_T allocates a new object in-
ternally and returns an anonymous access to this object. The Free procedure deallocates
this object.
In the body of the Hidden_Anonymous_Allocation package, we use the named access type
T_Access to handle the actual memory allocation and deallocation. As expected, because
those operations happen on the pool associated with the T_Access type, we don't have to
worry about potential deallocation issues.
Finally, we can instantiate this package for the type we want to have anonymous access
types for, say a type named Rec. Then, when using the Rec type in the main subprogram,
we can simply call the corresponding subprograms for memory allocation and deallocation.
For example:

Listing 16: info.ads
1 with Hidden_Anonymous_Allocation;
2

3 package Info is
4

5 type Rec is private;
6

7 function New_Rec return not null access Rec;
8

9 procedure Free (Obj : access Rec);
10

11 private
12

13 type Rec is record
14 I : Integer;
15 end record;
16

17 package Rec_Allocation is new
18 Hidden_Anonymous_Allocation (T => Rec);
19

20 function New_Rec return not null access Rec
21 renames Rec_Allocation.New_T;
22

23 procedure Free (Obj : access Rec)
24 renames Rec_Allocation.Free;
25

26 end Info;

15.2. Anonymous Access-To-Object Types 613

Advanced Journey With Ada: A Flight In Progress

Listing 17: show_info_allocation_deallocation.adb
1 with Info; use Info;
2

3 procedure Show_Info_Allocation_Deallocation is
4 RA : constant not null access Rec := New_Rec;
5 begin
6 Free (RA);
7 end Show_Info_Allocation_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Object_Types.Hidden_Alloc_Dealloc_Anonymous_Access_To_Object

MD5: d71e8ed70e280c6d5d9fc2d49c1eb6c3

In this example, we instantiate the Hidden_Anonymous_Allocation package in the
Info package, which also defines the Rec type. We associate the New_T and Free
subprograms with the Rec type by using subprogram renaming. Finally, in the
Show_Info_Allocation_Deallocation procedure, we use these subprograms to allocate
and deallocate the type.

Possible solution using the stack

Another approach that we could consider to avoid memory deallocation issues for anony-
mous access-to-object types is by simply using the stack for the object creation. For exam-
ple:

Listing 18: show_automatic_deallocation.adb
1 procedure Show_Automatic_Deallocation is
2 I : aliased Integer;
3 -- ^ Allocating object on the stack
4

5 IA : access Integer;
6 begin
7 IA := I'Access;
8 -- Indirect allocation:
9 -- object creation on the stack.
10

11 IA.all := 30;
12

13 -- Automatic deallocation at the end of the
14 -- procedure because the integer variable is
15 -- on the stack.
16 end Show_Automatic_Deallocation;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Object_Types.Deallocation_Anonymous_Access_To_Object_2

MD5: 4381db8ba87717978a9629b1e6a5f1fc

In this case, we create the I object on the stack by simply declaring it. Then, we get access
to it and assign it to the IA access object.
With this approach, we're indirectly allocating an object for an anonymous access type by
creating it on the stack. Also, because we know that the I is automatically deallocated
when it gets out of scope, we don't have to worry about explicitly deallocating the object
referred by IA.

614 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

When to use anonymous access-to-objects types

In summary, anonymous access-to-object types have many drawbacks that often outweigh
their benefits (page 602). In fact, allocation for those types can quickly become very compli-
cated. Therefore, in general, they're not a good alternative to named access types. Indeed,
the difficulties that we've just seen might make them a much worse option than just using
named access types instead.
We might consider using anonymous access-to-objects types only in cases when we reach
a point in our implementation work where using named access types becomes impossible
— or when using them becomes even more complicated than equivalent solutions using
anonymous access types. This scenario, however, is usually the exception rather than the
rule. Thus, as a general guideline, we should always aim to use named access types.
That being said, an important exception to this advice is when we're interfacing to other
languages (page 628). In this case, as we'll discuss later, using anonymous access-to-
objects types can be significantly simpler (compared to named access types) without the
drawbacks that we've just discussed.

15.3 Access discriminants

Previously, we've discussed discriminants as access values (page 492). In that section, we
only used named access types. Now, in this section, we see how to use anonymous access
types as discriminants. This feature is also known as access discriminants and it provides
some flexibility that can be interesting in terms of software design, as we'll discuss later.
Let's start with an example:

Listing 19: custom_recs.ads
1 package Custom_Recs is
2

3 -- Declaring a discriminant with an anonymous
4 -- access type:
5 type Rec (IA : access Integer) is record
6 I : Integer := IA.all;
7 end record;
8

9 procedure Show (R : Rec);
10

11 end Custom_Recs;

Listing 20: custom_recs.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Custom_Recs is
4

5 procedure Show (R : Rec) is
6 begin
7 Put_Line ("R.IA = "
8 & Integer'Image (R.IA.all));
9 Put_Line ("R.I = "
10 & Integer'Image (R.I));
11 end Show;
12

13 end Custom_Recs;

15.3. Access discriminants 615

Advanced Journey With Ada: A Flight In Progress

Listing 21: show_access_discriminants.adb
1 with Custom_Recs; use Custom_Recs;
2

3 procedure Show_Access_Discriminants is
4 I : aliased Integer := 10;
5 R : Rec (I'Access);
6 begin
7 Show (R);
8

9 I := 20;
10 R.I := 30;
11 Show (R);
12 end Show_Access_Discriminants;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_
↪Discriminants.Custom_Recs

MD5: f8e127fda4f7ea0f1593165d6a966df6

Runtime output

R.IA = 10
R.I = 10
R.IA = 20
R.I = 30

In this example, we use an anonymous access type for the discriminant in the declaration of
the Rec type of the Custom_Recs package. In the Show_Access_Discriminants procedure,
we declare R and provide access to the local I integer.
Similarly, we can use unconstrained designated subtypes:

Listing 22: persons.ads
1 package Persons is
2

3 -- Declaring a discriminant with an anonymous
4 -- access type whose designated subtype is
5 -- unconstrained:
6 type Person (Name : access String) is record
7 Age : Integer;
8 end record;
9

10 procedure Show (P : Person);
11

12 end Persons;

Listing 23: persons.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Persons is
4

5 procedure Show (P : Person) is
6 begin
7 Put_Line ("Name = "
8 & P.Name.all);
9 Put_Line ("Age = "
10 & Integer'Image (P.Age));

(continues on next page)

616 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
11 end Show;
12

13 end Persons;

Listing 24: show_person.adb
1 with Persons; use Persons;
2

3 procedure Show_Person is
4 S : aliased String := "John";
5 P : Person (S'Access);
6 begin
7 P.Age := 30;
8 Show (P);
9 end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_
↪Discriminants.Persons

MD5: f0149d572e0ec192476836bfdf00dd9e

Runtime output

Name = John
Age = 30

In this example, for the discriminant of the Person type, we use an anonymous access type
whose designated subtype is unconstrained. In the Show_Person procedure, we declare
the P object and provide access to the S string.

In the Ada Reference Manual
• 3.7 Discriminants224

• 3.10.2 Operations of Access Types225

15.3.1 Default Value of Access Discriminants

In contrast to named access types, we cannot use a default value for the access discriminant
of a non-limited type:

Listing 25: custom_recs.ads
1 package Custom_Recs is
2

3 -- Declaring a discriminant with an anonymous
4 -- access type and a default value:
5 type Rec (IA : access Integer :=
6 new Integer'(0)) is
7 record
8 I : Integer := IA.all;
9 end record;
10

11 procedure Show (R : Rec);
(continues on next page)

224 http://www.ada-auth.org/standards/22rm/html/RM-3-7.html
225 http://www.ada-auth.org/standards/22rm/html/RM-3-10-2.html

15.3. Access discriminants 617

http://www.ada-auth.org/standards/22rm/html/RM-3-7.html
http://www.ada-auth.org/standards/22rm/html/RM-3-10-2.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
12

13 end Custom_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_
↪Discriminants.Custom_Recs

MD5: 9269cea113f29443a6d7bb719d0616f1

Build output

custom_recs.ads:6:21: warning: coextension will not be deallocated when its␣
↪associated owner is deallocated [enabled by default]

custom_recs.ads:6:21: error: (Ada 2005) access discriminants of nonlimited types␣
↪cannot have defaults

gprbuild: *** compilation phase failed

However, if we change the type declaration to be a limited type, having a default value for
the access discriminant is OK:

Listing 26: custom_recs.ads
1 package Custom_Recs is
2

3 -- Declaring a discriminant with an anonymous
4 -- access type and a default value:
5 type Rec (IA : access Integer :=
6 new Integer'(0)) is limited
7 record
8 I : Integer := IA.all;
9 end record;
10

11 procedure Show (R : Rec);
12

13 end Custom_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_
↪Discriminants.Custom_Recs

MD5: 9e8683c7a27e9097fd2003ad91bac269

Build output

custom_recs.ads:6:21: warning: coextension will not be deallocated when its␣
↪associated owner is deallocated [enabled by default]

Note that, if we don't provide a value for the access discriminant when declaring an object
R, the default value is allocated (via new) during R's creation.

Listing 27: show_access_discriminants.adb
1 with Custom_Recs; use Custom_Recs;
2

3 procedure Show_Access_Discriminants is
4 R : Rec;
5 -- ^^^
6 -- This triggers "new Integer'(0)", so an
7 -- integer object is allocated and stored in
8 -- the R.IA discriminant.
9 begin

(continues on next page)

618 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
10 Show (R);
11

12 -- R gets out of scope here, and the object
13 -- allocated via new hasn't been deallocated.
14 end Show_Access_Discriminants;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_
↪Discriminants.Custom_Recs

MD5: f5d9dee26044ccab2193ab419638de79

Build output

show_access_discriminants.adb:4:04: warning: coextension will not be deallocated␣
↪when its associated owner is deallocated [enabled by default]

custom_recs.ads:6:21: warning: coextension will not be deallocated when its␣
↪associated owner is deallocated [enabled by default]

Runtime output

R.IA = 0
R.I = 0

In this case, the allocated object won't be deallocated when R gets out of scope!

15.3.2 Benefits of Access Discriminants

Access discriminants have the same benefits that we've already seen earlier while dis-
cussing discriminants as access values (page 492). An additional benefit is its extended
flexibility: access discriminants are compatible with any access T'Access, as long as T is
of the designated subtype.
Consider the following example using the named access type Access_String:

Listing 28: persons.ads
1 package Persons is
2

3 type Access_String is access all String;
4

5 -- Declaring a discriminant with a named
6 -- access type:
7 type Person (Name : Access_String) is record
8 Age : Integer;
9 end record;
10

11 procedure Show (P : Person);
12

13 end Persons;

Listing 29: persons.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Persons is
4

5 procedure Show (P : Person) is
6 begin

(continues on next page)

15.3. Access discriminants 619

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 Put_Line ("Name = "
8 & P.Name.all);
9 Put_Line ("Age = "
10 & Integer'Image (P.Age));
11 end Show;
12

13 end Persons;

Listing 30: show_person.adb
1 with Persons; use Persons;
2

3 procedure Show_Person is
4 S : aliased String := "John";
5 P : Person (S'Access);
6 -- ^^^^^^^^ ERROR: cannot use local
7 -- object
8 --
9 -- We can, however, allocate the string via
10 -- new:
11 --
12 -- S : Access_String := new String'("John");
13 -- P : Person (S);
14 begin
15 P.Age := 30;
16 Show (P);
17 end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_
↪Discriminants.Persons

MD5: e918db3790c7ffeeb7c0f54ced9f48b9

Build output

show_person.adb:5:16: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

This code doesn't compile because we cannot have a non-local pointer (Access_String)
pointing to the local object S. The only way to make this work is by allocating the string via
new (i.e.: S : Access_String := new String).
However, if we use an access discriminant in the declaration of Person, the code compiles
fine:

Listing 31: persons.ads
1 package Persons is
2

3 -- Declaring a discriminant with an anonymous
4 -- access type:
5 type Person (Name : access String) is record
6 Age : Integer;
7 end record;
8

9 procedure Show (P : Person);
10

11 end Persons;

620 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 32: show_person.adb
1 with Persons; use Persons;
2

3 procedure Show_Person is
4 S : aliased String := "John";
5 P : Person (S'Access);
6 -- ^^^^^^^^ OK
7

8 -- Allocating the string via new and using it
9 -- in P's declaration is OK as well, but we
10 -- should manually deallocate it before S
11 -- gets out of scope:
12 --
13 -- S : access String := new String'("John");
14 -- P : Person (S);
15 begin
16 P.Age := 30;
17 Show (P);
18 end Show_Person;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_
↪Discriminants.Persons

MD5: 6516fb4e0cbbac9cfe07a56e48ea9ff3

Runtime output

Name = John
Age = 30

In this case, getting access to the local object S and using it for P's discriminant is perfectly
fine.

15.3.3 Preventing dangling pointers

Note that the usual rules that prevent dangling pointers still apply here. This ensures that
we can safely use access discriminants. For example:

Listing 33: show_person.adb
1 with Persons; use Persons;
2

3 procedure Show_Person is
4

5 function Local_Init return Person is
6 S : aliased String := "John";
7 begin
8 return (Name => S'Access, Age => 30);
9 -- ^^^^^^^^^^^^^^^^
10 -- ERROR: dangling reference!
11 end Local_Init;
12

13 P : Person := Local_Init;
14 begin
15 Show (P);
16 end Show_Person;

Code block metadata

15.3. Access discriminants 621

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_
↪Discriminants.Persons

MD5: 9c8d2aebf60b8bb19e455cb6bc5730eb

Build output

show_person.adb:8:07: error: access discriminant in return object would be a␣
↪dangling reference

gprbuild: *** compilation phase failed

In this example, compilation fails in the Local_Init function when trying to return an object
of Person type because S'Access would be a dangling reference.

15.4 Self-reference

Previously, we've seen that we can declare self-references (page 509) using named access
types. We can do the same with anonymous access types. Let's revisit the code example
that implements linked lists:

Listing 34: linked_lists.ads
1 generic
2 type T is private;
3 package Linked_Lists is
4

5 type List is limited private;
6

7 procedure Append_Front
8 (L : in out List;
9 E : T);
10

11 procedure Append_Rear
12 (L : in out List;
13 E : T);
14

15 procedure Show (L : List);
16

17 private
18

19 type Component is record
20 Next : access Component;
21 -- ^^^^^^^^^^^^^^^^
22 -- Self-reference
23 --
24 -- (Note that we haven't finished the
25 -- declaration of the "Component" type
26 -- yet, but we're already referring to
27 -- it.)
28

29 Value : T;
30 end record;
31

32 type List is access all Component;
33

34 end Linked_Lists;

622 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 35: linked_lists.adb
1 pragma Ada_2022;
2

3 with Ada.Text_IO; use Ada.Text_IO;
4

5 package body Linked_Lists is
6

7 procedure Append_Front
8 (L : in out List;
9 E : T)
10 is
11 New_First : constant List := new
12 Component'(Value => E,
13 Next => L);
14 begin
15 L := New_First;
16 end Append_Front;
17

18 procedure Append_Rear
19 (L : in out List;
20 E : T)
21 is
22 New_Last : constant List := new
23 Component'(Value => E,
24 Next => null);
25 begin
26 if L = null then
27 L := New_Last;
28 else
29 declare
30 Last : List := L;
31 begin
32 while Last.Next /= null loop
33 Last := List (Last.Next);
34 -- ^^^^
35 -- type conversion:
36 -- "access Component" to
37 -- "List"
38 end loop;
39 Last.Next := New_Last;
40 end;
41 end if;
42 end Append_Rear;
43

44 procedure Show (L : List) is
45 Curr : List := L;
46 begin
47 if L = null then
48 Put_Line ("[]");
49 else
50 Put ("[");
51 loop
52 Put (Curr.Value'Image);
53 Put (" ");
54 exit when Curr.Next = null;
55 Curr := Curr.Next;
56 end loop;
57 Put_Line ("]");
58 end if;
59 end Show;

(continues on next page)

15.4. Self-reference 623

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
60

61 end Linked_Lists;

Listing 36: test_linked_list.adb
1 with Linked_Lists;
2

3 procedure Test_Linked_List is
4 package Integer_Lists is new
5 Linked_Lists (T => Integer);
6 use Integer_Lists;
7

8 L : List;
9 begin
10 Append_Front (L, 3);
11 Append_Rear (L, 4);
12 Append_Rear (L, 5);
13 Append_Front (L, 2);
14 Append_Front (L, 1);
15 Append_Rear (L, 6);
16 Append_Rear (L, 7);
17

18 Show (L);
19 end Test_Linked_List;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Self_
↪Reference.Linked_List_Example

MD5: 9e42bf9fa630a0af8dcf7c85a1565edb

Runtime output

[1 2 3 4 5 6 7]

Here, in the declaration of the Component type (in the private part of the generic
Linked_Lists package), we declare Next as an anonymous access type that refers to the
Component type. (Note that at this point, we haven't finished the declaration of the Compo-
nent type yet, but we're already using it as the designated subtype of an anonymous access
type.) Then, we declare List as a general access type (with Component as the designated
subtype).
It's worth mentioning that the List type and the anonymous access Component type aren't
the same type, although they share the same designated subtype. Therefore, in the imple-
mentation of the Append_Rear procedure, we have to use type conversion to convert from
the anonymous access Component type to the (named) List type.

15.5 Mutually dependent types using anonymous ac-
cess types

In the section on mutually dependent types using access types (page 512), we've seen a
code example that was using named access types. We could now rewrite it using anony-
mous access types:

624 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 37: mutually_dependent.ads
1 package Mutually_Dependent is
2

3 type T2;
4

5 type T1 is record
6 B : access T2;
7 end record;
8

9 type T2 is record
10 A : access T1;
11 end record;
12

13 end Mutually_Dependent;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Mutually_
↪Dependent_Anonymous_Access_Types.Example

MD5: 09f869d99b9c16882554588bb806a113

In this example, T1 and T2 are mutually dependent types. We're using anonymous access
types in the declaration of the B and A components.

15.6 Access parameters

In the previous chapter, we talked about parameters as access values (page 498). As
you might have expected, we can also use anonymous access types as parameters of a
subprogram. However, they're limited to be in parameters of a subprogram or return type
of a function (also called the access result type):

Listing 38: names.ads
1 package Names is
2

3 function Init (S1, S2 : String)
4 return access String;
5 -- ^^^^^^^^^^^^^^^^^^^^
6 -- Anonymous access type as the access
7 -- result type.
8

9 procedure Show (N : access constant String);
10 -- ^^^^^^^^^^^^^^^^^^^^^^
11 -- Anonymous access type as a parameter type.
12

13 end Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.Names

MD5: 622a76c4b133ed2715f18c175694cbe2

In this example, we have a string as the access result type of the Init function, and another
string as the access parameter of the Show procedure.
This is the complete code example:

15.6. Access parameters 625

Advanced Journey With Ada: A Flight In Progress

Listing 39: names.ads
1 package Names is
2

3 function Init (S1, S2 : String)
4 return access String;
5

6 procedure Show (N : access constant String);
7

8 private
9

10 function Init (S1, S2 : String)
11 return access String is
12 (new String'(S1 & "-" & S2));
13

14 end Names;

Listing 40: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Names is
4

5 procedure Show (N : access constant String) is
6 begin
7 Put_Line ("Name: " & N.all);
8 end Show;
9

10 end Names;

Listing 41: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 N : access String := Init ("Lily", "Ann");
5 begin
6 Show (N);
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.Names

MD5: 9fe629f29de2898f2b82d9146b22fd1a

Runtime output

Name: Lily-Ann

Note that we're not using the in parameter mode in the Show procedure above. Usually,
this parameter mode can be omitted, as it is the default parameter mode — procedure P
(I : Integer) is the same as procedure P (I : in Integer). However, in the case of
the Show procedure, the in parameter mode isn't just optionally absent. In fact, for access
parameters, the parameter mode is always implied as in, so writing it explicitly is actually
forbidden. In other words, we can only write N : access String or N : access constant
String, but we cannot write N : in access String or N : in access constant String.

For further reading...
When we discussed parameters as access values (page 498) in the previous chapter, we

626 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

saw how we can simply use different parameter modes to write a program instead of using
access types. Basically, to implement the same functionality, we just replaced the access
types by selecting the correct parameter modes instead and used simpler data types.
Let's do the same exercise again, this time by adapting the previous code example with
anonymous access types:

Listing 42: names.ads
1 package Names is
2

3 function Init (S1, S2 : String)
4 return String;
5

6 procedure Show (N : String);
7

8 private
9

10 function Init (S1, S2 : String)
11 return String is
12 (S1 & "-" & S2);
13

14 end Names;

Listing 43: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Names is
4

5 procedure Show (N : String) is
6 begin
7 Put_Line ("Name: " & N);
8 end Show;
9

10 end Names;

Listing 44: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 N : String := Init ("Lily", "Ann");
5 begin
6 Show (N);
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.Names_String

MD5: 643f193999ef8de9bcefb11d9bdd21d7

Runtime output

Name: Lily-Ann

Although we're using simple strings instead of access types in this version of the code
example, we're still getting a similar behavior. However, there is a small, yet important
difference in the way the string returned by Init is being allocated: while the previous
implementation (which was using an access result type) was allocating the string on the

15.6. Access parameters 627

Advanced Journey With Ada: A Flight In Progress

heap, we're now allocating the string on the stack.

Later on, we talk about the accessibility rules in the case of access parameters (page 647).
In general, we should avoid access parameters whenever possible and simply use objects
and parameter modes directly, as it makes the design simpler and less error-prone. One
exception is when we're interfacing to other languages, especially C: this is our next topic
(page 628). Another time when access parameters are vital is for inherited primitive oper-
ations for tagged types. We discuss this later on (page 631).

In the Ada Reference Manual
• 3.10 Access Types226

15.6.1 Interfacing To Other Languages

We can use access parameters to interface to other languages. This can be particularly
useful when interfacing to C code that makes use of pointers. For example, let's assume
we want to call the add_one function below in our Ada implementation:

Listing 45: operations_c.h
1 void add_one(int *p_i);

Listing 46: operations_c.c
1 void add_one(int *p_i)
2 {
3 *p_i = *p_i + 1;
4 }

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.C_Interfacing

MD5: 3270f3b2415266a203a6f4c605c3831b

We could map the int * parameter of add_one to access Integer in the Ada specification:

procedure Add_One (IA : access Integer)
with Import, Convention => C;

This is a complete code example:

Listing 47: operations.ads
1 package Operations is
2

3 procedure Add_One (IA : access Integer)
4 with Import, Convention => C;
5

6 end Operations;

226 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

628 Chapter 15. Anonymous Access Types

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

Listing 48: show_operations.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Operations; use Operations;
4

5 procedure Show_Operations is
6 I : aliased Integer := 42;
7 begin
8 Put_Line (I'Image);
9 Add_One (I'Access);
10 Put_Line (I'Image);
11 end Show_Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.C_Interfacing

MD5: 0219acdbd2dad69962875199ffdd930e

Once again, we can replace access parameters with simpler types by using the appropriate
parameter mode. In this case, we could replace access Integer by aliased in out
Integer. This is the modified version of the code:

Listing 49: operations.ads
1 package Operations is
2

3 procedure Add_One
4 (IA : aliased in out Integer)
5 with Import, Convention => C;
6

7 end Operations;

Listing 50: show_operations.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Operations; use Operations;
4

5 procedure Show_Operations is
6 I : aliased Integer := 42;
7 begin
8 Put_Line (I'Image);
9 Add_One (I);
10 Put_Line (I'Image);
11 end Show_Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.C_Interfacing

MD5: 2c5a81b8d77f0fff8a73f7912be6b6fe

However, there are situations where aliased objects cannot be used. For example, suppose
we want to allocate memory inside a C function. In this case, the pointer to that memory
block must be mapped to an access type in Ada.
Let's extend the previous C code example and introduce the alloc_integer and deal-
loc_integer functions, which allocate and deallocate an integer value:

15.6. Access parameters 629

Advanced Journey With Ada: A Flight In Progress

Listing 51: operations_c.h
1 int * alloc_integer();
2

3 void dealloc_integer(int *p_i);
4

5 void add_one(int *p_i);

Listing 52: operations_c.c
1 #include <stdlib.h>
2

3 int * alloc_integer()
4 {
5 return malloc(sizeof(int));
6 }
7

8 void dealloc_integer(int *p_i)
9 {
10 free (p_i);
11 }
12

13 void add_one(int *p_i)
14 {
15 *p_i = *p_i + 1;
16 }

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.C_Interfacing

MD5: ec6dea12d0a948489cce21b0cc0a1ad2

In this case, we really have to use access types to interface to these C functions. In fact,
we need an access result type to interface to the alloc_integer() function, and an ac-
cess parameter in the case of the dealloc_integer() function. This is the corresponding
specification in Ada:

Listing 53: operations.ads
1 package Operations is
2

3 function Alloc_Integer return access Integer
4 with Import, Convention => C;
5

6 procedure Dealloc_Integer (IA : access Integer)
7 with Import, Convention => C;
8

9 procedure Add_One
10 (IA : aliased in out Integer)
11 with Import, Convention => C;
12

13 end Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.C_Interfacing

MD5: bcbc8a87037b64fc6469e67b928e6172

Note that we're still using an aliased integer type for the Add_One procedure, while we're
using access types for the other two subprograms.

630 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Finally, as expected, we can use this specification in a test application:

Listing 54: show_operations.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Operations; use Operations;
4

5 procedure Show_Operations is
6 I : access Integer := Alloc_Integer;
7 begin
8 I.all := 42;
9 Put_Line (I.all'Image);
10

11 Add_One (I.all);
12 Put_Line (I.all'Image);
13

14 Dealloc_Integer (I);
15 end Show_Operations;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.C_Interfacing

MD5: b2b96a166926528bc44059b56e31fb55

In this application, we get a C pointer from the alloc_integer function and encapsulate it
in an Ada access type, which we then assign to I. In the last line of the procedure, we call
Dealloc_Integer and pass I to it, which deallocates the memory block indicated by the C
pointer.

In the Ada Reference Manual
• 3.10 Access Types227

15.6.2 Inherited Primitive Operations For Tagged Types

In order to declare inherited primitive operations for tagged types that use access types,
we need to use access parameters. The reason is that, to be a primitive operation for some
tagged type — and hence inheritable — the subprogram must reference the tagged type
name directly in the parameter profile. This means that a named access type won't suffice,
because only the access type name would appear in the profile. For example:

Listing 55: inherited_primitives.ads
1 package Inherited_Primitives is
2

3 type T is tagged private;
4

5 type T_Access is access all T;
6

7 procedure Proc (N : T_Access);
8 -- Proc is not a primitive of type T.
9

10 type T_Child is new T with private;
11

12 type T_Child_Access is access all T_Child;
(continues on next page)

227 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

15.6. Access parameters 631

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
13

14 private
15

16 type T is tagged null record;
17

18 type T_Child is new T with null record;
19

20 end Inherited_Primitives;

Listing 56: inherited_primitives.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Inherited_Primitives is
4

5 procedure Proc (N : T_Access) is null;
6

7 end Inherited_Primitives;

Listing 57: show_inherited_primitives.adb
1 with Inherited_Primitives;
2 use Inherited_Primitives;
3

4 procedure Show_Inherited_Primitives is
5 Obj : T_Access := new T;
6 Obj_Child : T_Child_Access := new T_Child;
7 begin
8 Proc (Obj);
9 Proc (Obj_Child);
10 -- ^^^^^^^^^
11 -- ERROR: Proc is not inherited!
12 end Show_Inherited_Primitives;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.Inherited_Primitives

MD5: 8235b21caa9f1f105f533d74d891adfe

Build output

show_inherited_primitives.adb:9:10: error: expected type "T_Access" defined at␣
↪inherited_primitives.ads:5

show_inherited_primitives.adb:9:10: error: found type "T_Child_Access" defined at␣
↪inherited_primitives.ads:12

gprbuild: *** compilation phase failed

In this example, Proc is not a primitive of type T because it's referring to type T_Access, not
type T. This means that Proc isn't inherited when we derive the T_Child type. Therefore,
when we call Proc (Obj_Child), a compilation error occurs because the compiler expects
type T_Access — there's no Proc (N : T_Child_Access) that could be used here.
If we replace T_Access in the Proc procedure with an an access parameter (access T), the
subprogram becomes a primitive of T:

Listing 58: inherited_primitives.ads
1 package Inherited_Primitives is
2

(continues on next page)

632 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
3 type T is tagged private;
4

5 procedure Proc (N : access T);
6 -- Proc is a primitive of type T.
7

8 type T_Child is new T with private;
9

10 private
11

12 type T is tagged null record;
13

14 type T_Child is new T with null record;
15

16 end Inherited_Primitives;

Listing 59: inherited_primitives.adb
1 package body Inherited_Primitives is
2

3 procedure Proc (N : access T) is null;
4

5 end Inherited_Primitives;

Listing 60: show_inherited_primitives.adb
1 with Inherited_Primitives;
2 use Inherited_Primitives;
3

4 procedure Show_Inherited_Primitives is
5 Obj : access T := new T;
6 Obj_Child : access T_Child := new T_Child;
7 begin
8 Proc (Obj);
9 Proc (Obj_Child);
10 -- ^^^^^^^^^
11 -- OK: Proc is inherited!
12 end Show_Inherited_Primitives;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_Parameters.Inherited_Primitives

MD5: a7e9b8bc92e346758cc4ade43bb4b02d

Now, the child type T_Child (derived from the T) inherits the primitive operation Proc. This
inherited operation has an access parameter designating the child type:

type T_Child is new T with private;

procedure Proc (N : access T_Child);
-- Implicitly inherited primitive operation

In the Ada Reference Manual
• 3.9.2 Dispatching Operations of Tagged Types228

228 http://www.ada-auth.org/standards/22rm/html/RM-3-9-2.html

15.6. Access parameters 633

http://www.ada-auth.org/standards/22rm/html/RM-3-9-2.html

Advanced Journey With Ada: A Flight In Progress

15.7 User-Defined References

Implicit dereferencing (page 514) isn't limited to the contexts that Ada supports by
default: we can also add implicit dereferencing to our own types by using the Im-
plicit_Dereference aspect.
To do this, we have to declare:
• a reference type, where we use the Implicit_Dereference aspect to specify the ref-
erence discriminant, which is the record discriminant that will be dereferenced; and

• a reference object, which contains an access value that will be dereferenced.
Also, for the reference type, we have to:
• specify the reference discriminant as an access discriminant (page 615); and
• indicate the name of the reference discriminant when specifying the Im-
plicit_Dereference aspect.

Let's see a simple example:

Listing 61: show_user_defined_reference.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_User_Defined_Reference is
4

5 type Id_Number is record
6 Id : Positive;
7 end record;
8

9 --
10 -- Reference type:
11 --
12 type Id_Ref (Ref : access Id_Number) is
13 -- ^ reference discriminant
14 null record
15 with Implicit_Dereference => Ref;
16 -- ^^^
17 -- name of the reference
18 -- discriminant
19

20 --
21 -- Access value:
22 --
23 I : constant access Id_Number :=
24 new Id_Number'(Id => 42);
25

26 --
27 -- Reference object:
28 --
29 R : Id_Ref (I);
30 begin
31 Put_Line ("ID: "
32 & Positive'Image (R.Id));
33 -- ^ Equivalent to:
34 -- R.Ref.Id
35 -- or:
36 -- R.Ref.all.Id
37 end Show_User_Defined_Reference;

Code block metadata

634 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_
↪Defined_References.Simple_User_Defined_References

MD5: 33eaa7e8e75b4eb56d64dcc17e2932aa

Runtime output

ID: 42

Here, we declare a simple record type (Id_Number) and a corresponding reference type
(Id_Ref). Note that:
• the reference discriminant Ref has an access to the Id_Number type; and
• we indicate this reference discriminant in the Implicit_Dereference aspect.

Then, we declare an access value (the I constant) and use it for the Ref discriminant in the
declaration of the reference object R.
Finally, we implicitly dereference R and access the Id component by simply writing R.Id—
instead of the extended forms R.Ref.Id or R.Ref.all.Id.

Important
The extended form mentioned in the example that we just saw (R.Ref.all.Id) makes it
clear that two steps happen when evaluating R.Id:
• First, R.Ref is implied from R because of the Implicit_Dereference aspect.
• Then, R.Ref is implicitly dereferenced to R.Ref.all.

After these two steps, we can access the actual object. (In our case, we can access the Id
component.)

Note that we cannot use access types directly for the reference discriminant. For example,
if we made the following change in the previous code example, it wouldn't compile:

type Id_Number_Access is access Id_Number;

-- Reference type:
type Id_Ref (Ref : Id_Number_Access) is
-- ^ ERROR: it must be
-- an access
-- discriminant!
null record

with Implicit_Dereference => Ref;

However, we could use other forms — such as not null access — in the reference dis-
criminant:

-- Reference type:
type Id_Ref (Ref : not null access Id_Number) is
null record

with Implicit_Dereference => Ref;

In the Ada Reference Manual
• 4.1.5 User-Defined References229

229 http://www.ada-auth.org/standards/22rm/html/RM-4-1-5.html

15.7. User-Defined References 635

http://www.ada-auth.org/standards/22rm/html/RM-4-1-5.html

Advanced Journey With Ada: A Flight In Progress

15.7.1 Dereferencing of tagged types

Naturally, implicit dereferencing is also possible when calling primitives of a tagged type.
For example, let's change the declaration of the Id_Number type from the previous code
example and add a Show primitive.

Listing 62: info.ads
1 package Info is
2 type Id_Number (Id : Positive) is
3 tagged private;
4

5 procedure Show (R : Id_Number);
6 private
7 type Id_Number (Id : Positive) is
8 tagged null record;
9 end Info;

Listing 63: info.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Info is
4

5 procedure Show (R : Id_Number) is
6 begin
7 Put_Line ("ID: " & Positive'Image (R.Id));
8 end Show;
9

10 end Info;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_
↪Defined_References.Dereferencing_Tagged_Types

MD5: 4de65094963450dc3a7505dbf93c2551

Then, let's declare a reference type and a reference object in the test application:

Listing 64: show_user_defined_reference.adb
1 with Info; use Info;
2

3 procedure Show_User_Defined_Reference is
4

5 -- Reference type:
6 type Id_Ref (Ref : access Id_Number) is
7 null record
8 with Implicit_Dereference => Ref;
9

10 -- Access value:
11 I : constant access Id_Number :=
12 new Id_Number (42);
13

14 -- Reference object:
15 R : Id_Ref (I);
16 begin
17

18 R.Show;
19 -- Equivalent to:
20 -- R.Ref.all.Show;
21

(continues on next page)

636 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
22 end Show_User_Defined_Reference;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_
↪Defined_References.Dereferencing_Tagged_Types

MD5: 9c5dfc4f2b8e085efde9e61689243f70

Runtime output

ID: 42

Here, we can call the Show procedure by simply writing R.Show instead of R.Ref.all.Show.

15.7.2 Simple container

A typical application of user-defined references is to create cursors when iterating over a
container. As an example, let's implement the National_Date_Info package to store the
national day of a country:

Listing 65: national_date_info.ads
1 package National_Date_Info is
2

3 subtype Country_Code is String (1 .. 3);
4

5 type Time is record
6 Year : Integer;
7 Month : Positive range 1 .. 12;
8 Day : Positive range 1 .. 31;
9 end record;
10

11 type National_Date is tagged record
12 Country : Country_Code;
13 Date : Time;
14 end record;
15

16 type National_Date_Access is
17 access National_Date;
18

19 procedure Show (Nat_Date : National_Date);
20

21 end National_Date_Info;

Listing 66: national_date_info.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body National_Date_Info is
4

5 procedure Show (Nat_Date : National_Date) is
6 begin
7 Put_Line ("Country: "
8 & Nat_Date.Country);
9 Put_Line ("Year: "
10 & Integer'Image
11 (Nat_Date.Date.Year));
12 end Show;

(continues on next page)

15.7. User-Defined References 637

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
13

14 end National_Date_Info;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_
↪Defined_References.National_Dates

MD5: 90fd6740d701025e1d5f30c9751a528d

Here, National_Date is a record type that we use to store the national day information.
We can call the Show procedure to display this information.
Now, let's implement the National_Date_Containers with a container for national days:

Listing 67: national_date_containers.ads
1 with National_Date_Info; use National_Date_Info;
2

3 package National_Date_Containers is
4

5 -- Reference type:
6 type National_Date_Reference
7 (Ref : access National_Date) is
8 tagged limited null record
9 with Implicit_Dereference => Ref;
10

11 -- Container (as an array):
12 type National_Dates is
13 array (Positive range <>) of
14 National_Date_Access;
15

16 -- The Find function scans the container to
17 -- find a specific country, which is returned
18 -- as a reference object.
19 function Find (Nat_Dates : National_Dates;
20 Country : Country_Code)
21 return National_Date_Reference;
22

23 end National_Date_Containers;

Listing 68: national_date_containers.adb
1 package body National_Date_Containers is
2

3 function Find (Nat_Dates : National_Dates;
4 Country : Country_Code)
5 return National_Date_Reference
6 is
7 begin
8 for I in Nat_Dates'Range loop
9 if Nat_Dates (I).Country = Country then
10 return National_Date_Reference'(
11 Ref => Nat_Dates (I));
12 -- ^^^^^^^^^^^^^^^^^^^^^^^^^
13 -- Returning reference object with a
14 -- reference to the national day we
15 -- found.
16 end if;
17 end loop;
18

19 return
(continues on next page)

638 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
20 National_Date_Reference'(Ref => null);
21 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22 -- Returning reference object with a null
23 -- reference in case the country wasn't
24 -- found. This will trigger an exception
25 -- if we try to dereference it.
26 end Find;
27

28 end National_Date_Containers;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_
↪Defined_References.National_Dates

MD5: ec37ae93a7052c4bc731b2a7be0763ab

Package National_Date_Containers contains the National_Dates type, which is an array
type for declaring containers that we use to store the national day information. We can also
see the declaration of the National_Date_Reference type, which is the reference type
returned by the Find function when looking for a specific country in the container.

Important
We're declaring the container type (National_Dates) as an array type just to simplify the
code. In many cases, however, this approach isn't recommended! Instead, we should use
a private type in order to encapsulate — and better protect — the information stored in the
actual container.

Finally, let's see a test application that stores information for some countries into the
Nat_Dates container and displays the information for a specific country:

Listing 69: show_national_dates.adb
1 with National_Date_Info;
2 use National_Date_Info;
3

4 with National_Date_Containers;
5 use National_Date_Containers;
6

7 procedure Show_National_Dates is
8

9 Nat_Dates : constant National_Dates (1 .. 5) :=
10 (new National_Date'("USA",
11 Time'(1776, 7, 4)),
12 new National_Date'("FRA",
13 Time'(1789, 7, 14)),
14 new National_Date'("DEU",
15 Time'(1990, 10, 3)),
16 new National_Date'("SPA",
17 Time'(1492, 10, 12)),
18 new National_Date'("BRA",
19 Time'(1822, 9, 7)));
20

21 begin
22 Find (Nat_Dates, "FRA").Show;
23 -- ^ implicit dereference
24 end Show_National_Dates;

Code block metadata

15.7. User-Defined References 639

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_
↪Defined_References.National_Dates

MD5: 771ecb91e8f890d4bb9b08115ae833f4

Runtime output

Country: FRA
Year: 1789

Here, we call the Find function to retrieve a reference object, whose reference (access
value) has the national day information of France. We then implicitly dereference it to get
the tagged object (of National_Date type) and display its information by calling the Show
procedure.

Relevant topics
The National_Date_Containers package was implemented specifically as an accompany-
ing package for the National_Date_Info package. It is possible, however, to generalize
it, so that we can reuse the container for other record types. In fact, this is actually very
straightforward:

Listing 70: generic_containers.ads
1 generic
2 type T is private;
3 type T_Access is access T;
4 type T_Cmp is private;
5 with function Matches (E : T_Access;
6 Elem : T_Cmp)
7 return Boolean;
8 package Generic_Containers is
9

10 type Ref_Type (Ref : access T) is
11 tagged limited null record
12 with Implicit_Dereference => Ref;
13

14 type Container is
15 array (Positive range <>) of
16 T_Access;
17

18 function Find (Cont : Container;
19 Elem : T_Cmp)
20 return Ref_Type;
21

22 end Generic_Containers;

Listing 71: generic_containers.adb
1 package body Generic_Containers is
2

3 function Find (Cont : Container;
4 Elem : T_Cmp)
5 return Ref_Type is
6 begin
7 for I in Cont'Range loop
8 if Matches (Cont (I), Elem) then
9 return Ref_Type'(Ref => Cont (I));
10 end if;
11 end loop;
12

13 return Ref_Type'(Ref => null);
(continues on next page)

640 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
14 end Find;
15

16 end Generic_Containers;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_
↪Defined_References.National_Dates

MD5: 94c23a48131a47439b5b41e985c3d6c1

When comparing the Generic_Containers package to the National_Date_Containers
package, we see that the main difference is the addition of the Matches function, which
indicates whether the current element we're evaluating in the for-loop of the Find function
is the one we're looking for.
In the main application, we can implement the Matches function and declare the Na-
tional_Date_Containers package as an instance of the Generic_Containers package:

Listing 72: show_national_dates.adb
1 with Generic_Containers;
2 with National_Date_Info; use National_Date_Info;
3

4 procedure Show_National_Dates is
5

6 function Matches_Country
7 (E : National_Date_Access;
8 Elem : Country_Code)
9 return Boolean is
10 (E.Country = Elem);
11

12 package National_Date_Containers is new
13 Generic_Containers
14 (T => National_Date,
15 T_Access => National_Date_Access,
16 T_Cmp => Country_Code,
17 Matches => Matches_Country);
18

19 use National_Date_Containers;
20

21 subtype National_Dates is Container;
22

23 Nat_Dates : constant
24 National_Dates (1 .. 5) :=
25 (new National_Date'("USA",
26 Time'(1776, 7, 4)),
27 new National_Date'("FRA",
28 Time'(1789, 7, 14)),
29 new National_Date'("DEU",
30 Time'(1990, 10, 3)),
31 new National_Date'("SPA",
32 Time'(1492, 10, 12)),
33 new National_Date'("BRA",
34 Time'(1822, 9, 7)));
35

36 begin
37 Find (Nat_Dates, "FRA").Show;
38 end Show_National_Dates;

Code block metadata

15.7. User-Defined References 641

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_
↪Defined_References.National_Dates

MD5: f4dac1fed69b9bccce5dccbf17844adc

Runtime output

Country: FRA
Year: 1789

Here, we instantiate the Generic_Containers package with the Matches_Country func-
tion, which is an expression function that compares the country component of the current
National_Date reference with the name of the country we desire to learn about.
This generalized approach is actually used for the standard containers from the Ada.
Containers packages. For example, the Ada.Containers.Vectors is specified as follows:

with Ada.Iterator_Interfaces;

generic
type Index_Type is range <>;
type Element_Type is private;
with function "=" (Left, Right : Element_Type)

return Boolean is <>;
package Ada.Containers.Vectors
with Preelaborate, Remote_Types,

Nonblocking,
Global => in out synchronized is

-- OMITTED

type Reference_Type
(Element : not null access Element_Type) is

private
with Implicit_Dereference => Element,

Nonblocking,
Global => in out synchronized,
Default_Initial_Condition =>

(raise Program_Error);

-- OMITTED

function Reference
(Container : aliased in out Vector;
Index : in Index_Type)
return Reference_Type

with Pre => Index in
First_Index (Container) ..
Last_Index (Container)

or else raise
Constraint_Error,

Post =>
Tampering_With_Cursors_Prohibited
(Container),

Nonblocking,
Global => null,
Use_Formal => null;

-- OMITTED

function Reference
(Container : aliased in out Vector;
Position : in Cursor)

(continues on next page)

642 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
return Reference_Type

with Pre => (Position /= No_Element
or else raise

Constraint_Error)
and then

(Has_Element
(Container, Position)

or else raise
Program_Error),

Post =>
Tampering_With_Cursors_Prohibited
(Container),

Nonblocking,
Global => null,
Use_Formal => null;

-- OMITTED

end Ada.Containers.Vectors;

(Note that most parts of the Vectors package were omitted for clarity. Please refer to the
Ada Reference Manual for the complete package specification.)
Here, we see that the Implicit_Dereference aspect is used in the declaration of Refer-
ence_Type, which is the reference type returned by the Reference functions for an index
or a cursor.
Also, note that the Vectors package has a formal equality function (=) instead of the
Matches function we were using in our Generic_Containers package. The purpose of
the formal function, however, is basically the same.

In the Ada Reference Manual
• A.18.2 The Generic Package Containers.Vectors230

15.8 Anonymous Access Types and Accessibility Rules

In general, the accessibility rules (page 536) we've seen earlier also apply to anonymous
access types. However, there are some subtle differences, which we discuss in this section.
Let's adapt the code example from that section (page 536) to make use of anonymous
access types:

Listing 73: library_level.ads
1 package Library_Level is
2

3 L0_AO : access Integer;
4

5 L0_Var : aliased Integer;
6

7 end Library_Level;

230 http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html

15.8. Anonymous Access Types and Accessibility Rules 643

http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html

Advanced Journey With Ada: A Flight In Progress

Listing 74: show_library_level.adb
1 with Library_Level; use Library_Level;
2

3 procedure Show_Library_Level is
4 L1_Var : aliased Integer;
5

6 L1_AO : access Integer;
7

8 procedure Test is
9 L2_AO : access Integer;
10

11 L2_Var : aliased Integer;
12 begin
13 L1_AO := L2_Var'Access;
14 -- ^^^^^^
15 -- ILLEGAL: L2 object to
16 -- L1 access object
17

18 L2_AO := L2_Var'Access;
19 -- ^^^^^^
20 -- LEGAL: L2 object to
21 -- L2 access object
22 end Test;
23

24 begin
25 L0_AO := new Integer'(22);
26 -- ^^^^^^^^^^^
27 -- LEGAL: L0 object to
28 -- L0 access object
29

30 L0_AO := L1_Var'Access;
31 -- ^^^^^^
32 -- ILLEGAL: L1 object to
33 -- L0 access object
34

35 L1_AO := L0_Var'Access;
36 -- ^^^^^^
37 -- LEGAL: L0 object to
38 -- L1 access object
39

40 L1_AO := L1_Var'Access;
41 -- ^^^^^^
42 -- LEGAL: L1 object to
43 -- L1 access object
44

45 L0_AO := L1_AO; -- legal!!
46 -- ^^^^^
47 -- LEGAL: L1 access object to
48 -- L0 access object
49 --
50 -- ILLEGAL: L1 object
51 -- (L1_AO = L1_Var'Access)
52 -- to
53 -- L0 access object
54 --
55 -- This is actually OK at compile time,
56 -- but the accessibility check fails at
57 -- runtime.
58

59 Test;
60 end Show_Library_Level;

644 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Levels_Rules_Introduction.Accessibility_Library_Level

MD5: 255bdecebdaa735408db082edd583a0c

Build output

show_library_level.adb:13:16: error: non-local pointer cannot point to local object
show_library_level.adb:30:13: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed

As we see in the code, in general, most accessibility rules are the same as the ones we've
discussed when using named access types. For example, an assignment such as L0_AO :=
L1_Var'Access is illegal because we're trying to assign to an access object of less deep
level.
However, assignment such as L0_AO := L1_AO are possible now: we don't get a type
mismatch — as we did with named access types — because both objects are of anonymous
access types. Note that the accessibility level cannot be determined at compile time: L1_AO
can hold an access value at library level (which would make the assignment legal) or at a
deeper level. Therefore, the compiler introduces an accessibility check here.
However, the accessibility check used in L0_AO := L1_AO fails at runtime because the cor-
responding access value (L1_Var'Access) is of a deeper level than L0_AO, which is illegal.
(If you comment out the L1_AO := L1_Var'Access assignment prior to the L0_AO := L1_AO
assignment, this accessibility check doesn't fail anymore.)

15.8.1 Conversions between Anonymous and Named Access Types

In the previous sections, we've discussed accessibility rules for named and anonymous
access types separately. In this section, we see that the same accessibility rules apply
when mixing both flavors together and converting objects of anonymous to named access
types.
Let's adapt parts of the previous code example (page 536) and add anonymous access
types to it:

Listing 75: library_level.ads
1 package Library_Level is
2

3 type L0_Integer_Access is
4 access all Integer;
5

6 L0_Var : aliased Integer;
7

8 L0_IA : L0_Integer_Access;
9 L0_AO : access Integer;
10

11 end Library_Level;

Listing 76: show_library_level.adb
1 with Library_Level; use Library_Level;
2

3 procedure Show_Library_Level is
4 type L1_Integer_Access is
5 access all Integer;
6

(continues on next page)

15.8. Anonymous Access Types and Accessibility Rules 645

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 L1_IA : L1_Integer_Access;
8 L1_AO : access Integer;
9

10 L1_Var : aliased Integer;
11

12 begin
13 ---------------------------------------
14 -- From named type to anonymous type
15 ---------------------------------------
16

17 L0_IA := new Integer'(22);
18 L1_IA := new Integer'(42);
19

20 L0_AO := L0_IA;
21 -- ^^^^^
22 -- LEGAL: assignment from
23 -- L0 access object (named type)
24 -- to
25 -- L0 access object
26 -- (anonymous type)
27

28 L0_AO := L1_IA;
29 -- ^^^^^
30 -- ILLEGAL: assignment from
31 -- L1 access object (named type)
32 -- to
33 -- L0 access object
34 -- (anonymous type)
35

36 L1_AO := L0_IA;
37 -- ^^^^^
38 -- LEGAL: assignment from
39 -- L0 access object (named type)
40 -- to
41 -- L1 access object
42 -- (anonymous type)
43

44 L1_AO := L1_IA;
45 -- ^^^^^
46 -- LEGAL: assignment from
47 -- L1 access object (named type)
48 -- to
49 -- L1 access object
50 -- (anonymous type)
51

52 ---------------------------------------
53 -- From anonymous type to named type
54 ---------------------------------------
55

56 L0_AO := L0_Var'Access;
57 L1_AO := L1_Var'Access;
58

59 L0_IA := L0_Integer_Access (L0_AO);
60 -- ^^^^^^^^^^^^^^^^^
61 -- LEGAL: conversion / assignment from
62 -- L0 access object
63 -- (anonymous type)
64 -- to
65 -- L0 access object (named type)
66

67 L0_IA := L0_Integer_Access (L1_AO);
(continues on next page)

646 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
68 -- ^^^^^^^^^^^^^^^^^
69 -- ILLEGAL: conversion / assignment from
70 -- L1 access object
71 -- (anonymous type)
72 -- to
73 -- L0 access object (named type)
74 -- (accessibility check fails)
75

76 L1_IA := L1_Integer_Access (L0_AO);
77 -- ^^^^^^^^^^^^^^^^^
78 -- LEGAL: conversion / assignment from
79 -- L0 access object
80 -- (anonymous type)
81 -- to
82 -- L1 access object (named type)
83

84 L1_IA := L1_Integer_Access (L1_AO);
85 -- ^^^^^^^^^^^^^^^^^
86 -- LEGAL: conversion / assignment from
87 -- L1 access object
88 -- (anonymous type)
89 -- to
90 -- L1 access object (named type)
91 end Show_Library_Level;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Levels_Rules_Introduction.Accessibility_Named_Anonymous_Access_
↪Type_Conversions

MD5: a2e73bb0ed543bc4973850c80f951039

Build output

show_library_level.adb:28:13: error: cannot convert local pointer to non-local␣
↪access type

gprbuild: *** compilation phase failed

As we can see in this code example, mixing access objects of named and anonymous access
types doesn't change the accessibility rules. Again, the rules are only violated when the
target object in the assignment is less deep. This is the case in the L0_AO := L1_IA and
the L0_IA := L0_Integer_Access (L1_AO) assignments. Otherwise, mixing those access
objects doesn't impose additional hurdles.

15.8.2 Accessibility rules on access parameters

In the previous chapter, we saw that the accessibility rules also apply to access values as
subprogram parameters (page 540). In the case of access parameters, the rules are a bit
less strict (as you may generally expect for anonymous access types), and the accessibility
rules are checked at runtime. This allows use to use access values that would be illegal in
the case of named access types because of their accessibility levels.
Let's adapt a previous code example to make use of access parameters:

Listing 77: names.ads
1 package Names is
2

3 procedure Show (N : access constant String);
(continues on next page)

15.8. Anonymous Access Types and Accessibility Rules 647

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4

5 end Names;

Listing 78: names.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 -- with Ada.Characters.Handling;
4 -- use Ada.Characters.Handling;
5

6 package body Names is
7

8 procedure Show (N : access constant String) is
9 begin
10 -- for I in N'Range loop
11 -- N (I) := To_Lower (N (I));
12 -- end loop;
13 Put_Line ("Name: " & N.all);
14 end Show;
15

16 end Names;

Listing 79: show_names.adb
1 with Names; use Names;
2

3 procedure Show_Names is
4 S : aliased String := "John";
5 begin
6 Show (S'Access);
7 end Show_Names;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_
↪Levels_Rules_Introduction.Accessibility_Checks_Parameters

MD5: aa930ba9be3264d01eb9115d27b884eb

Runtime output

Name: John

As we've seen in the previous chapter, compilation fails when we use named access types
in this code example. In the case of access parameters, using S'Access doesn't make the
compilation fail, nor does the accessibility check fail at runtime because S is still in scope
when we call the Show procedure.

15.9 Anonymous Access-To-Subprograms

In the previous chapter, we talked about named access-to-subprogram types (page 566).
Now, we'll see that the anonymous version of those types isn't much different from the
named version.
Let's start our discussion by declaring a subprogram parameter using an anonymous
access-to-procedure type:

648 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 80: anonymous_access_to_subprogram.ads
1 package Anonymous_Access_To_Subprogram is
2

3 procedure Proc
4 (P : access procedure (I : in out Integer));
5

6 end Anonymous_Access_To_Subprogram;

Listing 81: anonymous_access_to_subprogram.adb
1 package body Anonymous_Access_To_Subprogram is
2

3 procedure Proc
4 (P : access procedure (I : in out Integer))
5 is
6 I : Integer := 0;
7 begin
8 P (I);
9 end Proc;
10

11 end Anonymous_Access_To_Subprogram;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example

MD5: 2cbe76d7e23905d575bd27e29d5e3175

In this example, we use the anonymous access procedure (I : in out Integer) type
as a parameter of the Proc procedure. Note that we need an identifier in the declaration:
we cannot leave I out and write access procedure (in out Integer).
Before we look at a test application that makes use of the Anony-
mous_Access_To_Subprogram package, let's implement two simple procedures that
we'll use later on:

Listing 82: add_ten.ads
1 procedure Add_Ten (I : in out Integer);

Listing 83: add_ten.adb
1 procedure Add_Ten (I : in out Integer) is
2 begin
3 I := I + 10;
4 end Add_Ten;

Listing 84: add_twenty.ads
1 procedure Add_Twenty (I : in out Integer);

Listing 85: add_twenty.adb
1 procedure Add_Twenty (I : in out Integer) is
2 begin
3 I := I + 20;
4 end Add_Twenty;

Code block metadata

15.9. Anonymous Access-To-Subprograms 649

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example

MD5: 50eaeaf27caaa9618b35ecdf8acc11fe

Finally, this is our test application:

Listing 86: show_anonymous_access_to_subprograms.adb
1 with Anonymous_Access_To_Subprogram;
2 use Anonymous_Access_To_Subprogram;
3

4 with Add_Ten;
5

6 procedure Show_Anonymous_Access_To_Subprograms is
7 begin
8 Proc (Add_Ten'Access);
9 -- ^ Getting access to Add_Ten
10 -- procedure and passing it
11 -- to Proc
12 end Show_Anonymous_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example

MD5: 13143ccf9620d26031484ba160a58fe1

Here, we get access to the Add_Ten procedure and pass it to the Proc procedure. Note that
this implementation is not different from the example for named access-to-subprogram
types (page 568). In fact, in terms of usage, anonymous access-to-subprogram types are
very similar to named access-to-subprogram types. The major differences can be found in
the corresponding accessibility rules (page 658).

In the Ada Reference Manual
• 3.10 Access Types231

15.9.1 Examples of anonymous access-to-subprogram usage

In the section about named access-to-subprogram types (page 566), we've seen a couple of
different usages for those types. In all those examples we discussed, we could instead have
used anonymous access-to-subprogram types. Let's see a code example that illustrates
that:

Listing 87: all_anonymous_access_to_subprogram.ads
1 package All_Anonymous_Access_To_Subprogram is
2

3 --
4 -- Anonymous access-to-subprogram as
5 -- subprogram parameter:
6 --
7 procedure Proc
8 (P : access procedure (I : in out Integer));
9

10 --
(continues on next page)

231 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

650 Chapter 15. Anonymous Access Types

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
11 -- Anonymous access-to-subprogram in
12 -- array type declaration:
13 --
14 type Access_To_Procedure_Array is
15 array (Positive range <>) of
16 access procedure (I : in out Integer);
17

18 protected type Protected_Integer is
19

20 procedure Mult_Ten;
21

22 procedure Mult_Twenty;
23

24 private
25 I : Integer := 1;
26 end Protected_Integer;
27

28 --
29 -- Anonymous access-to-subprogram as
30 -- component of a record type.
31 --
32 type Rec_Access_To_Procedure is record
33 AP : access procedure (I : in out Integer);
34 end record;
35

36 --
37 -- Anonymous access-to-subprogram as
38 -- discriminant:
39 --
40 type Rec_Access_To_Procedure_Discriminant
41 (AP : access procedure
42 (I : in out Integer)) is
43 record
44 I : Integer := 0;
45 end record;
46

47 procedure Process
48 (R : in out
49 Rec_Access_To_Procedure_Discriminant);
50

51 generic
52 type T is private;
53

54 --
55 -- Anonymous access-to-subprogram as
56 -- formal parameter:
57 --
58 Proc_T : access procedure
59 (Element : in out T);
60 procedure Gen_Process (Element : in out T);
61

62 end All_Anonymous_Access_To_Subprogram;

Listing 88: all_anonymous_access_to_subprogram.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body All_Anonymous_Access_To_Subprogram is
4

5 procedure Proc
6 (P : access procedure (I : in out Integer))

(continues on next page)

15.9. Anonymous Access-To-Subprograms 651

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 is
8 I : Integer := 0;
9 begin
10 Put_Line
11 ("Calling procedure for Proc...");
12 P (I);
13 Put_Line ("Finished.");
14 end Proc;
15

16 procedure Process
17 (R : in out
18 Rec_Access_To_Procedure_Discriminant)
19 is
20 begin
21 Put_Line
22 ("Calling procedure for"
23 & " Rec_Access_To_Procedure_Discriminant"
24 & " type...");
25 R.AP (R.I);
26 Put_Line ("Finished.");
27 end Process;
28

29 procedure Gen_Process (Element : in out T) is
30 begin
31 Put_Line
32 ("Calling procedure for Gen_Process...");
33 Proc_T (Element);
34 Put_Line ("Finished.");
35 end Gen_Process;
36

37 protected body Protected_Integer is
38

39 procedure Mult_Ten is
40 begin
41 I := I * 10;
42 end Mult_Ten;
43

44 procedure Mult_Twenty is
45 begin
46 I := I * 20;
47 end Mult_Twenty;
48

49 end Protected_Integer;
50

51 end All_Anonymous_Access_To_Subprogram;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example

MD5: 628dcfdc5fe9b712f33fa044057093c2

In the All_Anonymous_Access_To_Subprogram package, we see examples of anonymous
access-to-subprogram types:
• as a subprogram parameter;
• in an array type declaration;
• as a component of a record type;
• as a record type discriminant;
• as a formal parameter of a generic procedure.

652 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Let's implement a test application that makes use of this package:

Listing 89: show_anonymous_access_to_subprograms.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Add_Ten;
4 with Add_Twenty;
5

6 with All_Anonymous_Access_To_Subprogram;
7 use All_Anonymous_Access_To_Subprogram;
8

9 procedure Show_Anonymous_Access_To_Subprograms is
10 --
11 -- Anonymous access-to-subprogram as
12 -- an object:
13 --
14 P : access procedure (I : in out Integer);
15

16 --
17 -- Array of anonymous access-to-subprogram
18 -- components
19 --
20 PA : constant
21 Access_To_Procedure_Array (1 .. 2) :=
22 (Add_Ten'Access,
23 Add_Twenty'Access);
24

25 --
26 -- Anonymous array of anonymous
27 -- access-to-subprogram components:
28 --
29 PAA : constant
30 array (1 .. 2) of access
31 procedure (I : in out Integer) :=
32 (Add_Ten'Access,
33 Add_Twenty'Access);
34

35 --
36 -- Record with anonymous
37 -- access-to-subprogram components:
38 --
39 RA : constant Rec_Access_To_Procedure :=
40 (AP => Add_Ten'Access);
41

42 --
43 -- Record with anonymous
44 -- access-to-subprogram discriminant:
45 --
46 RD : Rec_Access_To_Procedure_Discriminant
47 (AP => Add_Twenty'Access) :=
48 (AP => Add_Twenty'Access, I => 0);
49

50 --
51 -- Generic procedure with formal anonymous
52 -- access-to-subprogram:
53 --
54 procedure Process_Integer is new
55 Gen_Process (T => Integer,
56 Proc_T => Add_Twenty'Access);
57

58 --
59 -- Object (APP) of anonymous

(continues on next page)

15.9. Anonymous Access-To-Subprograms 653

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
60 -- access-to-protected-subprogram:
61 --
62 PI : Protected_Integer;
63 APP : constant access protected procedure :=
64 PI.Mult_Ten'Access;
65

66 Some_Int : Integer := 0;
67 begin
68 Put_Line ("Some_Int: " & Some_Int'Image);
69

70 --
71 -- Using object of
72 -- anonymous access-to-subprogram type:
73 --
74 P := Add_Ten'Access;
75 Proc (P);
76 P (Some_Int);
77

78 P := Add_Twenty'Access;
79 Proc (P);
80 P (Some_Int);
81

82 Put_Line ("Some_Int: " & Some_Int'Image);
83

84 --
85 -- Using array with component of
86 -- anonymous access-to-subprogram type:
87 --
88 Put_Line
89 ("Calling procedure from PA array...");
90

91 for I in PA'Range loop
92 PA (I) (Some_Int);
93 Put_Line ("Some_Int: " & Some_Int'Image);
94 end loop;
95

96 Put_Line ("Finished.");
97

98 Put_Line
99 ("Calling procedure from PAA array...");
100

101 for I in PA'Range loop
102 PAA (I) (Some_Int);
103 Put_Line ("Some_Int: " & Some_Int'Image);
104 end loop;
105

106 Put_Line ("Finished.");
107

108 Put_Line ("Some_Int: " & Some_Int'Image);
109

110 --
111 -- Using record with component of
112 -- anonymous access-to-subprogram type:
113 --
114 RA.AP (Some_Int);
115 Put_Line ("Some_Int: " & Some_Int'Image);
116

117 --
118 -- Using record with discriminant of
119 -- anonymous access-to-subprogram type:
120 --

(continues on next page)

654 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
121 Process (RD);
122 Put_Line ("RD.I: " & RD.I'Image);
123

124 --
125 -- Using procedure instantiated with
126 -- formal anonymous access-to-subprogram:
127 --
128 Process_Integer (Some_Int);
129 Put_Line ("Some_Int: " & Some_Int'Image);
130

131 --
132 -- Using object of anonymous
133 -- access-to-protected-subprogram type:
134 --
135 APP.all;
136 end Show_Anonymous_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example

MD5: ec770c17e880a98fd2e9ab0110d4a858

Runtime output

Some_Int: 0
Calling procedure for Proc...
Finished.
Calling procedure for Proc...
Finished.
Some_Int: 30
Calling procedure from PA array...
Some_Int: 40
Some_Int: 60
Finished.
Calling procedure from PAA array...
Some_Int: 70
Some_Int: 90
Finished.
Some_Int: 90
Some_Int: 100
Calling procedure for Rec_Access_To_Procedure_Discriminant type...
Finished.
RD.I: 20
Calling procedure for Gen_Process...
Finished.
Some_Int: 120

In the Show_Anonymous_Access_To_Subprograms procedure, we see examples of anony-
mous access-to-subprogram types in:
• in objects (P) and (APP);
• in arrays (PA and PAA);
• in records (RA and RD);
• in the binding to a formal parameter (Proc_T) of an instantiated procedure
(Process_Integer);

• as a parameter of a procedure (Proc).
Because we already discussed all these usages in the section about named access-to-
subprogram types (page 566), we won't repeat this discussion here. If anything in this

15.9. Anonymous Access-To-Subprograms 655

Advanced Journey With Ada: A Flight In Progress

code example is still unclear to you, make sure to revisit that section from the previous
chapter.

15.9.2 Application of anonymous access-to-subprogram types

In general, there isn't much that speaks against using anonymous access-to-subprogram
types. We can say, for example, that they're much more useful than anonymous access-
to-objects types (page 605), which have many drawbacks (page 608) — as we discussed
earlier.
There isn't much to be concerned when using anonymous access-to-subprogram types.
For example, we cannot allocate or deallocate a subprogram. As a consequence, we won't
have storage management issues affecting these types because the access to those sub-
programs will always be available and no memory leak can occur.
Also, anonymous access-to-subprogram types can be easier to use than named access-to-
subprogram types because of their less strict accessibility rules (page 658). Some of the
accessibility issues we might encounter when using named access-to-subprogram types
can be solved by declaring them as anonymous types. (We discuss the accessibility rules
of anonymous access-to-subprogram types in the next section.)

15.9.3 Readability

Note that readability suffers if you use a cascade of anonymous access-to-subprograms.
For example:

Listing 90: readability_issue.ads
1 package Readability_Issue is
2

3 function F
4 return access
5 function (A : Integer)
6 return access
7 function (B : Float)
8 return Integer;
9

10 end Readability_Issue;

Listing 91: readability_issue-functions.ads
1 package Readability_Issue.Functions is
2

3 function To_Integer (V : Float)
4 return Integer is
5 (Integer (V));
6

7 function Select_Conversion
8 (A : Integer)
9 return access
10 function (B : Float)
11 return Integer is
12 (To_Integer'Access);
13

14 end Readability_Issue.Functions;

656 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 92: readability_issue.adb
1 with Readability_Issue.Functions;
2 use Readability_Issue.Functions;
3

4 package body Readability_Issue is
5

6 function F
7 return access
8 function (A : Integer)
9 return access
10 function (B : Float)
11 return Integer is
12 (Select_Conversion'Access);
13

14 end Readability_Issue;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Subprograms.Readability_Issue

MD5: 9e2ac58942c97b44c0d847c28e39bd11

In this example, the definition of F might compile fine, but it's simply too long to be read-
able. Not only that: we need to carry this chain to other functions as well — such as the
Select_Conversion function above. Also, using these functions in an application is not
straightforward:

Listing 93: show_readability_issue.adb
1 with Readability_Issue;
2 use Readability_Issue;
3

4 procedure Show_Readability_Issue is
5 F1 : access
6 function (A : Integer)
7 return access
8 function (B : Float)
9 return Integer
10 := F;
11 F2 : access function (B : Float)
12 return Integer
13 := F1 (2);
14 I : Integer := F2 (0.1);
15 begin
16 I := F1 (2) (0.1);
17 end Show_Readability_Issue;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_
↪Access_To_Subprograms.Readability_Issue

MD5: 80267b1d673663e3cacba0c4978e6abf

Therefore, our recommendation is to avoid this kind of access cascading by carefully de-
signing your application. In general, you won't need that.

15.9. Anonymous Access-To-Subprograms 657

Advanced Journey With Ada: A Flight In Progress

15.10 Accessibility Rules and Anonymous Access-To-
Subprograms

In principle, the accessibility rules for anonymous access types (page 643) that we've seen
before apply to anonymous access-to-subprograms as well. Also, we had a discussion about
accessibility rules and access-to-subprograms (page 591) in the previous chapter. In this
section, we review some of the rules that we already know and discuss how they relate to
anonymous access-to-subprograms.

In the Ada Reference Manual
• 3.10 Access Types232

15.10.1 Named vs. anonymous access-to-subprograms

Let's see an example of a named access-to-subprogram type:

Listing 94: show_access_to_subprogram_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Access_To_Subprogram_Error is
4

5 type PI is access
6 procedure (I : in out Integer);
7

8 P : PI;
9

10 I : Integer := 0;
11 begin
12 declare
13 procedure Add_One (I : in out Integer) is
14 begin
15 I := I + 1;
16 end Add_One;
17 begin
18 P := Add_One'Access;
19 end;
20 end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Rules_Anonymous_Access_To_Subprograms.Simple_Example_Named

MD5: 41c36426112e799210b7704dd43b6217

Build output

show_access_to_subprogram_error.adb:18:12: error: subprogram must not be deeper␣
↪than access type

gprbuild: *** compilation phase failed

In this example, we get a compilation error because the lifetime of the Add_One procedure
is shorter than the access type PI.
232 http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

658 Chapter 15. Anonymous Access Types

http://www.ada-auth.org/standards/22rm/html/RM-3-10.html

Advanced Journey With Ada: A Flight In Progress

In contrast, using an anonymous access-to-subprogram type eliminates the compilation
error, i.e. the assignment P := Add_One'Access becomes legal:

Listing 95: show_access_to_subprogram_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 procedure Show_Access_To_Subprogram_Error is
4 P : access procedure (I : in out Integer);
5

6 I : Integer := 0;
7 begin
8 declare
9 procedure Add_One (I : in out Integer) is
10 begin
11 I := I + 1;
12 end Add_One;
13 begin
14 P := Add_One'Access;
15 -- RUNTIME ERROR: Add_One is out-of-scope
16 -- after this line.
17 end;
18 end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Rules_Anonymous_Access_To_Subprograms.Simple_Example_Anonymous

MD5: a5eeb4a716b4f6a932dd74c580a07b66

Runtime output

raised PROGRAM_ERROR : show_access_to_subprogram_error.adb:14 accessibility check␣
↪failed

In this case, the compiler introduces an accessibility check, which fails at runtime because
the lifetime of Add_One is shorter than the lifetime of the access object P.

15.10.2 Named vs. anonymous access-to-subprograms as parame-
ters

Using anonymous access-to-subprograms as parameters allows us to pass subprograms at
any level. For certain applications, the restrictions that are applied to named access types
might be too strict, so using anonymous access-to-subprograms might be a good way to
circumvent those restrictions. They also allow the component developer to be independent
of the clients' specific access types.
Note that the increased flexibility for anonymous access-to-subprograms means that some
of the checks that are performed at compile time for named access-to-subprograms are
done at runtime for anonymous access-to-subprograms.

15.10. Accessibility Rules and Anonymous Access-To-Subprograms 659

Advanced Journey With Ada: A Flight In Progress

Named access-to-subprograms as a parameter

Let's see an example using a named access-to-procedure type:

Listing 96: access_to_subprogram_types.ads
1 package Access_To_Subprogram_Types is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 type Process_Procedure is
7 access
8 procedure (Arr : in out Integer_Array);
9

10 procedure Process
11 (Arr : in out Integer_Array;
12 P : Process_Procedure);
13

14 end Access_To_Subprogram_Types;

Listing 97: access_to_subprogram_types.adb
1 package body Access_To_Subprogram_Types is
2

3 procedure Process
4 (Arr : in out Integer_Array;
5 P : Process_Procedure) is
6 begin
7 P (Arr);
8 end Process;
9

10 end Access_To_Subprogram_Types;

Listing 98: show_access_to_subprogram_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_To_Subprogram_Types;
4 use Access_To_Subprogram_Types;
5

6 procedure Show_Access_To_Subprogram_Error is
7

8 procedure Add_One
9 (Arr : in out Integer_Array) is
10 begin
11 for E of Arr loop
12 E := E + 1;
13 end loop;
14 end Add_One;
15

16 procedure Display
17 (Arr : in out Integer_Array) is
18 begin
19 for I in Arr'Range loop
20 Put_Line ("Arr (" &
21 Integer'Image (I)
22 & "): "
23 & Integer'Image (Arr (I)));
24 end loop;
25 end Display;

(continues on next page)

660 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
26

27 Arr : Integer_Array (1 .. 3) := (1, 2, 3);
28 begin
29 Process (Arr, Display'Access);
30

31 Put_Line ("Add_One...");
32 Process (Arr, Add_One'Access);
33

34 Process (Arr, Display'Access);
35 end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Rules_Anonymous_Access_To_Subprograms.Access_To_Subprogram_
↪Parameter_Named

MD5: 76b70b52a0374fe0fd398024fe869876

Build output

show_access_to_subprogram_error.adb:29:18: error: subprogram must not be deeper␣
↪than access type

show_access_to_subprogram_error.adb:32:18: error: subprogram must not be deeper␣
↪than access type

show_access_to_subprogram_error.adb:34:18: error: subprogram must not be deeper␣
↪than access type

gprbuild: *** compilation phase failed

In this example, we declare the Process_Procedure type in the Ac-
cess_To_Subprogram_Types package and use it in the Process procedure, which we
call in the Show_Access_To_Subprogram_Error procedure. The accessibility rules trigger
a compilation error because the accesses (Add_One'Access and Display'Access) are at a
deeper level than the access-to-procedure type (Process_Procedure).
As we know already, there's no Unchecked_Access attribute that we could use here. An
easy way to make this code compile could be to move Add_One and Display to the library
level.

Anonymous access-to-subprograms as a parameter

To circumvent the compilation error, we could also use anonymous access-to-subprograms
instead:

Listing 99: access_to_subprogram_types.ads
1 package Access_To_Subprogram_Types is
2

3 type Integer_Array is
4 array (Positive range <>) of Integer;
5

6 procedure Process
7 (Arr : in out Integer_Array;
8 P : access procedure
9 (Arr : in out Integer_Array));
10

11 end Access_To_Subprogram_Types;

15.10. Accessibility Rules and Anonymous Access-To-Subprograms 661

Advanced Journey With Ada: A Flight In Progress

Listing 100: access_to_subprogram_types.adb
1 package body Access_To_Subprogram_Types is
2

3 procedure Process
4 (Arr : in out Integer_Array;
5 P : access procedure
6 (Arr : in out Integer_Array)) is
7 begin
8 P (Arr);
9 end Process;
10

11 end Access_To_Subprogram_Types;

Listing 101: show_access_to_subprogram_error.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Access_To_Subprogram_Types;
4 use Access_To_Subprogram_Types;
5

6 procedure Show_Access_To_Subprogram_Error is
7

8 procedure Add_One
9 (Arr : in out Integer_Array) is
10 begin
11 for E of Arr loop
12 E := E + 1;
13 end loop;
14 end Add_One;
15

16 procedure Display
17 (Arr : in out Integer_Array) is
18 begin
19 for I in Arr'Range loop
20 Put_Line ("Arr (" &
21 Integer'Image (I)
22 & "): "
23 & Integer'Image (Arr (I)));
24 end loop;
25 end Display;
26

27 Arr : Integer_Array (1 .. 3) := (1, 2, 3);
28 begin
29 Process (Arr, Display'Access);
30

31 Put_Line ("Add_One...");
32 Process (Arr, Add_One'Access);
33

34 Process (Arr, Display'Access);
35 end Show_Access_To_Subprogram_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Rules_Anonymous_Access_To_Subprograms.Access_To_Subprogram_
↪Parameter_Anonymous

MD5: a500e0a864f0adadc1d6823c1f50bd64

Runtime output

662 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Arr (1): 1
Arr (2): 2
Arr (3): 3
Add_One...
Arr (1): 2
Arr (2): 3
Arr (3): 4

Now, the code is accepted by the compiler because anonymous access-to-subprograms
used as parameters allow passing of subprograms at any level. Also, we don't see a run-
time exception because the subprograms are still accessible when we call Process.

15.10.3 Iterator

A typical example that illustrates well the necessity of using anonymous access-to-
subprograms is that of a container iterator. In fact, many of the standard Ada containers —
the child packages of Ada.Containers — make use of anonymous access-to-subprograms
for their Iterate subprograms.

In the Ada Reference Manual
• A.18.2 The Package Containers.Vectors233

• A.18.4 Maps234

• A.18.7 Sets235

Using named access-to-subprograms

Let's start with a simplified container type (Data_Container) using a named access-to-
subprogram type (Process_Element) for iteration:

Listing 102: data_processing.ads
1 generic
2 type Element is private;
3 package Data_Processing is
4

5 type Data_Container (Last : Positive) is
6 private;
7

8 Data_Container_Full : exception;
9

10 procedure Append (D : in out Data_Container;
11 E : Element);
12

13 type Process_Element is
14 not null access procedure (E : Element);
15

16 procedure Iterate
17 (D : Data_Container;
18 Proc : Process_Element);
19

20 private
(continues on next page)

233 http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html
234 http://www.ada-auth.org/standards/22rm/html/RM-A-18-4.html
235 http://www.ada-auth.org/standards/22rm/html/RM-A-18-7.html

15.10. Accessibility Rules and Anonymous Access-To-Subprograms 663

http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html
http://www.ada-auth.org/standards/22rm/html/RM-A-18-4.html
http://www.ada-auth.org/standards/22rm/html/RM-A-18-7.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
21

22 type Data_Container_Storage is
23 array (Positive range <>) of Element;
24

25 type Data_Container (Last : Positive) is
26 record
27 S : Data_Container_Storage (1 .. Last);
28 Curr : Natural := 0;
29 end record;
30

31 end Data_Processing;

Listing 103: data_processing.adb
1 package body Data_Processing is
2

3 procedure Append (D : in out Data_Container;
4 E : Element) is
5 begin
6 if D.Curr < D.S'Last then
7 D.Curr := D.Curr + 1;
8 D.S (D.Curr) := E;
9 else
10 raise Data_Container_Full;
11 -- NOTE: This is just a dummy
12 -- implementation. A better
13 -- strategy is to add actual error
14 -- handling when the container is
15 -- full.
16 end if;
17 end Append;
18

19 procedure Iterate
20 (D : Data_Container;
21 Proc : Process_Element) is
22 begin
23 for I in D.S'First .. D.Curr loop
24 Proc (D.S (I));
25 end loop;
26 end Iterate;
27

28 end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Named

MD5: e48e8200e571b62d027753ee96c47fcb

In this example, we declare the Process_Element type in the generic Data_Processing
package, and we use it in the Iterate procedure. We then instantiate this package as
Float_Data_Processing, and we use it in the Show_Access_To_Subprograms procedure:

Listing 104: float_data_processing.ads
1 with Data_Processing;
2

3 package Float_Data_Processing is
4 new Data_Processing (Element => Float);

664 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 105: show_access_to_subprograms.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Float_Data_Processing;
4 use Float_Data_Processing;
5

6 procedure Show_Access_To_Subprograms is
7

8 procedure Display (F : Float) is
9 begin
10 Put_Line ("F :" & Float'Image (F));
11 end Display;
12

13 D : Data_Container (5);
14 begin
15 Append (D, 1.0);
16 Append (D, 2.0);
17 Append (D, 3.0);
18

19 Iterate (D, Display'Access);
20 end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Named

MD5: 64ee435aac5f2817b7d9cecf538a1e4c

Build output

show_access_to_subprograms.adb:19:17: error: subprogram must not be deeper than␣
↪access type

gprbuild: *** compilation phase failed

Using Display'Access in the call to Iterate triggers a compilation error because its life-
time is shorter than the lifetime of the Process_Element type.

Using anonymous access-to-subprograms

Now, let's use an anonymous access-to-subprogram type in the Iterate procedure:

Listing 106: data_processing.ads
1 generic
2 type Element is private;
3 package Data_Processing is
4

5 type Data_Container (Last : Positive) is
6 private;
7

8 Data_Container_Full : exception;
9

10 procedure Append (D : in out Data_Container;
11 E : Element);
12

13 procedure Iterate
14 (D : Data_Container;
15 Proc : not null access
16 procedure (E : Element));

(continues on next page)

15.10. Accessibility Rules and Anonymous Access-To-Subprograms 665

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
17

18 private
19

20 type Data_Container_Storage is
21 array (Positive range <>) of Element;
22

23 type Data_Container (Last : Positive) is
24 record
25 S : Data_Container_Storage (1 .. Last);
26 Curr : Natural := 0;
27 end record;
28

29 end Data_Processing;

Listing 107: data_processing.adb
1 package body Data_Processing is
2

3 procedure Append (D : in out Data_Container;
4 E : Element) is
5 begin
6 if D.Curr < D.S'Last then
7 D.Curr := D.Curr + 1;
8 D.S (D.Curr) := E;
9 else
10 raise Data_Container_Full;
11 -- NOTE: This is just a dummy
12 -- implementation. A better
13 -- strategy is to add actual error
14 -- handling when the container is
15 -- full.
16 end if;
17 end Append;
18

19 procedure Iterate
20 (D : Data_Container;
21 Proc : not null access
22 procedure (E : Element)) is
23 begin
24 for I in D.S'First .. D.Curr loop
25 Proc (D.S (I));
26 end loop;
27 end Iterate;
28

29 end Data_Processing;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Anonymous

MD5: fa56595ef1734f2f07ad719c36dfd8b5

Note that the only changes we did to the package were to remove the Process_Element
type and replace the type of the Proc parameter of the Iterate procedure from a named
type (Process_Element) to an anonymous type (not null access procedure (E : El-
ement)).
Now, the same test application we used before (Show_Access_To_Subprograms) compiles
as expected:

666 Chapter 15. Anonymous Access Types

Advanced Journey With Ada: A Flight In Progress

Listing 108: float_data_processing.ads
1 with Data_Processing;
2

3 package Float_Data_Processing is
4 new Data_Processing (Element => Float);

Listing 109: show_access_to_subprograms.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 with Float_Data_Processing;
4 use Float_Data_Processing;
5

6 procedure Show_Access_To_Subprograms is
7

8 procedure Display (F : Float) is
9 begin
10 Put_Line ("F :" & Float'Image (F));
11 end Display;
12

13 D : Data_Container (5);
14 begin
15 Append (D, 1.0);
16 Append (D, 2.0);
17 Append (D, 3.0);
18

19 Iterate (D, Display'Access);
20 end Show_Access_To_Subprograms;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.
↪Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Anonymous

MD5: 64ee435aac5f2817b7d9cecf538a1e4c

Runtime output

F : 1.00000E+00
F : 2.00000E+00
F : 3.00000E+00

Remember that the compiler introduces an accessibility check in the call to Iterate, which
is successful because the lifetime of Display'Access is the same as the lifetime of the
Proc parameter of Iterate.

15.10. Accessibility Rules and Anonymous Access-To-Subprograms 667

Advanced Journey With Ada: A Flight In Progress

668 Chapter 15. Anonymous Access Types

CHAPTER

SIXTEEN

LIMITED TYPES

So far, we discussed nonlimited types in most cases. In this chapter, we discuss limited
types.
We can think of limited types as an easy way to avoid inappropriate semantics. For exam-
ple, a lock should not be copied — neither directly, via assignment, nor with pass-by-copy.
Similarly, a file, which is really a file descriptor, should not be copied. In this chapter, we'll
see example of unwanted side-effects that arise if we don't use limited types for these
cases.

16.1 Assignment and equality

Limited types have the following restrictions, which we discussed in the Introduction to
Ada236 course:
• copying objects of limited types via direct assignments is forbidden; and
• there's no predefined equality operator for limited types.

(Of course, in the case of nonlimited types, assignments are possible and the equality
operator is available.)
By having these restrictions for limited types, we avoid inappropriate side-effects for as-
signment and equality operations. As an example of inappropriate side-effects, consider
the case when we apply those operations on record types that have components of access
types:

Listing 1: nonlimited_types.ads
1 package Nonlimited_Types is
2

3 type Simple_Rec is private;
4

5 type Integer_Access is access Integer;
6

7 function Init (I : Integer) return Simple_Rec;
8

9 procedure Set (E : Simple_Rec;
10 I : Integer);
11

12 procedure Show (E : Simple_Rec;
13 E_Name : String);
14

15 private
16

17 type Simple_Rec is record
(continues on next page)

236 https://learn.adacore.com/courses/intro-to-ada/chapters/privacy.html#intro-ada-limited-types

669

https://learn.adacore.com/courses/intro-to-ada/chapters/privacy.html#intro-ada-limited-types
https://learn.adacore.com/courses/intro-to-ada/chapters/privacy.html#intro-ada-limited-types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
18 V : Integer_Access;
19 end record;
20

21 end Nonlimited_Types;

Listing 2: nonlimited_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2

3 package body Nonlimited_Types is
4

5 function Init (I : Integer) return Simple_Rec
6 is
7 begin
8 return E : Simple_Rec do
9 E.V := new Integer'(I);
10 end return;
11 end Init;
12

13 procedure Set (E : Simple_Rec;
14 I : Integer) is
15 begin
16 E.V.all := I;
17 end Set;
18

19 procedure Show (E : Simple_Rec;
20 E_Name : String) is
21 begin
22 Put_Line (E_Name
23 & ".V.all = "
24 & Integer'Image (E.V.all));
25 end Show;
26

27 end Nonlimited_Types;

Listing 3: show_wrong_assignment_equality.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Nonlimited_Types; use Nonlimited_Types;
3

4 procedure Show_Wrong_Assignment_Equality is
5 A, B : Simple_Rec := Init (0);
6

7 procedure Show_Compare is
8 begin
9 if A = B then
10 Put_Line ("A = B");
11 else
12 Put_Line ("A /= B");
13 end if;
14 end Show_Compare;
15 begin
16

17 Put_Line ("A := Init (0); A := Init (0);");
18 Show (A, "A");
19 Show (B, "B");
20 Show_Compare;
21 Put_Line ("--------");
22

23 Put_Line ("Set (A, 2); Set (B, 3);");
(continues on next page)

670 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
24 Set (A, 2);
25 Set (B, 3);
26

27 Show (A, "A");
28 Show (B, "B");
29 Put_Line ("--------");
30

31 Put_Line ("B := A");
32 B := A;
33

34 Show (A, "A");
35 Show (B, "B");
36 Show_Compare;
37 Put_Line ("--------");
38

39 Put_Line ("Set (B, 7);");
40 Set (B, 7);
41

42 Show (A, "A");
43 Show (B, "B");
44 Show_Compare;
45 Put_Line ("--------");
46

47 end Show_Wrong_Assignment_Equality;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_
↪Equality.Wrong_Assignment_Equality

MD5: 72cf7145cd26a8628580c5a837d9cb61

Runtime output

A := Init (0); A := Init (0);
A.V.all = 0
B.V.all = 0
A /= B

Set (A, 2); Set (B, 3);
A.V.all = 2
B.V.all = 3

B := A
A.V.all = 2
B.V.all = 2
A = B

Set (B, 7);
A.V.all = 7
B.V.all = 7
A = B

In this code, we declare the Simple_Rec type in the Nonlimited_Types package and use
it in the Show_Wrong_Assignment_Equality procedure. In principle, we're already doing
many things right here. For example, we're declaring the Simple_Rec type private, so
that the component V of access type is encapsulated. Programmers that declare objects
of this type cannot simply mess up with the V component. Instead, they have to call the
Init function and the Set procedure to initialize and change, respectively, objects of the
Simple_Rec type. That being said, there are two problems with this code, which we discuss
next.

16.1. Assignment and equality 671

Advanced Journey With Ada: A Flight In Progress

The first problem we can identify is that the first call to Show_Compare shows that A and B
are different, although both have the same value in the V component (A.V.all = 0 and
B.V.all = 0) — this was set by the call to the Init function. What's happening here is
that the A = B expression is comparing the access values (A.V = B.V), while we might
have been expecting it to compare the actual integer values after dereferencing (A.V.all
= B.V.all). Therefore, the predefined equality function of the Simple_Rec type is useless
and dangerous for us, as it misleads us to expect something that it doesn't do.
After the assignment of A to B (B := A), the information that the application displays seems
to be correct — both A.V.all and B.V.all have the same value of two. However, when
assigning the value seven to B by calling Set (B, 7), we see that the value of A.V.all has
also changed. What's happening here is that the previous assignment (B := A) has actually
assigned access values (B.V := A.V), while we might have been expecting it to assign the
dereferenced values (B.V.all := A.V.all). Therefore, we cannot simply directly assign
objects of Simple_Rec type, as this operation changes the internal structure of the type
due to the presence of components of access type.
For these reasons, forbidding these operations for the Simple_Rec type is the most appro-
priate software design decision. If we still need assignment and equality operators, we can
implement custom subprograms for the limited type. We'll discuss this topic in the next
sections.
In addition to the case when we have components of access types, limited types are useful
for example when we want to avoid the situation in which the same information is copied
to multiple objects of the same type.

In the Ada Reference Manual
• 7.5 Limited Types237

16.1.1 Assignments

Assignments are forbidden when using objects of limited types. For example:

Listing 4: limited_types.ads
1 package Limited_Types is
2

3 type Simple_Rec is limited private;
4

5 type Integer_Access is access Integer;
6

7 function Init (I : Integer) return Simple_Rec;
8

9 private
10

11 type Simple_Rec is limited record
12 V : Integer_Access;
13 end record;
14

15 end Limited_Types;

Listing 5: limited_types.adb
1 package body Limited_Types is
2

3 function Init (I : Integer) return Simple_Rec
(continues on next page)

237 http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

672 Chapter 16. Limited Types

http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4 is
5 begin
6 return E : Simple_Rec do
7 E.V := new Integer'(I);
8 end return;
9 end Init;
10

11 end Limited_Types;

Listing 6: show_limited_assignment.adb
1 with Limited_Types; use Limited_Types;
2

3 procedure Show_Limited_Assignment is
4 A, B : Simple_Rec := Init (0);
5 begin
6 B := A;
7 end Show_Limited_Assignment;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_
↪Equality.Assignment

MD5: 019c16f7feac896fd8c37d40d0522dc8

Build output

show_limited_assignment.adb:6:04: error: left hand of assignment must not be␣
↪limited type

gprbuild: *** compilation phase failed

In this example, we declare the limited private type Simple_Rec and two objects of this type
(A and B) in the Show_Limited_Assignment procedure. (We discuss more about limited
private types later (page 677)).
As expected, we get a compilation error for the B := A statement (in the
Show_Limited_Assignment procedure). If we need to copy two objects of limited type,
we have to provide a custom procedure to do that. For example, we can implement a Copy
procedure for the Simple_Rec type:

Listing 7: limited_types.ads
1 package Limited_Types is
2

3 type Integer_Access is access Integer;
4

5 type Simple_Rec is limited private;
6

7 function Init (I : Integer) return Simple_Rec;
8

9 procedure Copy (From : Simple_Rec;
10 To : in out Simple_Rec);
11

12 private
13

14 type Simple_Rec is limited record
15 V : Integer_Access;
16 end record;
17

18 end Limited_Types;

16.1. Assignment and equality 673

Advanced Journey With Ada: A Flight In Progress

Listing 8: limited_types.adb
1 package body Limited_Types is
2

3 function Init (I : Integer) return Simple_Rec
4 is
5 begin
6 return E : Simple_Rec do
7 E.V := new Integer'(I);
8 end return;
9 end Init;
10

11 procedure Copy (From : Simple_Rec;
12 To : in out Simple_Rec)
13 is
14 begin
15 -- Copying record components
16 To.V.all := From.V.all;
17 end Copy;
18

19 end Limited_Types;

Listing 9: show_limited_assignment.adb
1 with Limited_Types; use Limited_Types;
2

3 procedure Show_Limited_Assignment is
4 A, B : Simple_Rec := Init (0);
5 begin
6 Copy (From => A, To => B);
7 end Show_Limited_Assignment;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_
↪Equality.Assignment

MD5: 2c017c3592c93be8c19fe247e9241fcb

The Copy procedure from this example copies the dereferenced values of From to To, which
matches our expectation for the Simple_Rec. Note that we could have also implemented
a Shallow_Copy procedure to copy the actual access values (i.e. To.V := From.V). How-
ever, having this kind of procedure can be dangerous in many case, so this design decision
must be made carefully. In any case, using limited types ensures that only the assignment
subprograms that are explicitly declared in the package specification are available.

16.1.2 Equality

Limited types don't have a predefined equality operator. For example:

Listing 10: limited_types.ads
1 package Limited_Types is
2

3 type Integer_Access is access Integer;
4

5 type Simple_Rec is limited private;
6

7 function Init (I : Integer) return Simple_Rec;
8

(continues on next page)

674 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
9 private
10

11 type Simple_Rec is limited record
12 V : Integer_Access;
13 end record;
14

15 end Limited_Types;

Listing 11: limited_types.adb
1 package body Limited_Types is
2

3 function Init (I : Integer) return Simple_Rec
4 is
5 begin
6 return E : Simple_Rec do
7 E.V := new Integer'(I);
8 end return;
9 end Init;
10

11 end Limited_Types;

Listing 12: show_limited_equality.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Limited_Types; use Limited_Types;
3

4 procedure Show_Limited_Equality is
5 A : Simple_Rec := Init (5);
6 B : Simple_Rec := Init (6);
7 begin
8 if A = B then
9 Put_Line ("A = B");
10 else
11 Put_Line ("A /= B");
12 end if;
13 end Show_Limited_Equality;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_
↪Equality.Equality

MD5: dad31b5e36de0b3b7824f723a60e5aa0

Build output

show_limited_equality.adb:8:09: error: there is no applicable operator "=" for␣
↪private type "Simple_Rec" defined at limited_types.ads:5

gprbuild: *** compilation phase failed

As expected, the comparison A = B triggers a compilation error because no predefined =
operator is available for the Simple_Rec type. If we want to be able to compare objects of
this type, we have to implement the = operator ourselves. For example, we can do that for
the Simple_Rec type:

Listing 13: limited_types.ads
1 package Limited_Types is
2

3 type Integer_Access is access Integer;
(continues on next page)

16.1. Assignment and equality 675

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4

5 type Simple_Rec is limited private;
6

7 function Init (I : Integer) return Simple_Rec;
8

9 function "=" (Left, Right : Simple_Rec)
10 return Boolean;
11

12 private
13

14 type Simple_Rec is limited record
15 V : Integer_Access;
16 end record;
17

18 end Limited_Types;

Listing 14: limited_types.adb
1 package body Limited_Types is
2

3 function Init (I : Integer) return Simple_Rec
4 is
5 begin
6 return E : Simple_Rec do
7 E.V := new Integer'(I);
8 end return;
9 end Init;
10

11 function "=" (Left, Right : Simple_Rec)
12 return Boolean is
13 begin
14 -- Comparing record components
15 return Left.V.all = Right.V.all;
16 end "=";
17

18 end Limited_Types;

Listing 15: show_limited_equality.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Limited_Types; use Limited_Types;
3

4 procedure Show_Limited_Equality is
5 A : Simple_Rec := Init (5);
6 B : Simple_Rec := Init (6);
7 begin
8 if A = B then
9 Put_Line ("A = B");
10 else
11 Put_Line ("A /= B");
12 end if;
13 end Show_Limited_Equality;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_
↪Equality.Equality

MD5: f56b2229443a5e4e33c402b41b02d318

Runtime output

676 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

A /= B

Here, the = operator compares the dereferenced values of Left.V and Right.V, which
matches our expectation for the Simple_Rec type. Declaring types as limited ensures that
we don't have unreasonable equality comparisons, and allows us to create reasonable re-
placements when required.

In other languages
In C++, you can overload the assignment operator. For example:

class Simple_Rec
{
public:

// Overloaded assignment
Simple_Rec& operator= (const Simple_Rec& obj);

private:
int *V;
};

In Ada, however, we can only define the equality operator (=). Defining the assignment
operator (:=) is not possible. The following code triggers a compilation error as expected:

package Limited_Types is

type Integer_Access is access Integer;

type Simple_Rec is limited private;

procedure ":=" (To : in out Simple_Rec
From : Simple_Rec);

-- ...

end Limited_Types;

16.2 Limited private types

As we've seen in code examples from the previous section, we can apply information hiding
(page 35) to limited types. In other words, we can declare a type as limited private
instead of just limited. For example:

Listing 16: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is limited private;
4

5 private
6

7 type Rec is limited record
8 I : Integer;
9 end record;
10

11 end Simple_Recs;

Code block metadata

16.2. Limited private types 677

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Limited_Private

MD5: ececb364f5365a74db43952e9421dee0

In this case, in addition to the fact that assignments are forbidden for objects of this type
(because Rec is limited), we cannot access the record components.
Note that in this example, both partial and full views of the Rec record are of limited type.
In the next sections, we discuss how the partial and full views can have non-matching
declarations.

In the Ada Reference Manual
• 7.5 Limited Types238

16.2.1 Non-Record Limited Types

In principle, only record types can be declared limited, so we cannot use scalar or array
types. For example, the following declarations won't compile:

Listing 17: non_record_limited_error.ads
1 package Non_Record_Limited_Error is
2

3 type Limited_Enumeration is
4 limited (Off, On);
5

6 type Limited_Integer is new
7 limited Integer;
8

9 type Integer_Array is
10 array (Positive range <>) of Integer;
11

12 type Rec is new
13 limited Integer_Array (1 .. 2);
14

15 end Non_Record_Limited_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Non_Record_Limited_Error

MD5: c155e02d809caf28352cbbb579deb861

However, we've mentioned in a previous chapter (page 38) that private types don't have
to be record types necessarily. In this sense, limited private types makes it possible for us
to use types other than record types in the full view and still benefit from the restrictions
of limited types. For example:

Listing 18: simple_recs.ads
1 package Simple_Recs is
2

3 type Limited_Enumeration is
4 limited private;
5

6 type Limited_Integer is
(continues on next page)

238 http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

678 Chapter 16. Limited Types

http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 limited private;
8

9 type Limited_Integer_Array_2 is
10 limited private;
11

12 private
13

14 type Limited_Enumeration is (Off, On);
15

16 type Limited_Integer is new Integer;
17

18 type Integer_Array is
19 array (Positive range <>) of Integer;
20

21 type Limited_Integer_Array_2 is
22 new Integer_Array (1 .. 2);
23

24 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Non_Record_Limited

MD5: 9e65b56a5cb3d7a3da11c7f63ee9bb19

Here, Limited_Enumeration, Limited_Integer, and Limited_Integer_Array_2 are lim-
ited private types that encapsulate an enumeration type, an integer type, and a constrained
array type, respectively.

16.2.2 Partial and full view of limited types

In the previous example, both partial and full views of the Rec type were limited. We may
actually declare a type as limited private (in the public part of a package), while its full
view is nonlimited. For example:

Listing 19: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is limited private;
4 -- Partial view of Rec is limited
5

6 private
7

8 type Rec is record
9 -- Full view of Rec is nonlimited
10 I : Integer;
11 end record;
12

13 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Limited_Partial_Full_View

MD5: 5d0dbc3e87531476856f0ac1f9b22c78

In this case, only the partial view of Rec is limited, while its full view is nonlimited. When
deriving from Rec, the view of the derived type is the same as for the parent type:

16.2. Limited private types 679

Advanced Journey With Ada: A Flight In Progress

Listing 20: simple_recs-child.ads
1 package Simple_Recs.Child
2 is
3 type Rec_Derived is new Rec;
4 -- As for its parent, the
5 -- partial view of Rec_Derived
6 -- is limited, but the full view
7 -- is nonlimited.
8

9 end Simple_Recs.Child;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Limited_Partial_Full_View

MD5: fdf0ffa87ac2b8766830bf8e17ac7b5e

Clients must nevertheless comply with their partial view, and treat the type as if it is in fact
limited. In other words, if you use the Rec type in a subprogram or package outside of the
Simple_Recs package (or its child packages), the type is limited from that perspective:

Listing 21: use_rec_in_subprogram.adb
1 with Simple_Recs; use Simple_Recs;
2

3 procedure Use_Rec_In_Subprogram is
4 R1, R2 : Rec;
5 begin
6 R1.I := 1;
7 R2 := R1;
8 end Use_Rec_In_Subprogram;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Limited_Partial_Full_View

MD5: f0af323a951853b97a2b67ce9b13e732

Build output

use_rec_in_subprogram.adb:6:04: error: invalid prefix in selected component "R1"
use_rec_in_subprogram.adb:7:04: error: left hand of assignment must not be limited␣

↪type
gprbuild: *** compilation phase failed

Here, compilation fails because the type Rec is limited from the procedure's perspective.

Limitations

Note that the opposite — declaring a type as private and its full full view as limited
private — is not possible. For example:

Listing 22: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is private;
4

5 private
(continues on next page)

680 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6

7 type Rec is limited record
8 I : Integer;
9 end record;
10

11 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Limited_Partial_Full_View

MD5: ec1c8a2dcf3cc2c49b1497cf4c9d3a5a

Build output

use_rec_in_subprogram.adb:6:04: error: invalid prefix in selected component "R1"
simple_recs.ads:7:09: error: completion of nonlimited type cannot be limited
gprbuild: *** compilation phase failed

As expected, we get a compilation error in this case. The issue is that the partial view cannot
be allowed to mislead the client about what's possible. In this case, if the partial view allows
assignment, then the full view must actually provide assignment. But the partial view can
restrict what is actually possible, so a limited partial view need not be completed in the full
view as a limited type.
In addition, tagged limited private types cannot have a nonlimited full view. For example:

Listing 23: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is tagged limited private;
4

5 private
6

7 type Rec is tagged record
8 I : Integer;
9 end record;
10

11 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Limited_Partial_Full_View

MD5: cadb9ca1346a98fb65f9059fdb29f865

Build output

simple_recs.ads:7:09: error: completion of limited tagged type must be limited
gprbuild: *** compilation phase failed

Here, compilation fails because the type Rec is nonlimited in its full view.

16.2. Limited private types 681

Advanced Journey With Ada: A Flight In Progress

16.2.3 Limited and nonlimited in full view

Declaring the full view of a type as limited or nonlimited has implications in the way we can
use objects of this type in the package body. For example:

Listing 24: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec_Limited_Full is limited private;
4 type Rec_Nonlimited_Full is limited private;
5

6 procedure Copy
7 (From : Rec_Limited_Full;
8 To : in out Rec_Limited_Full);
9 procedure Copy
10 (From : Rec_Nonlimited_Full;
11 To : in out Rec_Nonlimited_Full);
12

13 private
14

15 type Rec_Limited_Full is limited record
16 I : Integer;
17 end record;
18

19 type Rec_Nonlimited_Full is record
20 I : Integer;
21 end record;
22

23 end Simple_Recs;

Listing 25: simple_recs.adb
1 package body Simple_Recs is
2

3 procedure Copy
4 (From : Rec_Limited_Full;
5 To : in out Rec_Limited_Full)
6 is
7 begin
8 To := From;
9 -- ERROR: assignment is forbidden because
10 -- Rec_Limited_Full is limited in
11 -- its full view.
12 end Copy;
13

14 procedure Copy
15 (From : Rec_Nonlimited_Full;
16 To : in out Rec_Nonlimited_Full)
17 is
18 begin
19 To := From;
20 -- OK: assignment is allowed because
21 -- Rec_Nonlimited_Full is
22 -- nonlimited in its full view.
23 end Copy;
24

25 end Simple_Recs;

Code block metadata

682 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Limited_Non_Limited_Partial_Full_View

MD5: 24b75bb97ddd485bd6825bb8647607c1

Build output

simple_recs.adb:8:07: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed

Here, both Rec_Limited_Full and Rec_Nonlimited_Full are declared as private
limited. However, Rec_Limited_Full type is limited in its full view, while
Rec_Nonlimited_Full is nonlimited. As expected, the compiler complains about the To
:= From assignment in the Copy procedure for the Rec_Limited_Full type because its
full view is limited (so no assignment is possible). Of course, in the case of the objects of
Rec_Nonlimited_Full type, this assignment is perfectly fine.

16.2.4 Limited private component

Another example mentioned by the Ada Reference Manual (7.3.1239, 5/1) is about an array
type whose component type is limited private, but nonlimited in its full view. Let's see a
complete code example for that:

Listing 26: limited_nonlimited_arrays.ads
1 package Limited_Nonlimited_Arrays is
2

3 type Limited_Private is
4 limited private;
5

6 function Init return Limited_Private;
7

8 -- The array type Limited_Private_Array
9 -- is limited because the type of its
10 -- component is limited.
11 type Limited_Private_Array is
12 array (Positive range <>) of
13 Limited_Private;
14

15 private
16

17 type Limited_Private is
18 record
19 A : Integer;
20 end record;
21

22 -- Limited_Private_Array type is
23 -- nonlimited at this point because
24 -- its component is nonlimited.
25 --
26 -- The assignments below are OK:
27 A1 : Limited_Private_Array (1 .. 5);
28

29 A2 : Limited_Private_Array := A1;
30

31 end Limited_Nonlimited_Arrays;

239 http://www.ada-auth.org/standards/22rm/html/RM-7-3-1.html

16.2. Limited private types 683

http://www.ada-auth.org/standards/22rm/html/RM-7-3-1.html

Advanced Journey With Ada: A Flight In Progress

Listing 27: limited_nonlimited_arrays.adb
1 package body Limited_Nonlimited_Arrays is
2

3 function Init return Limited_Private is
4 ((A => 1));
5

6 end Limited_Nonlimited_Arrays;

Listing 28: show_limited_nonlimited_array.adb
1 with Limited_Nonlimited_Arrays;
2 use Limited_Nonlimited_Arrays;
3

4 procedure Show_Limited_Nonlimited_Array is
5 A3 : Limited_Private_Array (1 .. 2) :=
6 (others => Init);
7 A4 : Limited_Private_Array (1 .. 2);
8 begin
9 -- ERROR: this assignment is illegal because
10 -- Limited_Private_Array is limited, as
11 -- its component is limited at this point.
12 A4 := A3;
13 end Show_Limited_Nonlimited_Array;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Limited_Nonlimited_Array

MD5: 211670e99e6e3a63a785bb2dde255b58

Build output

show_limited_nonlimited_array.adb:12:04: error: left hand of assignment must not␣
↪be limited type

show_limited_nonlimited_array.adb:12:04: error: component type "Limited_Private"␣
↪of subtype of "Limited_Private_Array" is limited

gprbuild: *** compilation phase failed

As we can see in this example, the limitedness of the array type Limited_Private_Array
depends on the limitedness of its component type Limited_Private. In the private
part of Limited_Nonlimited_Arrays package, where Limited_Private is nonlimited,
the array type Limited_Private_Array becomes nonlimited as well. In contrast, in the
Show_Limited_Nonlimited_Array, the array type is limited because its component is lim-
ited in that scope.

In the Ada Reference Manual
• 7.3.1 Private Operations240

240 http://www.ada-auth.org/standards/22rm/html/RM-7-3-1.html

684 Chapter 16. Limited Types

http://www.ada-auth.org/standards/22rm/html/RM-7-3-1.html

Advanced Journey With Ada: A Flight In Progress

16.2.5 Tagged limited private types

For tagged private types, the partial and full views must match: if a tagged type is limited
in the partial view, it must be limited in the full view. For example:

Listing 29: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is tagged limited private;
4

5 private
6

7 type Rec is tagged limited record
8 I : Integer;
9 end record;
10

11 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_
↪Types.Tagged_Limited_Private_Types

MD5: bee48bd7e0d70ddfd288c0de5e21b039

Here, the tagged Rec type is limited both in its partial and full views. Any mismatch in
one of the views triggers a compilation error. (As an exercise, you may remove any of the
limited keywords from the code example and try to compile it.)

For further reading...
This rule is for the sake of dynamic dispatching and classwide types. The compiler must
not allow any of the types in a derivation class — the set of types related by inheritance —
to be different regarding assignment and equality (and thus inequality). That's necessary
because we are meant to be able to manipulate objects of any type in the entire set of types
via the partial view presented by the root type, without knowing which specific tagged type
is involved.

16.3 Explicitly limited types

Under certain conditions, limited types can be called explicitly limited — note that using
the limited keyword in a part of the declaration doesn't necessary ensure this, as we'll
see later.
Let's start with an example of an explicitly limited type:

Listing 30: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is limited record
4 I : Integer;
5 end record;
6

7 end Simple_Recs;

Code block metadata

16.3. Explicitly limited types 685

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Explicitly_Limited_
↪Types.Explicitly_Limited_Types

MD5: de73a20140628420830ed9fe0b2dedb5

The Rec type is also explicitly limited when it's declared limited in the private type's com-
pletion (in the package's private part):

Listing 31: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is limited private;
4

5 private
6

7 type Rec is limited record
8 I : Integer;
9 end record;
10

11 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Explicitly_Limited_
↪Types.Explicitly_Limited_Types

MD5: ececb364f5365a74db43952e9421dee0

In this case, Rec is limited both in the partial and in the full view, so it's considered explicitly
limited.
However, as we've learned before (page 679), we may actually declare a type as limited
private in the public part of a package, while its full view is nonlimited. In this case, the
limited type is not consider explicitly limited anymore.
For example, if we make the full view of the Rec nonlimited (by removing the limited
keyword in the private part), then the Rec type isn't explicitly limited anymore:

Listing 32: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is limited private;
4

5 private
6

7 type Rec is record
8 I : Integer;
9 end record;
10

11 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Explicitly_Limited_
↪Types.Explicitly_Limited_Types

MD5: bd54dec4f9b67d3d14d80511b3ac311f

Now, even though the Rec type was declared as limited private, the full view indicates that
it's actually a nonlimited type, so it isn't explicitly limited.
Note that tagged limited private types (page 685) are always explicitly limited types —
because, as we've learned before, they cannot have a nonlimited type declaration in its full
view.

686 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

In the Ada Reference Manual
• 6.2 Formal Parameter Modes241

• 6.4.1 Parameter Associations242

• 7.5 Limited Types243

16.4 Subtypes of Limited Types

We can declare subtypes of limited types. For example:

Listing 33: simple_recs.ads
1 package Simple_Recs is
2

3 type Limited_Integer_Array (L : Positive) is
4 limited private;
5

6 subtype Limited_Integer_Array_2 is
7 Limited_Integer_Array (2);
8

9 private
10

11 type Integer_Array is
12 array (Positive range <>) of Integer;
13

14 type Limited_Integer_Array (L : Positive) is
15 limited record
16 Arr : Integer_Array (1 .. L);
17 end record;
18

19 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Limited_Subtype

MD5: 2a82c3c96fad2a01b9a8c15912d4b974

Here, Limited_Integer_Array_2 is a subtype of the Limited_Integer_Array type. Since
Limited_Integer_Array is a limited type, the Limited_Integer_Array_2 subtype is lim-
ited as well. A subtype just introduces a name for some constraints on an existing type. As
such, a subtype doesn't change the limitedness of the constrained type.
We can test this in a small application:

Listing 34: test_limitedness.adb
1 with Simple_Recs; use Simple_Recs;
2

3 procedure Test_Limitedness is
4 Dummy_1, Dummy_2 : Limited_Integer_Array_2;
5 begin
6 Dummy_2 := Dummy_1;
7 end Test_Limitedness;

241 http://www.ada-auth.org/standards/22rm/html/RM-6-2.html
242 http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html
243 http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

16.4. Subtypes of Limited Types 687

http://www.ada-auth.org/standards/22rm/html/RM-6-2.html
http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Limited_Subtype

MD5: c24d07be96f27298a97e18d955cc6161

Build output

test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed

As expected, compilations fails because Limited_Integer_Array_2 is a limited (sub)type.

16.5 Deriving from limited types

In this section, we discuss the implications of deriving from limited types. As usual, let's
start with a simple example:

Listing 35: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is limited null record;
4

5 type Rec_Derived is new Rec;
6

7 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Limited_Type

MD5: cd23dfb69645ba5f1ebfdd65ee761ebe

In this example, the Rec_Derived type is derived from the Rec type. Note that the
Rec_Derived type is limited because its ancestor is limited, even though the limited key-
word doesn't show up in the declaration of the Rec_Derived type. Note that we could have
actually used the limited keyword here:

type Rec_Derived is limited new Rec;

Therefore, we cannot use the assignment operator for objects of Rec_Derived type:

Listing 36: test_limitedness.adb
1 with Simple_Recs; use Simple_Recs;
2

3 procedure Test_Limitedness is
4 Dummy_1, Dummy_2 : Rec_Derived;
5 begin
6 Dummy_2 := Dummy_1;
7 end Test_Limitedness;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Limited_Type

MD5: ce1b5fc8c96c4ede0cc6768b84296b51

Build output

688 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed

Note that we cannot derive a limited type from a nonlimited ancestor:

Listing 37: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is null record;
4

5 type Rec_Derived is limited new Rec;
6

7 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Limited_Type_Nonlimited_Ancestor

MD5: 78a7574cc6233ddc826359acb6e644ee

Build output

simple_recs.ads:5:04: error: parent type "Rec" of limited type must be limited
gprbuild: *** compilation phase failed

As expected, the compiler indicates that the ancestor Rec should be of limited type.
In fact, all types in a derivation class are the same— either limited or not. (That is especially
important with dynamic dispatching via tagged types. We discuss this topic in another
chapter.)

In the Ada Reference Manual
• 7.3 Private Types and Private Extensions244

• 7.5 Limited Types245

16.5.1 Deriving from limited private types

Of course, we can also derive from limited private types. However, there are more rules in
this case than the ones we've seen so far. Let's start with an example:

Listing 38: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is limited private;
4

5 private
6

7 type Rec is limited null record;
8

9 end Simple_Recs;

244 http://www.ada-auth.org/standards/22rm/html/RM-7-3.html
245 http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

16.5. Deriving from limited types 689

http://www.ada-auth.org/standards/22rm/html/RM-7-3.html
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

Advanced Journey With Ada: A Flight In Progress

Listing 39: simple_recs-ext.ads
1 package Simple_Recs.Ext is
2

3 type Rec_Derived is new Rec;
4

5 -- OR:
6 --
7 -- type Rec_Derived is
8 -- limited new Rec;
9

10 end Simple_Recs.Ext;

Listing 40: test_limitedness.adb
1 with Simple_Recs.Ext; use Simple_Recs.Ext;
2

3 procedure Test_Limitedness is
4 Dummy_1, Dummy_2 : Rec_Derived;
5 begin
6 Dummy_2 := Dummy_1;
7 end Test_Limitedness;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Limited_Private_Type

MD5: c6eed14520589b9c1e11c17bd6179c19

Build output

test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed

Here, Rec_Derived is a limited type derived from the (limited private) Rec type. We can
verify that Rec_Derived type is limited because the compilation of the Test_Limitedness
procedure fails.

16.5.2 Deriving from non-explicitly limited private types

Up to this point, we have discussed explicitly limited types (page 685). Now, let's see how
derivation works with non-explicitly limited types.
Any type derived from a limited type is always limited, even if the full view of its ancestor is
nonlimited. For example, let's modify the full view of Rec and make it nonlimited (i.e. make
it not explicitly limited):

Listing 41: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is limited private;
4

5 private
6

7 type Rec is null record;
8

9 end Simple_Recs;

Code block metadata

690 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Limited_Private_Type

MD5: 30a2a88ff46b7e528bb8d75d3d6ad6ce

Build output

simple_recs.ads:1: Simple_Recs cannot be used as a main program
gprbind: invocation of gnatbind failed
gprbuild: unable to bind simple_recs.ads

Here, Rec_Derived is a limited type because the partial view of Rec is limited. The fact that
the full view of Rec is nonlimited doesn't affect the Rec_Derived type — as we can verify
with the compilation error in the Test_Limitedness procedure.
Note, however, that a derived type becomes nonlimited in the private part or the body of
a child package if it isn't explicitly limited. In this sense, the derived type inherits the nonlim-
itedness of the parent's full view. For example, because we're declaring Rec_Derived as is
new Rec in the child package (Simple_Recs.Ext), we're saying that Rec_Derived is limited
outside this package, but nonlimited in the private part and body of the Simple_Recs.Ext
package. We can verify this by copying the code from the Test_Limitedness procedure to
a new procedure in the body of the Simple_Recs.Ext package:

Listing 42: simple_recs-ext.ads
1 package Simple_Recs.Ext
2 with Elaborate_Body is
3

4 -- Rec_Derived is derived from Rec, which is a
5 -- limited private type that is nonlimited in
6 -- its full view.
7 --
8 -- Rec_Derived isn't explicitly limited.
9 -- Therefore, it's nonlimited in the private
10 -- part of Simple_Recs.Ext and its package
11 -- body.
12 --
13 type Rec_Derived is new Rec;
14

15 end Simple_Recs.Ext;

Listing 43: simple_recs-ext.adb
1 package body Simple_Recs.Ext is
2

3 procedure Test_Child_Limitedness is
4 Dummy_1, Dummy_2 : Rec_Derived;
5 begin
6 -- Here, Rec_Derived is a nonlimited
7 -- type because Rec is nonlimited in
8 -- its full view.
9

10 Dummy_2 := Dummy_1;
11 end Test_Child_Limitedness;
12

13 end Simple_Recs.Ext;

Listing 44: test_limitedness.adb
1 -- We copied the code to the
2 -- Test_Child_Limitedness procedure (in the
3 -- body of the Simple_Recs.Ext package) and

(continues on next page)

16.5. Deriving from limited types 691

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4 -- commented it out here.
5 --
6 -- You may uncomment the code to verify
7 -- that Rec_Derived is limited in this
8 -- procedure.
9 --
10

11 -- with Simple_Recs.Ext; use Simple_Recs.Ext;
12

13 procedure Test_Limitedness is
14 -- Dummy_1, Dummy_2 : Rec_Derived;
15 begin
16 -- Dummy_2 := Dummy_1;
17 null;
18 end Test_Limitedness;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Limited_Private_Type

MD5: f480cd05afff622e451684a0293cb982

In the Test_Child_Limitedness procedure of the Simple_Recs.Ext package, we can use
the Rec_Derived as a nonlimited type because its ancestor Rec is nonlimited in its full view.
(As we've learned before (page 682), if a limited type is nonlimited in its full view, we can
copy objects of this type in the private part of the package specification or in the package
body.)
Outside of the package, both Rec and Rec_Derived types are limited types. Therefore, if we
uncomment the code in the Test_Limitedness procedure, compilation fails there (because
Rec_Derived is viewed as descending from a limited type).

Deriving from tagged limited private types

The rules for deriving from tagged limited private types are slightly different than the rules
we've seen so far. This is because tagged limited types are always explicitly limited types
(page 685).
Let's look at an example:

Listing 45: simple_recs.ads
1 package Simple_Recs is
2

3 type Tagged_Rec is tagged limited private;
4

5 private
6

7 type Tagged_Rec is tagged limited null record;
8

9 end Simple_Recs;

Listing 46: simple_recs-ext.ads
1 package Simple_Recs.Ext is
2

3 type Rec_Derived is new
4 Tagged_Rec with private;
5

(continues on next page)

692 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 private
7

8 type Rec_Derived is new
9 Tagged_Rec with null record;
10

11 end Simple_Recs.Ext;

Listing 47: test_limitedness.adb
1 with Simple_Recs.Ext; use Simple_Recs.Ext;
2

3 procedure Test_Limitedness is
4 Dummy_1, Dummy_2 : Rec_Derived;
5 begin
6 Dummy_2 := Dummy_1;
7 end Test_Limitedness;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Tagged_Limited_Private_Type

MD5: 81c8a010f093d8823b84bb6e69c4114e

Build output

test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed

In this example, Rec_Derived is a tagged limited type derived from the Tagged_Rec type.
(Again, we can verify the limitedness of the Rec_Derived type with the Test_Limitedness
procedure.)
As explained previously, the derived type (Rec_Derived) is a limited type, even though
the limited keyword doesn't appear in its declaration. We could, of course, include the
limited keyword in the declaration of Rec_Derived:

Listing 48: simple_recs-ext.ads
1 package Simple_Recs.Ext is
2

3 type Rec_Derived is limited new
4 Tagged_Rec with private;
5

6 private
7

8 type Rec_Derived is limited new
9 Tagged_Rec with null record;
10

11 end Simple_Recs.Ext;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Tagged_Limited_Private_Type

MD5: b82a58a4bf9701b321000c52bf121977

Build output

simple_recs-ext.ads:1: Simple_Recs.ext cannot be used as a main program
gprbind: invocation of gnatbind failed
gprbuild: unable to bind simple_recs-ext.ads

16.5. Deriving from limited types 693

Advanced Journey With Ada: A Flight In Progress

(Obviously, if we include the limited keyword in the partial view of the derived type, we
must include it in its full view as well.)

Deriving from limited interfaces

The rules for limited interfaces are different from the ones for limited tagged types. In
contrast to the rule we've seen in the previous section, a type that is derived from a limited
type isn't automatically limited. In other words, it does not inherit the limitedness from the
interface. For example:

Listing 49: simple_recs.ads
1 package Simple_Recs is
2

3 type Limited_IF is limited interface;
4

5 end Simple_Recs;

Listing 50: simple_recs-ext.ads
1 package Simple_Recs.Ext is
2

3 type Rec_Derived is new
4 Limited_IF with private;
5

6 private
7

8 type Rec_Derived is new
9 Limited_IF with null record;
10

11 end Simple_Recs.Ext;

Listing 51: test_limitedness.adb
1 with Simple_Recs.Ext; use Simple_Recs.Ext;
2

3 procedure Test_Limitedness is
4 Dummy_1, Dummy_2 : Rec_Derived;
5 begin
6 Dummy_2 := Dummy_1;
7 end Test_Limitedness;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Interface_Limited_Private

MD5: d9cf0bd26b86d0caec82eff2a2ec6ead

Here, Rec_Derived is derived from the limited Limited_IF interface. As we can see, the
Test_Limitedness compiles fine because Rec_Derived is nonlimited.
Of course, if we want Rec_Derived to be limited, we can make this explicit in the type
declaration:

Listing 52: simple_recs-ext.ads
1 package Simple_Recs.Ext is
2

3 type Rec_Derived is limited new
4 Limited_IF with private;

(continues on next page)

694 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
5

6 private
7

8 type Rec_Derived is limited new
9 Limited_IF with null record;
10

11 end Simple_Recs.Ext;

Listing 53: test_limitedness.adb
1 with Simple_Recs.Ext; use Simple_Recs.Ext;
2

3 procedure Test_Limitedness is
4 Dummy_1, Dummy_2 : Rec_Derived;
5 begin
6 Dummy_2 := Dummy_1;
7 end Test_Limitedness;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_
↪Limited_Types.Derived_Interface_Limited_Private

MD5: abb295cbfd5ade5f351991c2fbaf519c

Build output

test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed

Now, compilation of Test_Limitedness fails because Rec_Derived is explicitly limited.

16.6 Immutably Limited Types

According to the Annotated Ada Reference Manual, "an immutably limited type is a type
that cannot become nonlimited subsequently in a private part or in a child unit." In fact,
while we were talking about partial and full view of limited types (page 679), we've seen
that limited private types can become nonlimited in their full view. Such limited types are
not immutably limited.
The Annotated Ada Reference Manual also says that "if a view of the type makes it im-
mutably limited, then no copying (assignment) operations are ever available for objects of
the type. This allows other properties; for instance, it is safe for such objects to have access
discriminants that have defaults or designate other limited objects." We'll see examples of
this later on.
Immutably limited types include:
• explicitly limited types
• tagged limited types (i.e. with the keyword limited);
• tagged limited private type;
• limited private type that have at least one access discriminant (page 615) with a de-
fault expression;

• task types, protected types, and synchronized interfaces;
• any types derived from immutably limited types.

Let's look at a code example that shows instances of immutably limited types:

16.6. Immutably Limited Types 695

Advanced Journey With Ada: A Flight In Progress

Listing 54: show_immutably_limited_types.ads
1 package Show_Immutably_Limited_Types is
2

3 --
4 -- Explicitly limited type
5 --
6 type Explicitly_Limited_Rec is limited
7 record
8 A : Integer;
9 end record;
10

11 --
12 -- Tagged limited type
13 --
14 type Limited_Tagged_Rec is tagged limited
15 record
16 A : Integer;
17 end record;
18

19 --
20 -- Tagged limited private type
21 --
22 type Limited_Tagged_Private is
23 tagged limited private;
24

25 --
26 -- Limited private type with an access
27 -- discriminant that has a default
28 -- expression
29 --
30 type Limited_Rec_Access_D
31 (AI : access Integer := new Integer) is
32 limited private;
33

34 --
35 -- Task type
36 --
37 task type TT is
38 entry Start;
39 entry Stop;
40 end TT;
41

42 --
43 -- Protected type
44 --
45 protected type PT is
46 function Value return Integer;
47 private
48 A : Integer;
49 end PT;
50

51 --
52 -- Synchronized interface
53 --
54 type SI is synchronized interface;
55

56 --
57 -- A type derived from an immutably
58 -- limited type
59 --
60 type Derived_Immutable is new

(continues on next page)

696 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
61 Explicitly_Limited_Rec;
62

63 private
64

65 type Limited_Tagged_Private is tagged limited
66 record
67 A : Integer;
68 end record;
69

70 type Limited_Rec_Access_D
71 (AI : access Integer := new Integer)
72 is limited
73 record
74 A : Integer;
75 end record;
76

77 end Show_Immutably_Limited_Types;

Listing 55: show_immutably_limited_types.adb
1 package body Show_Immutably_Limited_Types is
2

3 task body TT is
4 begin
5 accept Start;
6 accept Stop;
7 end TT;
8

9 protected body PT is
10 function Value return Integer is
11 (PT.A);
12 end PT;
13

14 end Show_Immutably_Limited_Types;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Immutably_Limited_
↪Types.Example

MD5: 6bcb9582a10eedc96040ab11cd320153

Build output

show_immutably_limited_types.ads:31:30: warning: coextension will not be␣
↪deallocated when its associated owner is deallocated [enabled by default]

In the Show_Immutably_Limited_Types package above, we see multiple instances of im-
mutably limited types. (The comments in the source code indicate each type.)

In the Ada Reference Manual
• 7.5 Limited Types246

246 http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

16.6. Immutably Limited Types 697

http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

Advanced Journey With Ada: A Flight In Progress

16.6.1 Non immutably limited types

Not every limited type is immutably limited. We already mentioned untagged private lim-
ited types, which can become nonlimited in their full view. In addition, we have nonsyn-
chronized limited interface types. As mentioned earlier in this chapter, a type derived from
a nonsynchronized limited interface (page 694), can be nonlimited, so it's not immutably
limited.

In the Ada Reference Manual
• 7.3.1 Private Operations247

• 7.5 Limited Types248

16.7 Record components of limited type

In this section, we discuss the implications of using components of limited type. Let's start
by declaring a record component of limited type:

Listing 56: simple_recs.ads
1 package Simple_Recs is
2

3 type Int_Rec is limited record
4 V : Integer;
5 end record;
6

7 type Rec is limited record
8 IR : Int_Rec;
9 end record;
10

11 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Record_Components_
↪Limited_Type.Record_Components_Limited_Type

MD5: 71badd1e38cc4ff37f16d99dd203614b

As soon as we declare a record component of some limited type, the whole record is limited.
In this example, the Rec record is limited due to the presence of the IR component of limited
type.
Also, if we change the declaration of the Rec record from the previous example and remove
the limited keyword, the type itself remains implicitly limited. We can see that when trying
to assign to objects of Rec type in the Show_Implicitly_Limited procedure:

Listing 57: simple_recs.ads
1 package Simple_Recs is
2

3 type Int_Rec is limited record
4 V : Integer;
5 end record;
6

(continues on next page)
247 http://www.ada-auth.org/standards/22rm/html/RM-7-3-1.html
248 http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

698 Chapter 16. Limited Types

http://www.ada-auth.org/standards/22rm/html/RM-7-3-1.html
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
7 type Rec is record
8 IR : Int_Rec;
9 end record;
10

11 end Simple_Recs;

Listing 58: show_implicitly_limited.adb
1 with Simple_Recs; use Simple_Recs;
2

3 procedure Show_Implicitly_Limited is
4 A, B : Rec;
5 begin
6 B := A;
7 end Show_Implicitly_Limited;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Record_Components_
↪Limited_Type.Record_Components_Limited_Type

MD5: 39770daecfc4579407a799e14f9feff9

Build output

show_implicitly_limited.adb:6:04: error: left hand of assignment must not be␣
↪limited type

show_implicitly_limited.adb:6:04: error: component "IR" of type "Rec" has limited␣
↪type

gprbuild: *** compilation phase failed

Here, the compiler indicates that the assignment is forbidden because the Rec type has
a component of limited type. The rationale for this rule is that an object of a limited type
doesn't allow assignment or equality, including the case in which that object is a component
of some enclosing composite object. If we allowed the enclosing object to be copied or
tested for equality, we'd be doing it for all the components, too.

In the Ada Reference Manual
• 3.8 Record Types249

16.8 Limited types and aggregates

Note: This section was originally written by Robert A. Duff and published as Gem #1:
Limited Types in Ada 2005250 and Gem #2251.

In this section, we focus on using aggregates to initialize limited types.

Historically
Prior to Ada 2005, aggregates were illegal for limited types. Therefore, we would be faced
with a difficult choice: Make the type limited, and initialize it like this:
249 http://www.ada-auth.org/standards/22rm/html/RM-3-8.html
250 https://www.adacore.com/gems/gem-1
251 https://www.adacore.com/gems/gem-2

16.8. Limited types and aggregates 699

http://www.ada-auth.org/standards/22rm/html/RM-3-8.html
https://www.adacore.com/gems/gem-1
https://www.adacore.com/gems/gem-1
https://www.adacore.com/gems/gem-2

Advanced Journey With Ada: A Flight In Progress

Listing 59: persons.ads
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 package Persons is
5

6 type Limited_Person;
7 type Limited_Person_Access is
8 access all Limited_Person;
9

10 type Limited_Person is limited record
11 Name : Unbounded_String;
12 Age : Natural;
13 end record;
14

15 end Persons;

Listing 60: show_non_aggregate_init.adb
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 with Persons; use Persons;
5

6 procedure Show_Non_Aggregate_Init is
7 X : Limited_Person;
8 begin
9 X.Name := To_Unbounded_String ("John Doe");
10 X.Age := 25;
11 end Show_Non_Aggregate_Init;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_
↪Aggregates.Full_Coverage_Rules_Limited_Ada95

MD5: fd3dcb6251f7b6912dafcca052932be2

which has the maintenance problem the full coverage rules are supposed to prevent. Or,
make the type nonlimited, and gain the benefits of aggregates, but lose the ability to pre-
vent copies.

16.8.1 Full coverage rules for limited types

Previously, we discussed full coverage rules for aggregates (page 180). They also apply to
limited types.

Historically
The full coverage rules have been aiding maintenance since Ada 83. However, prior to Ada
2005, we couldn't use them for limited types.

Suppose we have the following limited type:

700 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

Listing 61: persons.ads
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 package Persons is
5

6 type Limited_Person;
7 type Limited_Person_Access is
8 access all Limited_Person;
9

10 type Limited_Person is limited record
11 Self : Limited_Person_Access :=
12 Limited_Person'Unchecked_Access;
13 Name : Unbounded_String;
14 Age : Natural;
15 Shoe_Size : Positive;
16 end record;
17

18 end Persons;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_
↪Aggregates.Full_Coverage_Rules_Limited

MD5: b8ece44a10d512061cb138be21e42034

This type has a self-reference; it doesn't make sense to copy objects, because Self would
end up pointing to the wrong place. Therefore, we would like to make the type limited, to
prevent developers from accidentally making copies. After all, the type is probably private,
so developers using this package might not be aware of the problem. We could also solve
that problem with controlled types, but controlled types are expensive, and add unneces-
sary complexity if not needed.
We can initialize objects of limited type with an aggregate. Here, we can say:

Listing 62: show_aggregate_box_init.adb
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 with Persons; use Persons;
5

6 procedure Show_Aggregate_Box_Init is
7 X : aliased Limited_Person :=
8 (Self => <>,
9 Name =>
10 To_Unbounded_String ("John Doe"),
11 Age => 25,
12 Shoe_Size => 10);
13 begin
14 null;
15 end Show_Aggregate_Box_Init;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_
↪Aggregates.Full_Coverage_Rules_Limited

MD5: ded40ff29b53ea5528efba94efaadbec

The Self => <>means use the default value of Limited_Person'Unchecked_Access. Since
Limited_Person appears inside the type declaration, it refers to the "current instance" of

16.8. Limited types and aggregates 701

Advanced Journey With Ada: A Flight In Progress

the type, which in this case is X. Thus, we are setting X.Self to be X'Unchecked_Access.
One very important requirement should be noted: the implementation is required to build
the value of X in place; it cannot construct the aggregate in a temporary variable and then
copy it into X, because that would violate the whole point of limited objects — you can't
copy them.

Historically
Since Ada 2005, an aggregate is allowed to be limited; we can say:

Listing 63: show_aggregate_init.adb
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3 with Persons; use Persons;
4

5 procedure Show_Aggregate_Init is
6

7 X : aliased Limited_Person :=
8 (Self => null, -- Wrong!
9 Name =>
10 To_Unbounded_String ("John Doe"),
11 Age => 25,
12 Shoe_Size => 10);
13 begin
14 X.Self := X'Unchecked_Access;
15 end Show_Aggregate_Init;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_
↪Aggregates.Full_Coverage_Rules_Limited

MD5: 793ee000fd777d0aa5c15e16132ec411

It seems uncomfortable to set the value of Self to the wrong value (null) and then correct
it. It also seems annoying that we have a (correct) default value for Self, but prior to
Ada 2005, we couldn't use defaults with aggregates. Since Ada 2005, a new syntax in
aggregates is available: <>means "use the default value, if any". Therefore, we can replace
Self => null by Self => <>.

Important
Note that using <> in an aggregate can be dangerous, because it can leave some compo-
nents uninitialized. <> means "use the default value". If the type of a component is scalar,
and there is no record-component default, then there is no default value.
For example, if we have an aggregate of type String, like this:

Listing 64: show_string_box_init.adb
1 procedure Show_String_Box_Init is
2 Uninitialized_Const_Str : constant String :=
3 (1 .. 10 => <>);
4 begin
5 null;
6 end Show_String_Box_Init;

Code block metadata

702 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_
↪Aggregates.String_Box_Init

MD5: 28931ced4e1113d55bdc9dc64b42f70a

we end up with a 10-character string all of whose characters are invalid values. Note that
this is no more nor less dangerous than this:

Listing 65: show_dangerous_string.adb
1 procedure Show_Dangerous_String is
2 Uninitialized_String_Var : String (1 .. 10);
3 -- ^^
4 -- no initialization
5

6 Uninitialized_Const_Str : constant String :=
7 Uninitialized_String_Var;
8 begin
9 null;
10 end Show_Dangerous_String;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_
↪Aggregates.Dangerous_String

MD5: 6c26e9c8d5d031d4e6eac1ac8458f17e

Build output

show_dangerous_string.adb:2:05: warning: variable "Uninitialized_String_Var" is␣
↪read but never assigned [-gnatwv]

As always, one must be careful about uninitialized scalar objects.

16.9 Constructor functions for limited types

Note: This section was originally written by Robert A. Duff and published as Gem #3252.

Given that we can use build-in-place aggregates for limited types, the obvious next step is
to allow such aggregates to be wrapped in an abstraction — namely, to return them from
functions. After all, interesting types are usually private, and we need some way for clients
to create and initialize objects.

Historically
Prior to Ada 2005, constructor functions (that is, functions that create new objects and
return them) were not allowed for limited types. Since Ada 2005, fully-general constructor
functions are allowed.

Let's see an example:
252 https://www.adacore.com/gems/gem-3

16.9. Constructor functions for limited types 703

https://www.adacore.com/gems/gem-3

Advanced Journey With Ada: A Flight In Progress

Listing 66: p.ads
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 package P is
5 task type Some_Task_Type;
6

7 protected type Some_Protected_Type is
8 -- dummy type
9 end Some_Protected_Type;
10

11 type T (<>) is limited private;
12 function Make_T (Name : String) return T;
13 -- ^^^^^^
14 -- constructor function
15 private
16 type T is limited
17 record
18 Name : Unbounded_String;
19 My_Task : Some_Task_Type;
20 My_Prot : Some_Protected_Type;
21 end record;
22 end P;

Listing 67: p.adb
1 package body P is
2

3 task body Some_Task_Type is
4 begin
5 null;
6 end Some_Task_Type;
7

8 protected body Some_Protected_Type is
9 end Some_Protected_Type;
10

11 function Make_T (Name : String) return T is
12 begin
13 return (Name =>
14 To_Unbounded_String (Name),
15 others => <>);
16 end Make_T;
17

18 end P;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_
↪Functions_Limited_Types.Constructor_Functions

MD5: 2e73eea0ba7852d45ba96dc1f6fae14d

Given the above, clients can say:

Listing 68: show_constructor_function.adb
1 with P; use P;
2

3 procedure Show_Constructor_Function is
4 My_T : T := Make_T
5 (Name => "Bartholomew Cubbins");

(continues on next page)

704 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6 begin
7 null;
8 end Show_Constructor_Function;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_
↪Functions_Limited_Types.Constructor_Functions

MD5: 52801fafbd58fedbf268a6704008627b

As for aggregates, the result of Make_T is built in place (that is, in My_T), rather than being
created and then copied into My_T. Adding another level of function call, we can do:

Listing 69: show_rumplestiltskin_constructor.adb
1 with P; use P;
2

3 procedure Show_Rumplestiltskin_Constructor is
4

5 function Make_Rumplestiltskin return T is
6 begin
7 return Make_T (Name => "Rumplestiltskin");
8 end Make_Rumplestiltskin;
9

10 Rumplestiltskin_Is_My_Name : constant T :=
11 Make_Rumplestiltskin;
12 begin
13 null;
14 end Show_Rumplestiltskin_Constructor;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_
↪Functions_Limited_Types.Constructor_Functions

MD5: d8d9e9f22a0f2f034057fe97f75eacfe

It might help to understand the implementation model: In this case, Rumplestilt-
skin_Is_My_Name is allocated in the usual way (on the stack, presuming it is declared
local to some subprogram). Its address is passed as an extra implicit parameter to
Make_Rumplestiltskin, which then passes that same address on to Make_T, which then
builds the aggregate in place at that address. Limited objects must never be copied! In
this case, Make_T will initialize the Name component, and create the My_Task and My_Prot
components, all directly in Rumplestiltskin_Is_My_Name.

Historically
Note that Rumplestiltskin_Is_My_Name is constant. Prior to Ada 2005, it was impossible
to create a constant limited object, because there was no way to initialize it.

The (<>) on type T means that it has unknown discriminants from the point of view of the
client. This is a trick that prevents clients from creating default-initialized objects (that is,
X : T; is illegal). Thus clients must call Make_T whenever an object of type T is created,
giving package P full control over initialization of objects.
Ideally, limited and nonlimited types should be just the same, except for the essential differ-
ence: you can't copy limited objects (and there's no language-defined equality operator).
By allowing functions and aggregates for limited types, we're very close to this goal. Some
languages have a specific feature called constructor. In Ada, a constructor is just a function
that creates a new object.

16.9. Constructor functions for limited types 705

Advanced Journey With Ada: A Flight In Progress

Historically
Prior to Ada 2005, constructors only worked for nonlimited types. For limited types, the only
way to construct on declaration was via default values, which limits you to one constructor.
And the only way to pass parameters to that construction was via discriminants.
Consider the following package:

Listing 70: aux.ads
1 with Ada.Containers.Ordered_Sets;
2

3 package Aux is
4 generic
5 with package OS is new
6 Ada.Containers.Ordered_Sets (<>);
7 function Gen_Singleton_Set
8 (Element : OS.Element_Type)
9 return OS.Set;
10 end Aux;

Listing 71: aux.adb
1 package body Aux is
2 function Gen_Singleton_Set
3 (Element : OS.Element_Type)
4 return OS.Set
5 is
6 begin
7 return S : OS.Set := OS.Empty_Set do
8 S.Insert (Element);
9 end return;
10 end Gen_Singleton_Set;
11 end Aux;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_
↪Functions_Limited_Types.Constructor_Functions_2

MD5: b715ae504c49ed59b7fd5ead4cc7bbb4

Since Ada 2005, we can say:

Listing 72: show_set_decl.adb
1 with Ada.Containers.Ordered_Sets;
2 with Aux;
3

4 procedure Show_Set_Decl is
5

6 package Integer_Sets is new
7 Ada.Containers.Ordered_Sets
8 (Element_Type => Integer);
9 use Integer_Sets;
10

11 function Singleton_Set is new
12 Aux.Gen_Singleton_Set
13 (OS => Integer_Sets);
14

15 This_Set : Set := Empty_Set;
16 That_Set : Set := Singleton_Set
17 (Element => 42);

(continues on next page)

706 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
18 begin
19 null;
20 end Show_Set_Decl;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_
↪Functions_Limited_Types.Constructor_Functions_2

MD5: 443fc3390b0f3e5516d91c80f16bed3f

whether or not Set is limited. This_Set : Set := Empty_Set; seems clearer than:

Listing 73: show_set_decl.adb
1 with Ada.Containers.Ordered_Sets;
2

3 procedure Show_Set_Decl is
4

5 package Integer_Sets is new
6 Ada.Containers.Ordered_Sets
7 (Element_Type => Integer);
8 use Integer_Sets;
9

10 This_Set : Set;
11 begin
12 null;
13 end Show_Set_Decl;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_
↪Functions_Limited_Types.Constructor_Functions_2

MD5: e5b6c0e148cfdb1987ab3002ec1f53bd

which might mean "default-initialize to the empty set" or might mean "leave it uninitialized,
and we'll initialize it in later".

16.10 Return objects

16.10.1 Extended return statements for limited types

Note: This section was originally written by Robert A. Duff and published as Gem #10:
Limited Types in Ada 2005253.

Previously, we discussed extended return statements (page 354). For most types, extended
return statements are no big deal — it's just syntactic sugar. But for limited types, this
syntax is almost essential:

Listing 74: task_construct_error.ads
1 package Task_Construct_Error is
2

3 task type Task_Type (Discriminant : Integer);
(continues on next page)

253 https://www.adacore.com/gems/ada-gem-10

16.10. Return objects 707

https://www.adacore.com/gems/ada-gem-10
https://www.adacore.com/gems/ada-gem-10

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4

5 function Make_Task (Val : Integer)
6 return Task_Type;
7

8 end Task_Construct_Error;

Listing 75: task_construct_error.adb
1 package body Task_Construct_Error is
2

3 task body Task_Type is
4 begin
5 null;
6 end Task_Type;
7

8 function Make_Task (Val : Integer)
9 return Task_Type
10 is
11 Result : Task_Type
12 (Discriminant => Val * 3);
13 begin
14 -- some statements...
15 return Result; -- Illegal!
16 end Make_Task;
17

18 end Task_Construct_Error;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Extended_Return_
↪Statements_Limited_Types.Extended_Return_Limited_Error

MD5: f55b1c367d2931ece4d352d209fe6b3b

The return statement here is illegal, because Result is local to Make_Task, and returning
it would involve a copy, which makes no sense (which is why task types are limited). Since
Ada 2005, we can write constructor functions for task types:

Listing 76: task_construct.ads
1 package Task_Construct is
2

3 task type Task_Type (Discriminant : Integer);
4

5 function Make_Task (Val : Integer)
6 return Task_Type;
7

8 end Task_Construct;

Listing 77: task_construct.adb
1 package body Task_Construct is
2

3 task body Task_Type is
4 begin
5 null;
6 end Task_Type;
7

8 function Make_Task (Val : Integer)
9 return Task_Type is
10 begin

(continues on next page)

708 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
11 return Result : Task_Type
12 (Discriminant => Val * 3)
13 do
14 -- some statements...
15 null;
16 end return;
17 end Make_Task;
18

19 end Task_Construct;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Extended_Return_
↪Statements_Limited_Types.Extended_Return_Limited

MD5: c91a24f09a76aef1c25d1a55bcbee910

If we call it like this:

Listing 78: show_task_construct.adb
1 with Task_Construct; use Task_Construct;
2

3 procedure Show_Task_Construct is
4 My_Task : Task_Type := Make_Task (Val => 42);
5 begin
6 null;
7 end Show_Task_Construct;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Extended_Return_
↪Statements_Limited_Types.Extended_Return_Limited

MD5: 01809b031a844c829f2ead253864ca75

Result is created in place in My_Task. Result is temporarily considered local to Make_Task
during the -- some statements part, but as soon as Make_Task returns, the task becomes
more global. Result and My_Task really are one and the same object.
When returning a task from a function, it is activated after the function returns. The -- some
statements part had better not try to call one of the task's entries, because that would
deadlock. That is, the entry call would wait until the task reaches an accept statement,
which will never happen, because the task will never be activated.

16.10.2 Initialization and function return

Asmentioned in the previous section, the object of limited type returned by the initialization
function is built in place. In other words, the return object is built in the object that is the
target of the assignment statement.
For example, we can see this when looking at the address of the object returned by the
Init function, which we call to initialize the limited type Simple_Rec:

Listing 79: limited_types.ads
1 package Limited_Types is
2

3 type Integer_Access is access Integer;
4

5 type Simple_Rec is limited private;
(continues on next page)

16.10. Return objects 709

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
6

7 function Init (I : Integer) return Simple_Rec;
8

9 private
10

11 type Simple_Rec is limited record
12 V : Integer_Access;
13 end record;
14

15 end Limited_Types;

Listing 80: limited_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System;
3 with System.Address_Image;
4

5 package body Limited_Types is
6

7 function Init (I : Integer) return Simple_Rec
8 is
9 begin
10 return E : Simple_Rec do
11 E.V := new Integer'(I);
12

13 Put_Line ("E'Address (Init): "
14 & System.Address_Image
15 (E'Address));
16 end return;
17 end Init;
18

19 end Limited_Types;

Listing 81: show_limited_init.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System;
3 with System.Address_Image;
4

5 with Limited_Types; use Limited_Types;
6

7 procedure Show_Limited_Init is
8 begin
9 declare
10 A : Simple_Rec := Init (0);
11 begin
12 Put_Line ("A'Address (local): "
13 & System.Address_Image
14 (A'Address));
15 end;
16 Put_Line ("----");
17

18 declare
19 B : Simple_Rec := Init (0);
20 begin
21 Put_Line ("B'Address (local): "
22 & System.Address_Image
23 (B'Address));
24 end;
25 end Show_Limited_Init;

710 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Extended_Return_
↪Statements_Limited_Types.Initialization_Return_Do

MD5: 67235f804206e07fa4eba3a45cc1096f

Runtime output

E'Address (Init): 00007FFC52732DC8
A'Address (local): 00007FFC52732DC8

E'Address (Init): 00007FFC52732DC0
B'Address (local): 00007FFC52732DC0

When running this code example and comparing the address of the object E in the Init
function and the object that is being initialized in the Show_Limited_Init procedure, we see
that the return object E (of the Init function) and the local object in the Show_Limited_Init
procedure are the same object.

Important
When we use nonlimited types, we're actually copying the returned object — which was
locally created in the function — to the object that we're assigning the function to.
For example, let's modify the previous code and make Simple_Rec nonlimited:

Listing 82: non_limited_types.ads
1 package Non_Limited_Types is
2

3 type Integer_Access is access Integer;
4

5 type Simple_Rec is private;
6

7 function Init (I : Integer)
8 return Simple_Rec;
9

10 private
11

12 type Simple_Rec is record
13 V : Integer_Access;
14 end record;
15

16 end Non_Limited_Types;

Listing 83: non_limited_types.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System;
3 with System.Address_Image;
4

5 package body Non_Limited_Types is
6

7 function Init (I : Integer)
8 return Simple_Rec is
9 begin
10 return E : Simple_Rec do
11 E.V := new Integer'(I);
12

13 Put_Line ("E'Address (Init): "
14 & System.Address_Image
15 (E'Address));

(continues on next page)

16.10. Return objects 711

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
16 end return;
17 end Init;
18

19 end Non_Limited_Types;

Listing 84: show_non_limited_init_by_copy.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System;
3 with System.Address_Image;
4

5 with Non_Limited_Types;
6 use Non_Limited_Types;
7

8 procedure Show_Non_Limited_Init_By_Copy is
9 A, B : Simple_Rec;
10 begin
11 declare
12 A : Simple_Rec := Init (0);
13 begin
14 Put_Line ("A'Address (local): "
15 & System.Address_Image
16 (A'Address));
17 end;
18 Put_Line ("----");
19

20 declare
21 B : Simple_Rec := Init (0);
22 begin
23 Put_Line ("B'Address (local): "
24 & System.Address_Image
25 (B'Address));
26 end;
27 end Show_Non_Limited_Init_By_Copy;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.
↪Extended_Return_Statements_Limited_Types.Initialization_Return_
↪Copy

MD5: 6e224b64b90dabdf5064c70364fa80cb

Runtime output

E'Address (Init): 00007FFFF0D96010
A'Address (local): 00007FFFF0D96138

E'Address (Init): 00007FFFF0D96010
B'Address (local): 00007FFFF0D96130

In this case, we see that the local object E in the Init function is not the same as
the object it's being assigned to in the Show_Non_Limited_Init_By_Copy proce-
dure. In fact, E is being copied to A and B.

712 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

16.11 Building objects from constructors

Note: This section was originally written by Robert A. Duff and published as Gem #11:
Limited Types in Ada 2005254.

We've earlier seen examples of constructor functions for limited types similar to this:

Listing 85: p.ads
1 with Ada.Strings.Unbounded;
2 use Ada.Strings.Unbounded;
3

4 package P is
5 task type Some_Task_Type;
6

7 protected type Some_Protected_Type is
8 -- dummy type
9 end Some_Protected_Type;
10

11 type T is limited private;
12 function Make_T (Name : String) return T;
13 -- ^^^^^^
14 -- constructor function
15 private
16 type T is limited
17 record
18 Name : Unbounded_String;
19 My_Task : Some_Task_Type;
20 My_Prot : Some_Protected_Type;
21 end record;
22 end P;

Listing 86: p.adb
1 package body P is
2

3 task body Some_Task_Type is
4 begin
5 null;
6 end Some_Task_Type;
7

8 protected body Some_Protected_Type is
9 end Some_Protected_Type;
10

11 function Make_T (Name : String) return T is
12 begin
13 return (Name =>
14 To_Unbounded_String (Name),
15 others => <>);
16 end Make_T;
17

18 end P;

Listing 87: p-aux.ads
1 package P.Aux is
2 function Make_Rumplestiltskin return T;
3 end P.Aux;

254 https://www.adacore.com/gems/ada-gem-11

16.11. Building objects from constructors 713

https://www.adacore.com/gems/ada-gem-11
https://www.adacore.com/gems/ada-gem-11

Advanced Journey With Ada: A Flight In Progress

Listing 88: p-aux.adb
1 package body P.Aux is
2

3 function Make_Rumplestiltskin return T is
4 begin
5 return Make_T (Name => "Rumplestiltskin");
6 end Make_Rumplestiltskin;
7

8 end P.Aux;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_
↪From_Constructors.Building_Objs_From_Constructors

MD5: 1956721292a82899d244afcd10ff63ed

It is useful to consider the various contexts in which these functions may be called. We've
already seen things like:

Listing 89: show_rumplestiltskin_constructor.adb
1 with P; use P;
2 with P.Aux; use P.Aux;
3

4 procedure Show_Rumplestiltskin_Constructor is
5 Rumplestiltskin_Is_My_Name : constant T :=
6 Make_Rumplestiltskin;
7 begin
8 null;
9 end Show_Rumplestiltskin_Constructor;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_
↪From_Constructors.Building_Objs_From_Constructors

MD5: 2fe193516df6452eccece8132660f8e5

in which case the limited object is built directly in a standalone object. This object will be
finalized whenever the surrounding scope is left.
We can also do:

Listing 90: show_parameter_constructor.adb
1 with P; use P;
2 with P.Aux; use P.Aux;
3

4 procedure Show_Parameter_Constructor is
5 procedure Do_Something (X : T) is null;
6 begin
7 Do_Something (X => Make_Rumplestiltskin);
8 end Show_Parameter_Constructor;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_
↪From_Constructors.Building_Objs_From_Constructors

MD5: 61ccaefb4b7cfc42c065aa15543fc13b

Here, the result of the function is built directly in the formal parameter X of Do_Something.
X will be finalized as soon as we return from Do_Something.

714 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

We can allocate initialized objects on the heap:

Listing 91: show_heap_constructor.adb
1 with P; use P;
2 with P.Aux; use P.Aux;
3

4 procedure Show_Heap_Constructor is
5

6 type T_Ref is access all T;
7

8 Global : T_Ref;
9

10 procedure Heap_Alloc is
11 Local : T_Ref;
12 To_Global : Boolean := True;
13 begin
14 Local := new T'(Make_Rumplestiltskin);
15 if To_Global then
16 Global := Local;
17 end if;
18 end Heap_Alloc;
19

20 begin
21 null;
22 end Show_Heap_Constructor;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_
↪From_Constructors.Building_Objs_From_Constructors

MD5: 8eb794884f1dfbdbedf1bc4369f45cf8

The result of the function is built directly in the heap-allocated object, which will be finalized
when the scope of T_Ref is left (long after Heap_Alloc returns).
We can create another limited type with a component of type T, and use an aggregate:

Listing 92: show_outer_type.adb
1 with P; use P;
2 with P.Aux; use P.Aux;
3

4 procedure Show_Outer_Type is
5

6 type Outer_Type is limited record
7 This : T;
8 That : T;
9 end record;
10

11 Outer_Obj : Outer_Type :=
12 (This => Make_Rumplestiltskin,
13 That => Make_T (Name => ""));
14

15 begin
16 null;
17 end Show_Outer_Type;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_
↪From_Constructors.Building_Objs_From_Constructors

MD5: 00817649406492b79977d67eb0fd3955

16.11. Building objects from constructors 715

Advanced Journey With Ada: A Flight In Progress

As usual, the function results are built in place, directly in Outer_Obj.This and Outer_Obj.
That, with no copying involved.
The one case where we cannot call such constructor functions is in an assignment state-
ment:

Listing 93: show_illegal_constructor.adb
1 with P; use P;
2 with P.Aux; use P.Aux;
3

4 procedure Show_Illegal_Constructor is
5 Rumplestiltskin_Is_My_Name : T;
6 begin
7 Rumplestiltskin_Is_My_Name :=
8 Make_T (Name => ""); -- Illegal!
9 end Show_Illegal_Constructor;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_
↪From_Constructors.Building_Objs_From_Constructors

MD5: f7b0c78e9fbe2e104b82dfff25ac3e3a

Build output

show_illegal_constructor.adb:7:04: error: left hand of assignment must not be␣
↪limited type

gprbuild: *** compilation phase failed

which is illegal because assignment statements involve copying. Likewise, we can't copy a
limited object into some other object:

Listing 94: show_illegal_constructor.adb
1 with P; use P;
2 with P.Aux; use P.Aux;
3

4 procedure Show_Illegal_Constructor is
5 Rumplestiltskin_Is_My_Name : constant T :=
6 Make_T (Name => "");
7 Other : T :=
8 Rumplestiltskin_Is_My_Name; -- Illegal!
9 begin
10 null;
11 end Show_Illegal_Constructor;

16.12 Limited types as parameter

Previously, we saw that parameters can be passed by copy or by reference (page 357).
Also, we discussed the concept of by-copy and by-reference types. Explicitly limited types
(page 685) are by-reference types. Consequently, parameters of these types are always
passed by reference.

For further reading...
As an example of the importance of this rule, consider the case of a lock (as an abstract
data type). If such a lock object were passed by copy, the Acquire and Release operations

716 Chapter 16. Limited Types

Advanced Journey With Ada: A Flight In Progress

would be working on copies of this object, not on the original one. This would lead to
timing-dependent bugs.

Let's reuse an example of an explicitly limited type:

Listing 95: simple_recs.ads
1 package Simple_Recs is
2

3 type Rec is limited record
4 I : Integer;
5 end record;
6

7 end Simple_Recs;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_
↪Parameters.Explicitly_Limited_Types

MD5: de73a20140628420830ed9fe0b2dedb5

In this example, Rec is a by-reference type because the type declaration is an explicit limited
record. Therefore, the parameter R of the Proc procedure is passed by reference.
We can run the Test application below and compare the address of the R object from Test
to the address of the R parameter of Proc to determine whether both R s refer to the same
object or not:

Listing 96: simple_recs.ads
1 with System;
2

3 package Simple_Recs is
4

5 type Rec is limited record
6 I : Integer;
7 end record;
8

9 procedure Proc (R : in out Rec;
10 A : out System.Address);
11

12 end Simple_Recs;

Listing 97: simple_recs.adb
1 package body Simple_Recs is
2

3 procedure Proc (R : in out Rec;
4 A : out System.Address) is
5 begin
6 R.I := 0;
7 A := R'Address;
8 end Proc;
9

10 end Simple_Recs;

Listing 98: test.adb
1 with Ada.Text_IO; use Ada.Text_IO;
2 with System; use System;
3 with System.Address_Image;

(continues on next page)

16.12. Limited types as parameter 717

Advanced Journey With Ada: A Flight In Progress

(continued from previous page)
4 with Simple_Recs; use Simple_Recs;
5

6 procedure Test is
7 R : Rec;
8

9 AR_Proc, AR_Test : System.Address;
10 begin
11 AR_Proc := R'Address;
12

13 Proc (R, AR_Test);
14

15 Put_Line ("R'Address (Proc): "
16 & System.Address_Image (AR_Proc));
17 Put_Line ("R'Address (Test): "
18 & System.Address_Image (AR_Test));
19

20 if AR_Proc = AR_Test then
21 Put_Line ("R was passed by reference.");
22 else
23 Put_Line ("R was passed by copy.");
24 end if;
25

26 end Test;

Code block metadata

Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_
↪Parameters.Explicitly_Limited_Types

MD5: d4fe2bb47d2223ef013d22aa305403e5

Runtime output

R'Address (Proc): 00007FFFC414438C
R'Address (Test): 00007FFFC414438C
R was passed by reference.

When running the Test application, we confirm that R was passed by reference. Note,
however, that the fact that R was passed by reference doesn't automatically imply that Rec
is a by-reference type: the type could have been ambiguous, and the compiler could have
just decided to pass the parameter by reference in this case.
Therefore, we have to rely on the rules specified in the Ada Reference Manual:
1. If a limited type is explicitly limited, a parameter of this type is a by-reference type.

• The rule applies to all kinds of explicitly limited types. For example, consider
private limited types where the type is declared limited in the private type's com-
pletion (in the package's private part): a parameter of this type is a by-reference
type.

2. If a limited type is not explicitly limited, a parameter of this type is neither a by-copy
nor a by-reference type.
• In this case, the decision whether the parameter is passed by reference or by copy
is made by the compiler.

In the Ada Reference Manual
• 6.2 Formal Parameter Modes255

255 http://www.ada-auth.org/standards/22rm/html/RM-6-2.html

718 Chapter 16. Limited Types

http://www.ada-auth.org/standards/22rm/html/RM-6-2.html

Advanced Journey With Ada: A Flight In Progress

• 6.4.1 Parameter Associations256

• 7.5 Limited Types257

256 http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html
257 http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

16.12. Limited types as parameter 719

http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html

	I Data types
	Types
	Scalar Types
	Ranges
	Predecessor and Successor
	Scalar To String Conversion
	Width attribute
	Base

	Enumerations
	Enumerations as functions
	Enumeration renaming

	Enumeration overloading
	Enumeration subtypes
	Enumeration ambiguities

	Position and Internal Code

	Definite and Indefinite Subtypes
	Constrained Attribute

	Incomplete types
	Type view
	Non-Record Private Types
	Unconstrained Types

	Type conversion
	Value conversion
	Root and derived types
	Numeric type conversion
	Enumeration conversion
	Array conversion

	View conversion
	View conversion of tagged types
	View conversion of untagged types

	Implicit conversions
	Conversion of other types

	Qualified Expressions
	Verifying subtypes

	Default initial values
	Deferred Constants
	User-defined literals

	Types and Representation
	Enumeration Representation Clauses
	Data Representation
	Sizes
	Size attribute and aspect
	Component size
	Storage size

	Alignment
	Overlapping Storage
	Packed Representation
	Trade-offs

	Record Representation and storage clauses
	Storage Place Attributes
	Using Representation Clauses
	Derived Types And Representation Clauses
	Representation on Bit Level

	Changing Data Representation
	Restrictions

	Valid Attribute
	Unchecked Union
	Shared variable control
	Volatile
	Independent
	Atomic

	Addresses
	Address attribute
	Address aspect
	Address comparison
	Address to integer conversion
	Address arithmetic

	Discarding names

	Records
	Default Initialization
	Dependencies
	Initialization Order
	Evaluation
	Defaults and object declaration
	Advanced Usages

	Mutually dependent types
	Null records
	Simple Prototyping
	Extending the prototype
	More complex applications
	Implementing the API
	Tagged null records

	Per-Object Expressions
	Default value
	Restrictions

	Aggregates
	Container Aggregates
	Record aggregates
	<>
	others
	Record discriminants

	Full coverage rules for Aggregates
	Array aggregates
	Positional and named array aggregates
	Null array aggregate
	|, <>, others
	..
	Missing components
	Iterated component association
	Multidimensional array aggregates
	Strings in subaggregates

	<> and default values

	Extension Aggregates
	Assignments to objects of derived types
	Example: Points
	Using extension aggregates
	More extension aggregates
	with others
	with null record
	Extension aggregates and descendent types

	Delta Aggregates
	Delta Aggregates for Tagged Records
	Delta Aggregates for Non-Tagged Records
	Delta Aggregates for Arrays
	Using slices
	Multiple components

	Arrays
	Unconstrained Arrays
	Unconstrained Arrays vs. Vectors

	Multidimensional Arrays
	Unconstrained Multidimensional Arrays
	Arrays of arrays

	Strings
	Wide and Wide-Wide Strings
	Text I/O
	Wide and Wide-Wide String Handling
	Bounded and Unbounded Wide and Wide-Wide Strings

	String Encoding
	UTF-8 encoding and decoding
	UTF-8 size and length
	UTF-8 encoding in source-code files
	Portability of UTF-8 in source-code files

	UTF-16 encoding and decoding

	Image attribute
	Overview
	Type'Image and Obj'Image
	Wider versions of Image
	Image attribute for non-scalar types
	Image attribute for tagged types
	Image attribute for task and protected types

	Put_Image aspect
	Overview
	Complete Example of Put_Image
	Relation to the Image attribute
	Put_Image and derived types
	Put_Image and tagged types

	Universal text buffer
	Overview
	Additional procedures

	Numerics
	Modular Types
	Modulus Attribute
	Mod Attribute
	Operations on modular types

	Numeric Literals
	Classification
	Features and Flexibility

	Floating-Point Types
	Representation-oriented attributes
	Attribute: Machine_Radix
	Attributes: Machine_Mantissa
	Machine_Emin and Machine_Emax
	Attribute: Digits
	Attributes: Denorm, Signed_Zeros, Machine_Rounds, Machine_Overflows

	Primitive function attributes
	Attributes: Fraction, Exponent and Compose
	Attribute: Scaling
	Round-up and round-down attributes
	Round-to-nearest attributes
	Attributes: Truncation, Remainder, Adjacent
	Attributes: Copy_Sign and Leading_Part
	Attribute: Machine

	Fixed-Point Types
	Attributes of fixed-point types
	Attribute: Machine_Radix
	Attribute: Machine_Rounds and Machine_Overflows
	Attribute: Small and Delta
	Attributes: Fore and Aft

	Attributes of decimal fixed-point types
	Attribute: Digits
	Attribute: Scale
	Attribute: Round

	Big Numbers
	Overview
	Factorial
	Conversions
	Validity
	Conversion functions
	Big integer to integer
	Big real to floating-point types
	Big real to fixed-point types
	Big reals to (big) integers
	String conversions

	Other features of big integers
	Big positive and natural subtypes

	Other operators for big integers
	Big real and quotients
	Range checks

	II Control Flow
	Expressions
	Expressions: Definition
	Relations and simple expressions
	Numeric expressions
	Other expressions
	Parenthesized expression

	Conditional Expressions
	Quantified Expressions
	Declare Expressions
	Restrictions in the declarative part

	Reduction Expressions
	Value sequences
	Custom reducers
	Other accumulator types

	Statements
	Simple and Compound Statements
	Labels
	Labels and goto statements
	Use-case: Continue
	Labels and compound statements

	Exit loop statement
	If, case and loop statements
	Case statements and expressions

	Block Statements
	Extended return statement
	Other usages of extended return statements

	Subprograms
	Parameter Modes and Associations
	Formal Parameter Modes
	By-copy and by-reference
	Bounded errors
	Aliased parameters
	Parameter Associations
	Parameter order and association
	Ambiguous calls
	Overlapping actual parameters

	Operators
	User-defined operators

	Expression functions
	Overloading
	Operator Overloading
	Operator Overriding
	Nonreturning procedures
	Inline subprograms
	Null Procedures
	Null procedures and overriding

	Exceptions
	Asserts
	Assertion policies
	Checks and exceptions
	Access Check
	Discriminant Check
	Division Check
	Index Check
	Length Check
	Overflow Check
	Range Check
	Tag Check
	Accessibility Check
	Allocation Check
	Elaboration Check
	Storage Check

	Ada.Exceptions package
	Retrieving exception information
	Collecting exceptions
	Save_Occurrence
	Read and Write attributes

	Debugging exceptions in the GNAT toolchain

	Exception renaming
	Out and Uninitialized
	Suppressing checks
	pragma Suppress
	pragma Unsuppress

	III Modular programming
	Packages
	Package renaming
	Grouping packages
	Child of renamed package
	Backwards-compatibility via renaming

	Private packages
	Declaration and usage
	Private sibling packages
	Outside the package tree

	Private with clauses
	Definition and usage
	Referring to private child package

	Limited Visibility
	Limited visibility and private with clauses
	Limited visibility and other elements

	Visibility
	Automatic visibility
	With clauses and visibility
	Circular dependency
	Private packages

	Use type clause
	Another use clause example
	Visibility and Readability
	use type
	use all type

	Use clauses and naming conflicts
	Code example
	Naming conflict
	Circumventing naming conflicts

	Subprograms and Modularity
	Private subprograms
	Private subprograms of a package
	Private subprograms and private packages
	Child subprograms of private packages

	IV Resource Management
	Access Types
	Access types: Terminology
	Access type, designated subtype and profile
	Access object and designated object
	Access value and designated value

	Access types: Allocation
	Pool-specific access types
	Multiple allocation

	Discriminants as Access Values
	Unconstrained type as designated subtype
	Whole object assignments

	Parameters as Access Values
	Changing the referenced object
	Replace the access value
	Side-effects on designated objects

	Self-reference
	Mutually dependent types using access types
	Dereferencing
	Implicit Dereferencing
	Arrays
	Records
	Attributes
	Summary

	Ragged arrays
	Uniform multidimensional arrays
	Non-uniform multidimensional array

	Aliasing
	Aliased objects
	General access modifiers
	Access attribute
	Non-aliased objects
	Ragged arrays using aliased objects
	Aliased access objects

	Aliased components
	Aliased parameters

	Accessibility Levels and Rules: An Introduction
	Lifetime of objects
	Accessibility Levels
	Accessibility Rules
	Code example
	Types and Accessibility Levels
	Operations on Access Types
	Conversion between Access Types

	Accessibility rules on parameters
	Dangling References

	Unchecked Access
	Unchecked Deallocation
	Unchecked Deallocation and Dangling References
	Dereferencing dangling references
	Restrictions for Ada.Unchecked_Deallocation

	Null & Not Null Access
	Design strategies for access types
	Abstract data type for access types
	Controlled type for access types

	Access to subprograms
	Static vs. dynamic calls
	Access to subprogram declaration
	Objects of access-to-subprogram type
	Components of access-to-subprogram type
	Access-to-subprogram as discriminant types
	Access-to-subprograms as formal parameters
	Selecting subprograms
	Null exclusion
	Access to protected subprograms

	Accessibility Rules and Access-To-Subprograms
	Unchecked Access

	Access and Address
	Address and access conversion
	Conversion of unbounded designated types

	Anonymous Access Types
	Named and Anonymous Access Types
	Relation to named types
	Benefits of anonymous access types

	Anonymous Access-To-Object Types
	Not Null Anonymous Access-To-Object Types
	Drawbacks of Anonymous Access-To-Object Types
	Missing features
	Dangerous memory deallocation
	Possible solution using named access types
	Possible solution using the stack
	When to use anonymous access-to-objects types

	Access discriminants
	Default Value of Access Discriminants
	Benefits of Access Discriminants
	Preventing dangling pointers

	Self-reference
	Mutually dependent types using anonymous access types
	Access parameters
	Interfacing To Other Languages
	Inherited Primitive Operations For Tagged Types

	User-Defined References
	Dereferencing of tagged types
	Simple container

	Anonymous Access Types and Accessibility Rules
	Conversions between Anonymous and Named Access Types
	Accessibility rules on access parameters

	Anonymous Access-To-Subprograms
	Examples of anonymous access-to-subprogram usage
	Application of anonymous access-to-subprogram types
	Readability

	Accessibility Rules and Anonymous Access-To-Subprograms
	Named vs. anonymous access-to-subprograms
	Named vs. anonymous access-to-subprograms as parameters
	Named access-to-subprograms as a parameter
	Anonymous access-to-subprograms as a parameter

	Iterator
	Using named access-to-subprograms
	Using anonymous access-to-subprograms

	Limited Types
	Assignment and equality
	Assignments
	Equality

	Limited private types
	Non-Record Limited Types
	Partial and full view of limited types
	Limitations

	Limited and nonlimited in full view
	Limited private component
	Tagged limited private types

	Explicitly limited types
	Subtypes of Limited Types
	Deriving from limited types
	Deriving from limited private types
	Deriving from non-explicitly limited private types
	Deriving from tagged limited private types
	Deriving from limited interfaces

	Immutably Limited Types
	Non immutably limited types

	Record components of limited type
	Limited types and aggregates
	Full coverage rules for limited types

	Constructor functions for limited types
	Return objects
	Extended return statements for limited types
	Initialization and function return

	Building objects from constructors
	Limited types as parameter

